I. G. Abrahamson, Orthant Probabilities for the Quadrivariate Normal Distribution, The Annals of Mathematical Statistics, vol.35, issue.4, pp.1685-1703, 1964.
DOI : 10.1214/aoms/1177700391

S. Berg and D. Lepelley, On probability models in voting theory, Statistica Neerlandica, vol.111, issue.2, pp.133-146, 1994.
DOI : 10.1016/0022-0531(75)90050-2

H. S. Coxeter, The functions of Schläfli and Lobatschefsky, Quarterly Journal of Mathematics, vol.6, pp.13-29, 1935.

D. , A. A. Heiser, and W. J. , A recursive partitioning method for the prediction of preference rankings based upon kemeny distances, Psychometrika, vol.81, issue.3, pp.774-794, 2016.

D. S. Felsenthal, Review of Paradoxes Afflicting Procedures for Electing a Single Candidate in Electoral Systems : Paradoxes, Assumptions, and Procedures, Studies in Choice and Welfare, Felsenthal, DS and, 2012.

W. V. Gehrlein, A representation for quadrivariate normal positive orthant probabilities, Communications in Statistics - Simulation and Computation, vol.58, issue.4, pp.349-358, 1979.
DOI : 10.1093/biomet/49.3-4.433

W. V. Gehrlein, Condorcet's Paradoxes, 2006.

W. V. Gehrlein and F. P. , The probability of the paradox of voting: A computable solution, Journal of Economic Theory, vol.13, issue.1, pp.14-25, 1976.
DOI : 10.1016/0022-0531(76)90063-6

W. V. Gehrlein and P. C. Fishburn, Robustness of positional scoring over subsets of alternatives, Applied Mathematics & Optimization, vol.28, issue.1, pp.241-255, 1980.
DOI : 10.1007/BF01442897

W. V. Gehrlein and P. C. Fishburn, Scoring rule and majority agreements for large electorates with arbitrary preferences, Mathematical Social Sciences, vol.2, issue.1, pp.23-33, 1981.
DOI : 10.1016/0165-4896(82)90041-5

W. V. Gehrlein and D. Lepelley, Voting paradoxes and group coherence, 2010.
DOI : 10.1007/978-3-642-03107-6

URL : https://hal.archives-ouvertes.fr/hal-01243452

I. C. Gormley and T. B. Murphy, A mixture of experts model for rank data with applications in election studies, The Annals of Applied Statistics, vol.2, issue.4, pp.1452-1477, 2008.
DOI : 10.1214/08-AOAS178SUPP

E. Kamwa and M. V. , Scoring rules over subsets of alternatives: Consistency and paradoxes, Journal of Mathematical Economics, vol.61, pp.130-138, 2015.
DOI : 10.1016/j.jmateco.2015.08.008

URL : https://hal.archives-ouvertes.fr/halshs-01238563

R. Kellerhals, On the volume of hyperbolic polyhedra, Mathematische Annalen, vol.40, issue.3, pp.541-569, 1989.
DOI : 10.1007/BF01452047

M. G. Kendall, A NEW MEASURE OF RANK CORRELATION, Biometrika, vol.30, issue.1-2, pp.81-93, 1938.
DOI : 10.1093/biomet/30.1-2.81

C. L. Mallows, NON-NULL RANKING MODELS. I, Biometrika, vol.44, issue.1-2, pp.114-130, 1957.
DOI : 10.1093/biomet/44.1-2.114

V. Merlin, M. Tataru, and F. Valognes, On the likelihood of Condorcet's profiles, Social Choice and Welfare, vol.19, issue.1, pp.193-206, 2002.
DOI : 10.1007/s355-002-8332-y

V. Merlin, M. Tataru, and F. Valognes, On the probability that all decision rules select the same winner, Journal of Mathematical Economics, vol.33, issue.2, pp.183-207, 2000.
DOI : 10.1016/S0304-4068(99)00012-9

V. Merlin and F. Valognes, The impact of indifferent voters on the likelihood of some voting paradoxes, Mathematical Social Sciences, vol.48, issue.3, pp.343-361, 2004.
DOI : 10.1016/j.mathsocsci.2004.04.002

URL : https://hal.archives-ouvertes.fr/halshs-00069089

J. Milnor, Hyperbolic geometry: The first 150 years, Bulletin of the American Mathematical Society, vol.6, issue.1, pp.9-24, 1982.
DOI : 10.1090/S0273-0979-1982-14958-8

H. Nurmi, Voting Paradoxes and How to Deal with Them, 1999.
DOI : 10.1007/978-3-662-03782-9

R. L. Plackett, A REDUCTION FORMULA FOR NORMAL MULTIVARIATE INTEGRALS, Biometrika, vol.41, issue.3-4, pp.351-360, 1954.
DOI : 10.1093/biomet/41.3-4.351

D. G. Saari and M. Tataru, The likelihood of dubious election outcomes, Economic Theory, vol.13, issue.2, pp.345-363, 1999.
DOI : 10.1007/s001990050258

L. Schläfli, Theorie der Vielfachen Kontinuität, Gesammelte Mathematische Abhandlungen, vol.1, 1950.

M. Tataru and M. V. , On the relationship of the Condorcet winner and positional voting rules, Mathematical Social Sciences, vol.34, issue.1, pp.81-90, 1997.
DOI : 10.1016/S0165-4896(97)00005-X