H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman et al., Justified representation in approval-based committee voting, Social Choice and Welfare, vol.103, issue.1???2, pp.461-485, 2017.
DOI : 10.1023/A:1005082925477

H. Aziz, S. Gaspers, N. Mattei, N. Narodytska, W. et al., Ties matter: Complexity of manipulation when tie-breaking with a random vote, Proc. of 27th AAAI Conference, pp.74-80, 2013.

S. Barberà, C. , and D. , How to choose a non-controversial list with k names, Social Choice and Welfare, vol.48, issue.1, pp.79-96, 2008.
DOI : 10.1017/CCOL052139015X

N. Betzler, A. Slinko, and J. And-uhlmann, On the Computation of Fully Proportional Representation, SSRN Electronic Journal, vol.47, pp.475-519, 2013.
DOI : 10.2139/ssrn.1952497

H. Bock, W. Dayb, and F. Mcmorris, Consensus rules for committee elections, Mathematical Social Sciences, vol.35, issue.3, pp.219-232, 1998.
DOI : 10.1016/S0165-4896(97)00033-4

S. J. Brams, Mathematics and Democracy: Designing Better Voting and Fair-Division Procedures, 2008.
DOI : 10.1515/9781400835591

URL : https://doi.org/10.1016/j.mcm.2008.05.013

S. J. Brams, D. M. Kilgour, and M. R. Sanver, A minimax procedure for electing committees, Public Choice, vol.9, issue.2, pp.401-420, 2005.
DOI : 10.1257/jep.9.1.39

URL : https://hal.archives-ouvertes.fr/hal-00119026

S. J. Brams, D. M. Kilgour, and M. R. Sanver, How to elect a representative committee using approval balloting, Studies in Choice and Welfare), pp.83-95, 2006.

W. Bruns, B. Ichim, T. Römer, R. Sieg, and C. Söger, Normaliz: Algorithms for rational cones and ane monoids, 2017.
DOI : 10.1016/j.jalgebra.2010.01.031

URL : https://doi.org/10.1016/j.jalgebra.2010.01.031

W. Bruns, B. Ichim, and C. Söger, Computations of volumes and Ehrhart series in four candidates elections. Working paper, 2017.

D. Cervone, W. V. Gehrlein, and W. Zwicker, Which scoring rule maximizes Condorcet eciency under IAC? Theory and Decision, pp.145-185, 2005.
DOI : 10.1007/s11238-005-6594-1

J. R. Chamberlin, C. , and P. N. , Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule, American Political Science Review, vol.47, issue.03, pp.718-733, 1983.
DOI : 10.1086/292250

S. Courtin, M. Martin, and I. Moyouwou, The $$q$$ q -majority efficiency of positional rules, Theory and Decision, vol.30, issue.1, pp.31-49, 2015.
DOI : 10.1007/s00355-007-0236-1

URL : https://hal.archives-ouvertes.fr/hal-00914907

B. Debord, Prudent k-choice functions: properties and algorithms, Mathematical Social Sciences, vol.26, issue.1, pp.63-77, 1993.
DOI : 10.1016/0165-4896(93)90012-8

M. Diss, Strategic manipulability of self-selective social choice rules, Annals of Operations Research, vol.54, issue.4, pp.347-376, 2015.
DOI : 10.1016/j.mathsocsci.2007.05.003

URL : https://hal.archives-ouvertes.fr/halshs-01136401

M. Diss and A. Doghmi, Multi-winner scoring election methods: Condorcet consistency and paradoxes, Public Choice, vol.28, issue.2, pp.97-116, 2016.
DOI : 10.1137/0128067

URL : https://hal.archives-ouvertes.fr/halshs-01285526

M. Diss and W. V. Gehrlein, The true impact of voting rule selection on Condorcet eciency, Economics Bulletin, vol.35, pp.2418-2426, 2015.

M. Diss and W. V. Gehrlein, Borda???s Paradox with weighted scoring rules, Social Choice and Welfare, vol.2, issue.1, pp.121-136, 2012.
DOI : 10.1007/BF01213253

M. Diss, A. Louichi, V. Merlin, and H. Smaoui, An example of probability computations under the IAC assumption: The stability of scoring rules, Mathematical Social Sciences, vol.64, issue.1, pp.57-66, 2012.
DOI : 10.1016/j.mathsocsci.2011.12.005

URL : https://hal.archives-ouvertes.fr/halshs-00667660

C. L. Dodgson, The principles of parliamentary representation, 1884.

C. Dodgson, L (1876) A Method of Taking Votes on More than Two Issues

H. Droop, On Methods of Electing Representatives, Journal of the Statistical Society of London, vol.44, issue.2, pp.141-202, 1881.
DOI : 10.2307/2339223

M. Dummett, Voting Procedures, 1984.

E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko, Properties of multiwinner voting rules, Social Choice and Welfare, vol.28, issue.4, pp.599-632, 2017.
DOI : 10.1137/0128067

E. Elkind, J. Lang, and A. Sadine, Choosing collectively optimal sets of alternatives based on the Condorcet criterion, Proceedings IJCAI11ijcai.org/Proceedings, pp.186-191, 2011.

E. Elkind, J. Lang, and A. Sadine, Condorcet winning sets, Social Choice and Welfare, vol.4, issue.3, pp.493-517, 2015.
DOI : 10.1007/BF00433944

URL : https://hal.archives-ouvertes.fr/hal-01509956

M. Franz, Convex -a Maple package for convex geometry, version 1.2 available at http://www-home.math.uwo.ca, 2016.

P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon, Multiwinner Rules on Paths From k-Borda to Chamberlin???Courant, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp.192-198, 2017.
DOI : 10.24963/ijcai.2017/28

URL : https://www.ijcai.org/proceedings/2017/0028.pdf

P. C. Fishburn, An Analysis of Simple Voting Systems for Electing Committees, SIAM Journal on Applied Mathematics, vol.41, issue.3, pp.499-502, 1981.
DOI : 10.1137/0141041

W. V. Gehrlein, The Condorcet criterion and committee selection, Mathematical Social Sciences, vol.10, issue.3, pp.199-209, 1985.
DOI : 10.1016/0165-4896(85)90043-5

W. V. Gehrlein and P. C. Fishburn, The probability of the paradox of voting: A computable solution, Journal of Economic Theory, vol.13, issue.1, pp.14-25, 1976.
DOI : 10.1016/0022-0531(76)90063-6

W. V. Gehrlein and D. Lepelley, Elections, Voting Rules and Paradoxical Outcomes, 2017.
DOI : 10.1007/978-3-319-64659-6

W. V. Gehrlein and D. Lepelley, Voting paradoxes and group coherence, 2011.
DOI : 10.1007/978-3-642-03107-6

URL : https://hal.archives-ouvertes.fr/hal-01243452

W. V. Gehrlein, D. Lepelley, and F. Plassmann, An Evaluation of the Benet of Using Two-Stage Election Procedures, Homo Oeconomicus, forthcoming, 2017.

W. V. Gehrlein, D. Lepelley, and I. Moyouwou, A note on Approval Voting and electing the Condorcet loser, Mathematical Social Sciences, vol.80, pp.115-122, 2016.
DOI : 10.1016/j.mathsocsci.2016.02.009

URL : https://hal.archives-ouvertes.fr/hal-01452548

W. V. Gehrlein, D. Lepelley, and I. Moyouwou, Voters??? preference diversity, concepts of agreement and Condorcet???s paradox, Quality & Quantity, vol.74, issue.6, pp.2345-2368, 2015.
DOI : 10.2307/1884349

URL : https://hal.archives-ouvertes.fr/hal-01452557

E. Kamwa, On stable rules for selecting committees, Journal of Mathematical Economics, vol.70, pp.36-44, 2017.
DOI : 10.1016/j.jmateco.2017.01.008

URL : https://hal.archives-ouvertes.fr/hal-01631177

E. Kamwa, M. , and V. , Some remarks on the Chamberlin-Count rule. Mimeo, 2014.

E. Kamwa, M. , and V. , Scoring rules over subsets of alternatives: Consistency and paradoxes, Journal of Mathematical Economics, vol.61, pp.130-138, 2015.
DOI : 10.1016/j.jmateco.2015.08.008

URL : https://hal.archives-ouvertes.fr/halshs-01238563

E. Kamwa and F. Valognes, Scoring rules and preference restrictions: The Strong Borda Paradox revisited. Revue d'Economie Politique, pp.375-395, 2017.
DOI : 10.3917/redp.273.0375

URL : https://hal.archives-ouvertes.fr/hal-01631180

B. Kaymak and M. R. Sanver, Sets of alternatives as Condorcet winners, Social Choice and Welfare, vol.20, issue.3, pp.477-494, 2003.
DOI : 10.1007/s003550200194

M. Kilgour, M. , and E. , Approval balloting for xed-size committees, Electoral Systems: Paradoxes, Assumptions, and Procedures, pp.305-326, 2012.
DOI : 10.1007/978-3-642-20441-8_12

D. M. Kilgour, S. J. Brams, and M. R. Sanver, How to Elect a Representative Committee Using Approval Balloting, Mathematics and Democracy: Recent Advances in Voting Systems and Collective Choice, 2006.
DOI : 10.1007/3-540-35605-3_6

D. Lepelley, I. Moyouwou, and H. Smaoui, Monotonicity paradoxes in three-candidate elections using scoring elimination rules, Social Choice and Welfare, vol.54, issue.6, pp.1-33, 2018.
DOI : 10.1016/j.mathsocsci.2007.05.003

URL : https://hal.archives-ouvertes.fr/hal-01697627

D. Lepelley, A. Louichi, and H. Smaoui, On Ehrhart polynomials and probability calculations in voting theory, Social Choice and Welfare, vol.25, issue.6, pp.363-383, 2008.
DOI : 10.1007/s00355-007-0236-1

URL : https://hal.archives-ouvertes.fr/hal-01245310

T. Lu and C. Boutilier, Budgeted social choice: From consensus to personalized decision making, Proceedings of IJCAI-11, pp.280-286, 2011.

N. Mattei, N. Narodytska, and W. T. , How hard is it to control an election by breaking ties?, Proc. of 21st ECAI, pp.1067-1068, 2014.

I. Moyouwou and H. Tchantcho, Asymptotic vulnerability of positional voting rules to coalitional manipulation, Mathematical Social Sciences, vol.89, pp.70-82, 2017.
DOI : 10.1016/j.mathsocsci.2017.06.006

S. Obraztsova, E. Elkind, and N. Hazon, Ties matter: Complexity of voting manipulation revisited, Proc. of 10th AAMAS Conference, pp.71-78, 2011.

R. F. Pottho and S. J. Brams, Proportional Representation, Journal of Theoretical Politics, vol.20, issue.5, pp.147-178, 1998.
DOI : 10.1016/0261-3794(93)90025-F

A. D. Procaccia, J. S. Rosenschein, and A. Zohar, On the complexity of achieving proportional representation, Social Choice and Welfare, vol.28, issue.4, pp.353-362, 2008.
DOI : 10.1007/s00355-007-0235-2

T. C. Ratli, Some startling inconsistencies when electing committees, Social Choice and Welfare, vol.21, issue.3, pp.433-454, 2003.
DOI : 10.1007/s00355-003-0209-y

T. C. Ratli, Selecting Committees, Public Choice, vol.21, issue.3, pp.343-355, 2006.
DOI : 10.1017/CBO9780511606076

P. Skowron, P. Faliszewski, and A. Slinko, Axiomatic Characterization of Committee Scoring Rules, pp.1604-01529, 2016.

P. Skowron, P. Faliszewski, and A. Slinko, Achieving fully proportional representation: Approximability results, Artificial Intelligence, vol.222, pp.1312-4026, 2013.
DOI : 10.1016/j.artint.2015.01.003

URL : http://arxiv.org/pdf/1312.4026

P. Skowron, L. Yu, P. Faliszewski, E. , and E. , The complexity of fully proportional representation for single-crossing electorates, Theoretical Computer Science, vol.569, pp.43-57, 2015.
DOI : 10.1016/j.tcs.2014.12.012

H. Smaoui, D. Lepelley, and I. Moyouwou, Borda elimination rule and monotonicity paradoxes in three-candidate elections, Economics Bulletin, vol.36, issue.3, pp.1722-1728, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452550

S. Sterne, On representative government and personal representation, Philadelphia: J.B. Lippincott, 1871.

S. Verdoolaege, K. M. Woods, M. Bruynooghe, and R. Cools, Computation and Manipulation of Enumerators of Integer Projections of Parametric Polytopes, 2005.

M. C. Wilson and G. Pritchard, Probability calculations under the IAC hypothesis, Mathematical Social Sciences, vol.54, issue.3, pp.244-256, 2007.
DOI : 10.1016/j.mathsocsci.2007.05.003

URL : http://arxiv.org/pdf/1202.3493

H. Young, An axiomatization of Borda's rule, Journal of Economic Theory, vol.9, issue.1, pp.43-52, 1974.
DOI : 10.1016/0022-0531(74)90073-8