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Abstract

Most multicriteria aggregation functions are designed in a mono-decision-maker con-

text. Using them for multi-decision-maker problems requires a prior transformation of

the individual data of each decision-maker into a collective datum. Recently a method

for the aggregation of data in the context of social choices has been introduced by

Ngoie et al. (2015a): The Mean-Median Compromise Method (MMCM). In this paper,

we suggest an adaptation of the MMCM to multi-criteria multi-decision-maker prob-

lems: the Mean and Median for Multi-Criteria Decision (3MCD). We also examine

some properties of this rule.
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1 Introduction

Decision-making aid occupies a place of choice in our contemporary societies. More often
than not, making a decision can be a di�cult task that is accompanied in most times by
a lot of hesitation and re�ection. Sometimes, the help of a third person or even several
individuals consulted individually is sought in order to make a �good decision�. As noticed
by Adla (2010), for a long time, the decision-making aid was handled in a mono-decision-
making framework. Nowadays, it is interested in decisions taken by several decision-makers
and which depend on several criteria that are often contradictory. In the literature, there are
many methods of multi-criteria help to group decision. These methods are determined by
mathematical formulas called aggregation functions. The most complex task in this case is to
determine a consensus-based method (aggregation function) that is easy to use. These types
of methods are popular in companies that want to improve their services. The increasing
demand for these methods has stimulated the search for those which, if not all, ful�ll the
most desirable properties.

In his seminal works on the social choice theory, Arrow (1950, 1951) proposes to evaluate
the mechanisms of aggregation on the basis of normative criteria deemed desirable. The
purpose of aggregating preferences is to determine a collective ranking that is transitive,
Arrow (1950, 1951) bases his analysis on four criteria or conditions. The �rst condition
called Universality (U) presupposes a certain freedom of the individuals taking part in the
decision-making process; they are free to have any ranking on the options subject to their
appreciation. The condition of Independence with irrelevant options (I) requires that the col-
lective decision between two options must depend only on individual preferences on these two
options only; even if individuals modify their preferences among other options while leaving
their preferences between the two options unchanged. The third condition is that of Pareto
optimum (P) according to which if all the individuals involved in the collective decision-
making process prefer a a option to a b option, this same decision must be transcribed at
the preference level collective. The last criterion is that of the absence of Dictatorship (D)
which excludes any situation in which an individual would be able to impose his choice to
all the individuals involved in the decision process. Arrow (1950, 1951) came to conclude
that there is no aggregation method that simultaneously satis�es the four conditions I, U,
P and D when at least two individuals have to decide on at least three options.

Unfortunately, this result is also veri�ed in multi-criteria analysis where no multi-criteria
aggregation function is free from reproach. The best that one can get from an aggregation
function is a "good" solution, the one that best meets the requirements of the decision
maker. In the multi-criteria context, such a solution is not necessarily the best one on all
the criteria, but the one that achieves the best compromise on these criteria. Thus, multi-
criteria aggregation functions are naturally compromise functions. They arbitrate between
several alternatives evaluated on several criteria. In this sense, they are intended to be fair
and impartial. This is why the criteria of justice, equity and democracy are often the most
veri�ed for these functions. In this paper, we propose to adapt a voting function to obtain
a multi-criteria aggregation method. Indeed, given that the voting function considered has
passed several tests on the demands of justice, equity and democracy, we believe that most
of its qualities would be preserved even after adaptation to the multi-criteria paradigm.

The Mean-Median Compromise Method (MMCM) is a social choice function recently
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introduced by Ngoie et al. (2015a,b). This function is obtained by combining the mean and
the median. As a social choice function in itself, the MMCM jointly retains the qualities of
the mean and the median. Given the qualities of the MMCM as highlighted by its authors
and in particular its resistance to some strategic behavior, we propose an extension of the
MMCM for the resolution of multi-decision multi-criteria problems. The aggregation function
we suggest is named the Mean and Median for Multi-Criteria Decision method (3MCD). As
we are going to see, it simply consists in apply the MMCM twice.

The rest of the paper is organized as follows: Section 2 is devoted to some basic de�nitions
prior to the presentation of the MMCM which is done in Section 3. In Section 4, we introduce
the 3MCD our extension of the MMCM. Section 5 concludes.

2 Basic terminology

Let A = a1, a2, . . . , ai, . . . a �nite set of m competitors or candidates (with m ≥ 2) and
J = 1, 2, . . . , j, . . . , n a �nite set of n judges (voters).

Prior to introduce the Mean and Median for Multi-Criteria Decision method (3MCD)
our extension of the Mean-Median Compromise Method (MMCM), we need �rst to present
the two aggregation rules : The Majority Judgment of Balinski and Laraki (2007, 2010) and
the Borda Majority Count of Zahid and De Swart (2015).

2.1 The Majority Judgment

The Majority Judgment (MJ) was introduced by Balinski and Laraki (2007, 2010) as a
voting rule under which voters have to grade the candidates using a common language or
a well-de�ned grading system1. The grading system can be made by a range of positive
integers, a set of letters, words or phrases denoting the opinion or how the voter (judge)
�nds the candidates. Following Balinski and Laraki (2007, 2010), a common language Λ =
{g1, g2, . . . , gp} is a set of strictly ordered grades. Given and, a pro�le Φ(A, J) is an m × n
matrix of the grades Φ(ai, j) ∈ Λ assigned by each j ∈ J to each of the competitors ai ∈ A.

De�nition 1 (The method of grading). A method of grading is a function F de�ned as
follows:

F : Λm×n → Λm

Φ(A, J) =


g11 · · · g1j · · · g1n
...

...
...

...
...

gi1 · · · gij · · · gin
...

...
...

...
...

gm1 · · · gmi · · · gmn

 7→
(
f(g11, g12, . . . , g1n), . . . , f(gm1, gm2, . . . , gmj, . . . , gmn)

)

with gij the grade given by judge j to candidate ai, f the aggregation function and f(gi1, . . . , gij, . . . , gin)
the �nal grade of ai.

1A similar or related rule has been suggested by Smith (2009), named the �Range Voting�. For more on
this rule, please refer to Smith (2009)
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De�nition 2 (The majority-grade). The majority-grade of ai ∈ A is given by

fmaj(ai) =


f

n+1
2 (gi1, . . . , gij, . . . , gin) if n is odd

f
n+2
2 (gi1, . . . , gij, . . . , gin) if n is even

where fk(.) is a kth order function that returns the kth highest grade.

As we can notice, the MJ's winner is the competitor with the highest median grade.
Given two competitors ai and as , if fmaj(ai) > fmaj(as) then ai �maj as. If fmaj(ai) =
fmaj(as) ai �maj as, the majority-grade is dropped from the grades of each of the competitors
and the procedure is repeated. Balinski and Laraki (2010) admitted that this tie-breaking
mechanism can become very arduous and they suggested another tie-breaking mechanism
based on the concept of �majority gauge�. For the forma de�nition of this concept, we refer
to Balinski and Laraki (2010).

Balinski and Laraki (2007, 2010, 2016) have shown that their rule meets some desirable
properties; among others, we can list the following ones : Voter-expressivity2, Anonymity3,
Neutrality4, Unanimity5, Transitive ordering6, Independence of irrelevant alternatives7,Mono-
tonicity8, Immunity to candidate cloning9, Resolvability10 and Sincere voting. Nonetheless,
the MJ has been the subject of many criticisms. Most of these criticisms are contained in
Felsenthal and Machover (2008), Felsenthel (2012), and Zahid (2009).

2.2 The Borda Majority

The Borda Majority Count (BMC) introduced by Zahid and De Swart (2015) is based on the
well-known Borda rule. The Borda rule is a voting rule under which, given the preferences
(rankings) of the voters, a candidate receives m − p points each time he is ranked pth; the
Borda score of a candidate is the total number of points received and the winner is the one
with th highest Borda score. Under the BMC, the system of grades are converted into scores
as under the Borda rule.

Recall that as Λ = {g1, g2, . . . , gp} is an strictly ordered set, we get g1 > g2 > . . . > gp. We

denote by Φ̃(ai, j) the ordered vector of Φ(ai, j) ∈ Λ. The BMC de�nes Λ? = {g?1, g?2, . . . , g?p}
with (g?1 > g?2 > . . . > g?p) the natural set associated to Λ such that g?1 = p− 1, g?2 = p− 2,
. . ., g?p = 0. Similarly g?ij is de�ned as the natural number associated to gij the grade given
by judge j to candidate ai. The Borda Majority Count of ai is equal to the mean of the sum
of the natural numbers associated to gij given all the n judges.

2It allows voters to award (ordinal) grades to all candidates.
3It treats voters equally.
4It treats competitors equally.
5If all voters award candidate ai a higher grade than to every other candidate, then ai is elected.
6Candidates are ranked in a transitive ordering; one candidate is necessarily ranked ahead or behind

another, unless they have identical sets of grades.
7If candidate ai wins, then he would still win if another candidate is removed, ceteris paribus.
8If a candidate wins, he would still win if at least one of his grades is increased, ceteris paribus.
9If candidate ai wins, he would still win if another candidate is added with grade distribution identical

to that of ai or of another candidate, ceteris paribus.
10The probability of ties quickly tends to zero as the number of voters increases.
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De�nition 3 (The Borda Majority Count). For ai ∈ A and (gi1, . . . , gij, . . . , gin), the Borda
Majority Count of ai ∈ A denoted by fmean(ai) is given by :

fmean(ai) =
1

n

n∑
j=1

g?ij

For two competitors ai and as, if f
mean(ai) > fmean(as) then ai �mean as. In the case of

fmean(ai) = fmean(as), drop all the reject grades and recalculate the Borda Majority Count.
The procedure is repeated step by step by dropping grades from lower to higher until a
winner among ai and as is found.

Zahid and De Swart (2015) established a list of properties satis�ed or failed by the BMC.
They also provided a characterization of this rule. For more details, the reader may refer to
their paper.

The MJ and the BMC rules has served as multi-criteria aggregation methods. A multi-
criteria aggregation method is an application of a multi-criteria decision support problem
to a set of actions. The objectives that the decision-maker seeks to achieve de�ne the
problematic of decision-support. The objectives are multiple. Roy (1985) categorizes them
into four benchmark problems: the choice (α-Problem), the sorting (β-Problem), the ranking
(γ-Problem) and the description (δ-Problem). Thus, all methods of multi-criteria analysis
are constructed to solve a speci�c type of problem and do not all meet the same objectives.
In this paper, we pay a particular attention to the ranking problem. The objective of the
ranking problem is to classify potential actions by equivalence classes in order to de�ne the
most appropriate strategies or treatments. This is the case under the function introduced
by Ngoie et al. (2015a): the Mean-Median Compromise Method (MMCM).

3 The Mean-Median Compromise Method

Recently introduced by Ngoie et al. (2015a), the Mean-Median Compromise Method (MMCM)
combines the Majority Judgement of Balinski and Laraki (2007, 2010) and the Borda Ma-
jority Count of Zahid and De Swart (2015) in the sense that it is based simultaneously on
the median and the average of the grades. To set how the MMCM works, we need some
additional notations.

Given Φ̃(ai, j) the ordered vector of the grades assigned to ai, this distribution is divided
into 2k intervals of the same amplitude; k, called the degree of division, is an integer set in
advance (k ≥ 2). With n the number of judges, we de�ne the amplitude of a division as the
real number % = n+1

2k
.

De�nition 4 (Inter-median grade). Given a candidate ai and Φ̃(ai, j) ∈ Λ, gij is the inter-
median grade if ∃t ∈ N such that 1 ≤ t ≤ 2k−1, Rd(t×%) = j; with Rd(.) the value rounded
to the nearest integer.

We denote byMk(ai) the vector of non-redundant inter-median grades of ai given k:

Mk(ai) = {g′i1, . . . , g′il, . . . , g′it} = {fRd(1×%), fRd(2×%), . . . , fRd((2k−1)×%)}
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According to Ngoie et al. (2015a,b), the smallest value of the integer k such that Mk =

Φ̃(ai, j), is given by ν = Rd(1
2

+ log2(n + 1)); ν is called the maximal division index or the
total division index.

De�nition 5 (Average Majority Compromise). Given a candidate ai andMk(ai), the Av-
erage Majority Compromise of ai is given by

fmm(ai) =
1

t

t∑
l=1

g′il

For two competitors ai and as, if f
mm(ai) > fmm(as) then ai �mm as. In the case of

fmean(ai) = fmean(as), repeat the process for k + 1.
Let us now use an example to illustrate how the MMCM operates.

Example 1. Assume that 8 judges respectively grade a competitor ai with Φ(ai, j) = (9, 7, 3, 6, 5, 4, 5, 8)

and it follows that Φ̃(ai, j) = (9, 8, 7, 6, 5, 5, 4, 3) Let us �x k = 3; we get % = 8+1
23

= 1.125
and

M3 =
(
fRd(1×1.125), fRd(2×1.125), fRd(3×1.125), fRd(4×1.125), fRd(5×1.125), fRd(6×1.125), fRd(7×1.125))

=
(
fRd(1.125), fRd(2.25), fRd(3.375), fRd(4.5), fRd(5.625), fRd(6.75), fRd(7.875)

)
=

(
f 1, f 2, f 3, f 5, f 6, f 7, f 8

)
= (9, 8, 7, 5, 5, 4, 3)

Then, fmm(ai) = 9+8+7+5+5+4+3
7

= 41
7

= 5.8

According to Ngoie et al. (2015a,b), when the degree of division is set at k = 1, the
MMCM is always equivalent to the Majority Judgement i.e fmm(ai) = fmaj(ai) for all
ai ∈ A; when the degree of division is set at its maximum (k = %), the MMCM is always
equivalent to the Borda Majority Count i.e fmm(ai) = fmean(ai). So, the MMCM appears
as an intermediate method between the Majority Judgement (based on the highest median)
and the Borda Majority Count (based on the highest mean). For values of k varying between
1 and %, it allows to qualify and balance the advantages and disadvantages of one or the
other method.

We can now introduce our adaptation of the MMCM to multi-decision multi-criterion
problems.

4 Mean and Median for Multi-Criteria Decision

In the real world, most decision-making problems involve several criteria and several decision-
makers. Such problems are characterized by:

• a �nite set of s decider-makers D = {d1, d2, . . . , ds},

• a �nite set of actions A = {a1, a2, . . . , an},

• a �nite set of criteria C = {g1, g2, . . . , gm},
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• a vector Pj = {pj(g1), pj(g2), . . . , pj(gm)} of the weights assigned to each of the criteria
by the decision-maker j.

• X = {xij = gj(ai), i = 1, . . . , n; j = 1, . . . ,m} a set comprising the scores of the action
i on the criterion j;

• X l = {xlij = gj(ai), i = 1, . . . , n; j = 1, . . . ,m; l = 1, . . . , s} designating the perfor-
mance of the alternative i on the criterion j for the l-th decision-maker.

• No decision maker is dictator and no action dominates all on each criterion.

Faced with such a problem, we need multi-criteria decision support to establish a good
compromise solution. The Mean and Median for Multi-Criteria Decision (3MCD) that we
suggest seems well suited. The 3MCD method is related to a ranking problem. It uses
MMCM twice: �rst to aggregate the weights of the criteria, then to aggregate the perfor-
mance of the actions on the criteria. The result of these two aggregations is a single decision
table which makes it possible to calculate the �nal �scores� of the actions. The method
�nally produces a complete ranking of the actions.

The 3MCD operates as follows:

1. apply the MMCM function on the weights of each criterion to �nd the overall weight;

2. apply the MMCM function on the scores of each action on each criterion to �nd the
global scores of the actions on each of the selected criteria;

3. apply the weighted sum to determine the overall performance of the actions;

4. stop the process when comparisons are made.

At the end of the process, a ranking is obtained on A the set of actions. As one can notice,
the 3MCD simply consists in applying the MMCM twice: once on the weights of the criteria
and then on the judgments. A Flow Chart of the 3MCD is given in Figure 1.
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Figure 1: Flow Chart of the 3MCD

START

j ← 1

Compute x?
ij =

fmm(x1
ij , x

2
ij , . . . , x

s
ij)

j ← j + 1

j > m

i ← 1

j ← 1

Compute p?j =

fmm(p1(cj), p2(cj), . . . , ps(cj))

j ← j + 1

j > m

i ← i + 1

i > n

i ← 1

3MCD(ai) ←
m∑

j=1
p?j × x?

ij

i ← i + 1

i = n

Perform comparisons

between actions i

END

7



Let us provide an example illustrating the 3MCD method.

Example 2. Assume that �ve members (judges) of the executive committee of a company
audition four candidates (named H1, H2, H3 and H4) in order to hire a new marketing
director. This choice depends on three criteria: academic background (C1), professional
experience (C2) and skills (C3). Each member of the committee builds his judgment matrix
and the score scale is 0− 10. The matrices are listed as follows:

Judge 1

Weights 8 4 6
Criteria C1 C2 C3

H1 6 5 7
H2 5 7 5
H3 6 8 4
H4 7 6 7

Judge 2

Weights 6 6 7
Criteria C1 C2 C3

H1 7 6 5
H2 6 5 5
H3 7 7 6
H4 6 6 5

Judge 3

Weights 7 5 6
Criteria C1 C2 C3

H1 8 10 6
H2 7 7 6
H3 6 6 7
H4 7 5 6

Judge 4

Weights 6 4 5
Criteria C1 C2 C3

H1 7 10 8
H2 7 6 7
H3 8 7 7
H4 7 6 7

Judge 5

Weights 6 7 5
Criteria C1 C2 C3

H1 7 7 6
H2 6 9 7
H3 8 8 7
H4 7 6 5

Assume k = 2. First of all, we sort the weights of each criterion in descending order; so,
for C1 we get (8, 7, 6, 6, 6), for C2 we get (7, 6, 5, 4, 4) and for C3 we get (7, 6, 6, 5, 5). Then,
we apply the MMCM function on the weights of each criterion to �nd the overall weight:

overall weight of C1 =
7 + 6 + 6

3
= 6.33

overall weight of C2 =
6 + 5 + 4

3
= 5.00

overall weight of C3 =
6 + 6 + 5

3
= 5.66

Following the other steps of the 3MCD, we end with the following outcome:

Criteria C1 C2 C3
Score 3MCD

Weights 6.33 5.00 5.66
H1 7.00 7.66 6.66 120.3056
H2 6.00 6.33 6.00 103.5900
H3 7.00 7.33 6.66 118.6556
H4 6.66 5.66 6.00 104.4178
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Let us explain how we get the �gures in the outcome matrix. For example, to obtain the
score of candidate H3 on the criterion C2, we proceed as follows: On criterion C2, the 5
decision-makers assign H3, respectively with grades 8, 7, 6, 7, 7. In descending order, we
have: 8, 7, 7, 7, 6. If we apply MMCM to these sorted data, we see that the inter-median
are the second, third and �fth data; namely 7, 7 and 6. Thus, the overall score of H3 on C2
is 7+7+6

3
= 6.66. The last column gives the 3MCD's scores of the candidates; it is obtained

by calculating the weighted sum of the overall score of each candidate. For instance, the
3MCD's scores of candidate H4 is obtained by the calculation: 6.66 × 6.33 + 5.66 × 5.00 +
6.00 × 5.66 = 104.4178. Given the scores of the Candidates, we can conclude that, on the
position, the committee will rank candidate H1 �rst, candidate H3 second, candidate H4 third
and candidate H2 last.

Ngoie (2016), Ngoie et al. (2015b) showed that the MMCM meets some appealing re-
quirements of choice functions namely the neutrality condition, the anonymity condition, the
monotonicity condition, the Pareto condition, the Independence of Irrelevant Alternatives
and the clone-resistance condition. Nonetheless, the MMCM fails among others the rein-
forcement criterion and the participation criterion. As the 3MCD consists in applying the
MMCM twice, it is obvious a priori that the 3MCD has the same properties as the MMCM.
Nonetheless, we want to pay a particular attention to the following properties as they need
to be rede�ned to �t clearly into the 3MCD context: the majority condition, the Condorcet
winner criterion, the Condorcet loser criterion, the homogeneity criterion, the reinforcement
criterion and the participation criterion.

De�nition 6. Given the set of the judges N and a criteria g, an action ai majority dominates
an action ak on criterion gj if ]{j ∈ N\gj(ai) ≥ gj(ak)} > n

2
. We denote it by aiMgjak. If for

all the criteria, aiMgak ∀ ak ∈ A, ∀gj ∈ C, ai is the Condorcet winner ; if for all the criteria,
akMgai ∀ ak ∈ A, ∀gj ∈ C, ai is the Condorcet loser.

We will say that the 3MCD satisfy the majority condition if whenever ∀gj ∈ C, aiMgjak
implies that ai scores better than ak. The 3MCD will meet the Condorcet winner criterion
if it always select the Condorcet winner when it exists; it meets the Condorcet loser criterion
if it never selects the Condorcet loser when it exists.

Proposition 1. The 3MCD fails the majority requirement, the Condorcet winner criterion
and the Condorcet loser criterion.

Proof. Let us consider the following judgement matrices of 3 judges on three candidates
(named H1, H2 and H3) based on two criteria (C1) and (C2).

Judge 1

Weights

Criteria C1 C2
H1 2 2
H2 3 3
H3 4 4

Judge 2

Weights

Criteria C1 C2
H1 6 6
H2 0 1
H3 1 2

Judge 3

Weights

Criteria C1 C2
H1 2 1
H2 3 2
H3 4 3

The reader can easily check that H1 is the Condorcet loser while H3 is the Condorcet winner.
By computing the 3MCD scores with k = 2, we end with following table:
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Criteria C1 C2
Weights

H1 3.33 3
H2 2 2
H3 3 3

So, no matter what the weights, H1 is ranked �rst followed by H3 and then H2. It follows that
the 3MCD fails the majority requirement, the Condorcet winner criterion and the Condorcet
loser criterion11.

An aggregation function is homogeneous if given a preference pro�le and the correspond-
ing outcome, replicating this pro�le λ times (λ > 1, λ ∈ N) does not change the outcome.
In our framework, we will say that the 3MCD is homogeneous if whenever we replicate λ
times the original pro�le, the outcome remains unchanged. Notice that nothing is known
about the MMCM concerning the homogeneity condition.

Proposition 2. The 3MCD fails the homogeneity condition, the reinforcement criterion and
the participation condition.

Proof. Let us consider the following pro�le with �ve judges, two actions. We assume that
k = 2; no matter what are the weights on the criteria.

Judges
J1 J2 J3 J4 J5

Criteria C1 C2 C1 C2 C1 C2 C1 C2 C1 C2
H1 2 8 2 7 7 9 4 6 3 5
H2 3 7 2 8 2 6 6 7 6 7

Assume that we replicate each of the judge two (or three) times. The reader can check that
the output matrices for the original and the replicated pro�les are as follows:

original pro�le
Criteria C1 C2

H1 4 7
H2 3.66 7

replicated pro�le
Criteria C1 C2

H1 3 7
H2 4 7

Under the original pro�le, H1 wins but under the replicated pro�le H2 wins. So, by
replicating the set of the judges, the outcome changes. Thus, the 3MCD fails the homogeneity
condition. To show that this is also the case for the MMCM, just erase C2 in the above
pro�le and we get the same conclusion.

Assume that we add two new judges who are in favor of H1; they both assign 7 and 8 to
H1 on C1 and C2 respectively while they assign 6 and 7 to H2 on C1 and C2 respectively. So,
if we consider the pro�le only without these two judges, H1 wins. The reader can check that
the even though these two judges are in favor of H1, their arrival favors H2 who is the new
winner. Thus, the 3MCD rule also fails the Participation condition and the reinforcement
criterion.

11Example 2 can also be used to show the failure of the majority requirement and of the Condorcet winner
criterion. In this example, the reader can check that on each of the criteria, H3 is the Condorcet winner and
he is not chosen.
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Although the 3MCD does not meet the homogeneity criterion, we can describe the con-
ditions under which this condition is satis�ed.

Proposition 3. Assume a population made of n judges such that n = 2x (x ≥ 2, x ∈ N). If
we duplicate this population λ times with λ = 2y (y ∈ N), the 3MCD is always homogeneous
in this case.

Proof. Assume n judges (n = 2x and x ≥ 2, x ∈ N) and their grades (listed decreasingly).
For k = 2, % = 2x+1

4
and

M2 =
(
fRd(1× 2x+1

4
), fRd(2× 2x+1

4
), fRd(3× 2x+1

4
)
)

=
(
f (2x−2), f (2x−1+1), f (3×2x−2+1)

)
Assume that each grade of the initial population is replicated λ times (λ = 2y and y ∈ N).

Given the new population and the grades always being ordered in a decreasing way, the ith
grade of the initial population will now appear at the positions (i− 1)λ+ 1 to i× λ.

As we now have λn = 2x+y judges in the duplicated population, we get % = 2x+y+1
4

for
k = 2 and

M′
2 =

(
fRd(1× 2x+y+1

4
), fRd(2× 2x+y+1

4
), fRd(3× 2x+y+1

4
)
)

=
(
f (2x+y−2), f (2x+y−1+1), f (3×2x+y−2+1)

)
As the ith grade of the initial population will now appear at the positions (i − 1)λ + 1 to
i× λ, it follows that

• f (2x−2) = f (2x+y−2−2y+1) = . . . = f (2x+y−2),

• f (2x−1+1) = f (2x+y−1+1) = . . . = f (2x+y−1+2y),

• f (3×2x−2+1) = f (3×2x+y−2+1) = . . . = f (3×2x+y−2+2y)

ThusM′
2 =M2. It follows that duplicating the population does not a�ect the outcome.

5 Concluding remarks and discussion

The choosing of an aggregating function is dictated by the search for some requirements that
the desired solution must satisfy. These requirements, presented as democratic criteria, are
so numerous and often opposite such that no aggregating function, as complex as it can be,
can satisfy them at all. The impossibility results show that sometimes a short list of fair
criteria is enough to establish the incapacity for an aggregation function to satisfy all the
desirable criteria. If all of the functions are struck by the impossibility results, all are not
therefore bad. Indeed, considering the relevance of some criteria, we can then think to draw
aside the functions which do not ful�ll these criteria and choose among those that remain.
The 3MCD Method introduced herein satis�es a long list of desirable properties. It ful�lls
inter alia the neutrality condition, the anonymity condition, the monotonicity condition, the
Pareto condition, the Independence of irrelevant Alternatives and clone-resistance condition.

11



It is shown even more robust than the majority of grading methods. Nonetheless, it fails
the conditions of homogeneity, reinforcement, participation and does not ful�ll either the
majority requirement, the Condorcet winner criterion and the Condorcet loser criterion.
Nonetheless, we showed that, under certain conditions, 3MCD is (partially) homogeneous.
Based on his numerous properties, 3MCD is an aggregating method dedicated to ranking
problems that deserves a place among the functions which return acceptable compromise
results. Thus, a thorough study must be devoted for analyzing and characterizing 3MCD.
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