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Abstract

Under Approval Voting (AV), each voter just distinguishes the candidates he approves of from those appearing as
unacceptable. The Preference Approval Voting (PAV) is a hybrid version of the approval voting first introduced by
Brams and Sanver (2009). Under PAV, each voter ranks all the candidates and then indicates the ones he approves. In
this paper, we provide analytical representations for the probability that PAV elects the Condorcet winner when she
exists in three-candidate elections with large electorates. We also provide analytical representations for the probability
that PAV elects the Condorcet loser. We perform our analysis by assuming the assumption of the Extended Impartial
Culture. Under this assumption, it comes that AV seems to perform better than PAV on electing the Condorcet winner
and that in most of the cases, PAV seems to be less likely to elect the Condorcet loser than AV.

Keywords: Approval Voting, Ranking, Condorcet, Extended Impartial Culture, Probability.

1. Introduction

Popularized by Brams and Fishburn (1978), the Approval Voting (AV) rule is a voting system under which each
voter approves (any number of) candidates that he considers as acceptable and the winner is the most-approved
candidate. This rule has made (and continues to be) the subject of numerous research works in political science,
economics and computer science. To have a quick overview of these works, the reader may refer to the books of
Brams and Fishburn (2007), Brams (2008) and to the Handbook of Approval Voting edited by Laslier and Sanver
(2010). Under AV, there is no need to rank the candidates as under the scoring rules1. This absence of rankings
gave rise to a controversy between Saari and van Newenhizen (1988a,b) and Brams et al. (1988a,b). Saari and van
Newenhizen (1988b) blame AV of hiding the real preferences of the voters which can be strict between the candidates
approved by a voter. Brams and Sanver (2009) may have brought what appears as a possible response to this criticism
by introducing the Preference Approval Voting (PAV). Under PAV, each voter ranks all the candidates then indicates
the ones he approves.2 According to Brams and Sanver (2009), the winner under PAV is determined by two rules:

Rule 1: The PAV winner is the AV winner if3

i. no candidate receives a majority of approval votes (i.e approved by more than half of the electorate)
ii. exactly one candidate receives a majority of approval votes.

Rule 2: In the case that two or more candidates receive a majority of approval votes,
i. The PAV winner is the ones among these candidates who is preferred by a majority to every other majority-

approved candidate.

Email address: eric.kamwa@univ-antilles.fr (Eric Kamwa)
1A scoring rule is a voting rule under which voters give points to candidates according to the ranks they have in voter’s preferences. The winner

is the candidate with the highest total number of points.
2Brams and Sanver (2009) also introduced the Fallback Voting under which voters only rank the candidates they approve. In this paper, we are

not concerned with this rule.
3Here, we have chose to split Rule 1 into two. This will be helpful for our analysis.
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ii. In the case of a cycle among the majority-approved candidates, then the AV winner among them is the
PAV winner.

Brams and Sanver (2009) noticed that it is Rule 2 that clearly differentiate PAV from AV. They pointed out that for
some situations where a Condorcet winner exists, this candidate may not be a PAV winner under each of the subcases
of Rule 1 and Rule 2. When she exists, a Condorcet winner is a candidate who defeats each of the other candidates
in pairwise comparisons. We know that AV always elects the Condorcet winner, when she exists given that voters’
preferences are dichotomous (Ju, 2010, Xu, 2010). This is no more the case when the voters’ true preferences are
assumed to be strict orderings (Gehrlein and Lepelley, 1998) or when indifference are allowed in the voters’ true
preferences (Diss et al., 2010). For large electorates, Gehrlein and Lepelley (1998) found that AV has the same
Condorcet efficiency (probability of electing the Condorcet winner when she exists) as both the Plurality rule and the
Antiplurality rule.4 Going from a more general framework, Diss et al. (2010) found that for large electorates and three
candidates, AV performs better that both the Plurality rule and the Antiplurality rule on the Condorcet efficiency; they
also found some scenarios under which AV performs better than the Borda rule. Their results were strongly reinforced
by Gehrlein and Lepelley (2015).

As PAV appears as a possible response to the criticism of Saari and van Newenhizen (1988b) on AV, does it
perform better than AV on the likelihood of electing the Condorcet winner when she exists? Up to our knowledge,
no work has questioned the Condorcet efficiency PAV. This paper tries to provide an answer to the question for voting
situations with three candidates by computing the Condorcet efficiency of PAV when indifference are allowed as in
Diss et al. (2010). Computations are done under the extended impartial culture defined by Diss et al. (2010). This
assumption will be defined later.

Some works have looked on the probability that AV elects the Condorcet loser when she exists. A Condorcet loser
is a candidate, when she exists, who is defeated by each of the other candidates in pairwise comparisons. Gehrlein
and Lepelley (1998) showed that with more than three candidates and under the impartial culture assumption, AV is
more likely to elect the Condorcet loser than the Plurality rule. For three-candidate elections, they showed that AV has
the same probability of electing the Condorcet loser as both the Plurality rule and the Antiplurality rule. This result
is a bit challenged by a recent paper by Gehrlein et al. (2016). Using impartial anonymous culture-like assumptions5

and considering a range of scenarios, Gehrlein et al. (2016) concluded that in three-candidate elections, AV is less
likely to elect the Condorcet loser than both the Plurality rule and the Antiplurality rule. The second objective of this
paper is to focus on the probability that PAV elects the Condorcet loser when she exists. We provide for AV and for
PAV, analytical representations of the probability of electing the Condorcet loser when she exists under the extended
impartial culture assumption.

The rest of the paper is structured as follows: Section 2 is devoted to basic notations and definitions. Section 3
presents our results on the Condorcet efficiency. Section 4 deals with our results on the probability of electing the
Condorcet loser. Section 5 concludes.

2. Preliminaries

2.1. Preferences in three-candidate elections

Let N be a set of n voters (n ≥ 2) and A = {a, b, c} a set of three candidates. We assume that voters rank all the
candidates, indifference is allowed and they indicate which candidates they approve by underlining the names of the
candidates6. So, there are 19 possible types of preferences. Following Diss et al. (2010), these 19 types of preferences
can be partitioned into five classes of preferences:

• Class I: this class is made of voters with strict rankings and who only approve their top ranked candidates.
These voters are labelled 1 to 6 in Table 1.

4The Plurality rule is a scoring rule under which each voter votes only for (gives one point to) his top ranked candidate and the winner is the
ones with the highest total number first places; under the Antiplurality rule, the winner is the candidate with the fewest total number of last places.

5Under impartial anonymous culture-like assumptions, voting situations are assumed to be equally likely.
6It is assumed that voters vote sincerely. So, we are not concerned with strategic behaviors.
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• Class II: voters in this class also have strict ranking and they approve their top two ranked candidates. These
types of voters are labelled 7 to 12 in Table 1.

• Class III: in this class, voters are indifferent between their two preferred candidates or do not consider the
difference significant enough to reveal their true strict preference. These types of voters are labelled 13 to 15 in
Table 1.

• ClassIV: Voters rank one candidate strictly above the two other between whom they are indifferent. These types
of voters are labelled 16 to 17 in Table 1.

• Class V: the voters of this class are indifferent between the three candidates, thus they approve all the three
candidates(type 19).

Table 1: The 19 possible preferences types with three candidates

Class I: a � b � c p1 Class II: a � b � c p7
a � c � b p2 a � c � b p8
b � a � c p3 b � a � c p9
b � c � a p4 b � c � a p10
c � a � b p5 c � a � b p11
c � b � a p6 c � b � a p12

Class III: a ∼ b � c p13 Class IV: a � b ∼ c p16
a ∼ c � b p14 b � a ∼ c p17
b ∼ c � a p15 c � a ∼ b p18

Class V: a ∼ b ∼ c p19

If we denote by nt the number of voter of type t, a voting situation is an 19-tuple ñ = (n1, n2, . . . , nt, . . . , n19) that
indicates the total number nt of voters casting each type of preferences such that

∑19
t=1 nt = n. We denote by pt the

probability that a voter chooses the preference type t such that
∑19

t=1 pt = 1. In Table 2, S (a) denotes the AV score
candidate a given the labels of Table 1.

Table 2: The AV score of the candidates

S (a) = n1 + n2 + n7 + n8 + n9 + n11 + n13 + n14 + n16 + n19
S (b) = n3 + n4 + n7 + n9 + n10 + n12 + n13 + n15 + n17 + n19
S (c) = n5 + n6 + n8 + n10 + n11 + n12 + n14 + n15 + n18 + n19

Given a, b ∈ A, we denote by nab the total number of voters who strictly prefer a to b. If nab > nba, we say that
a majority dominates candidate b; or equivalently, a beats b in a pairwise majority voting. In such a case, we will
simply write aMb. Candidate a is said to be the Condorcet winner (resp. the Condorcet loser) if for all b ∈ A \ {a},
aMb (resp. bMa). If for a given voting situation we get aMb, bMc and cMa, this describes a majority cycle.

2.2. PAV, the Condorcet winner and the Condorcet loser

By the definition of PAV, it is obvious that with three candidates, if there is a Condorcet winner who belongs to
the subset of majority-approved candidates, she is always elected if Rule 2i applies while rule 2ii will never apply.
So, Rule 1i and 1ii can fail to elect the Condorcet winner. It is also obvious that if there is a Condorcet loser in a
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three-candidate election, she cannot be elected under Rule 2i and 2ii; so, PAV may elect the Condorcet loser only
when Rule 1i or 1ii apply.

In order to motivate the paper, let us take the following two voting profiles7 each with 9 voters Vi (i = 1..9) in
order to illustrate that in three-candidate elections, PAV can fail to select the Condorcet winner when she exists (under
Rules 1i, 1ii and 2i) and that it can select the Condorcet loser (under Rules 1i and 1ii).

Profile 1
V1:a � c � b V2:a � c � b V3:b � c � a
V4:b � c � a V5:c � a � b V6:c � a � b
V7:b � a � c V8:c � b � a V9:a � b � c

Profile 2
V1:a � c � b V2:b � a � c V3:b � c � a
V4:b � c � a V5:c � a � b V6:c � a � b
V7:c � a � b V8: a � b � c V9:c � b � a

Under both profiles, the reader can check that c is the Condorcet winner and b is the Condorcet loser. Under the first
profile, we get S (a) = S (c) = 3 and S (b) = 4; no candidate gets the majority of the approvals (5 votes), according
to Rule 1i, b is the winner since she is the AV winner. Thus, PAV under Rule 1i fails to select the Condorcet winner
but selects the Condorcet loser. Under the second profile, b is the unique majority-approved candidate with 5 votes;
Rule 1ii applies and b is the PAV winner: PAV under Rule 1i fails to elect the Condorcet winner but can select the
Condorcet loser.

To get a profile under which Rule 2i applies and that PAV fails to select the Condorcet winner, the reader only
need to add the following groups of voters to Profile 1: 3 voters with a � b � c, 2 voters with a � c � b, 3 voters with
c � a � b and 4 voters with c � b � a.

The profiles we just used illustrate that under some voting situations, PAV can fail to elect the Condorcet winner
when she exists and that it can elect the Condorcet loser when she exists. These two behaviors of PAV are just rare
oddities or are a common occurrence? The aim of this paper is then to provide an answer to this question. So, we
compute the Condorcet efficiency of PAV and its probability of electing the Condorcet loser for voting situations with
three candidates. Before starting this task, we need to define a probability model for this.

2.3. The probability model: the Extended Impartial Culture assumption
The Impartial Culture (IC) assumption is one of the assumptions used in the social choice literature when com-

puting the likelihood of voting events. Under IC, it is assumed that each voter chooses her preference according to a
uniform probability distribution. When only strict ranking are allowed with m candidates, IC gives a probability 1

m! for
each of the m! rankings to be chosen independently. The likelihood of a given voting situation ñ = (n1, n2, ..., nt, ..., nm!)
is

Prob(ñ = (n1, n2, ..., nt, ..., nm!)) =
n!∏m!

t=1 nt!
× (m!)−n

When indifference is allowed, the Impartial Weak Ordering Culture (IWOC) was introduced by Gehrlein and
Fishburn (1980) as an extension of IC. Diss et al. (2010) provide an extension of IC that allows the possibility that
voters could have dichotomous preferences with complete indifference between two of the candidates and also the
possibility of a complete indifference between all three candidates. This extension is called the Extended Impartial
Culture (EIC) assumption. Let us describes how it works. Consider the 5 classes of preferences described in Table
1. We denote by k1 the probability that a voter’s preference belongs to Class I; k2 is the probability that a voter’s
preference belongs to Class II; k3 is the probability that a voter’s preference belongs to Class III; k4 is the probability
that a voter’s preference belongs to Class IV and k5 is the probability that a voter’s preference belongs to Class V such
that k1 + k2 + k3 + k4 + k5 = 1. Under EIC, it is assumed that the rankings within a class are equally likely: pt = k1

6 for
t = 1, 2, ..., 6, pt = k2

6 for t = 7, 8, ..., 12, pt =
k3
3 for t = 13, 14, 15, pt = k4

3 for t = 16, 17, 18 and p19 = k5.

7Other examples are provided in Brams (2008), Brams and Sanver (2009).
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With the 19 preference types of Table 1, the likelihood of a given voting situation ñ = (n1, n2, ..., nt, ..., n19) is given
by

Prob(ñ = (n1, n2, ..., nt, ..., n19)) =
n!∏19

t=1 nt!
×

19∏
t=1

pt

Diss et al. (2010) used EIC to analyze the Condorcet efficiency of AV and all the scoring rules. They also provided
the limiting probability that a Condorcet winner exists as follows8:

P∞Con =
3
4

+
3

2π
arcsin

( k1 + k2 + k3 + k4

3k1 + 3k2 + 2k3 + 2k4

)

Given that k1 + k2 + k3 + k4 + k5 = 1, we can rewrite P∞Con:

P∞Con =
3
4

+
3

2π
arcsin

( 1 − k5

3 − k3 − k4 − 3k5

)
=

3
4

+
3

2π
arcsin

( 1 − k5

3 − k34 − 3k5

)
with k34 = k3 + k4

3. Probability that PAV elects the Condorcet winner

By computing the Condorcet efficiency of PAV, it will we interesting to compare it to that of AV. Diss et al. (2010)
compute the Condorcet efficiency of AV under EIC assumption by assuming that p19 = 0. They made this assumption
because the preference type of Class V has no impact on the outcome under AV; this is not the case under PAV where
type 19 can really matter. In order to consider a comparison between AV and PAV, we propose to recalculate the
Condorcet efficiency of AV assuming that p19 ≥ 0.9

Given the voting situation ñ on A = {a, b, c}, assume that candidate a is the Condorcet winner; this means that
aMb and aMb. Using the labels of Table 1 these are respectively equivalent to Equations 1 and 2.

n1 + n2 − n3 − n4 + n5 − n6 + n7 + n8 − n9 − n10 + n11 − n12 + n14 − n15 + n16 − n17 > 0 (1)

n1 + n2 + n3 − n4 − n5 − n6 + n7 + n8 + n9 − n10 − n11 − n12 + n13 − n15 + n16 − n18 > 0 (2)

Candidate a is also the AV winner means that S (a) > S (b) and S (a) > S (c) which are respectively equivalent to
Equations 3 and 4.

n1 + n2 − n3 − n4 + n8 − n10 + n11 − n12 + n14 − n15 + n16 − n17 > 0 (3)

n1 + n2 − n5 − n6 + n7 + n9 − n10 − n12 + n13 − n15 + n16 − n18 > 0 (4)

So, a voting situation under which AV elects the Condorcet winner is fully described by Equations 1 to 4. We derive
Theorem 1.

Theorem 1. With three candidates and an infinite number of voters, the Condorcet efficiency of AV is given by:

CE∞AV(k34, k5) = 3
(
Φ(R4)
P∞Con

)

where R4 =


1 x

y

√
2x
y

√
x

2y

1
√

x
2y

√
2x
y

1 1
2
1

 with x = 1 − k5 , y = 3 − 3k5 − k34 and Φ(R4) the positive-orthant probability

associated with matrix R4.

8Notice that P∞Con is also the probability that a Condorcet loser exists.
9This is also done by Gehrlein and Lepelley (2015).
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. See Appendix A.

Table 3 reports some computed values of CE∞AV(k34, k5). We recover the same figures as Diss et al. (2010) for
k5 = 0. In this table, one can notice that for a given value of one parameter, the probability tends to increase with the
other parameter.

Table 3: Some values of the probabilities CE∞AV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.75720 0.75720 0.75720 0.75720 0.75720 0.75723 0.75723 0.75720 0.75720 0.75720 −

0.1 0.76626 0.76725 0.76860 0.77031 0.77271 0.77604 0.78132 0.79074 0.81249 − −

0.2 0.77604 0.77835 0.78135 0.78525 0.79074 0.79890 0.81249 0.84033 − − −

0.3 0.78684 0.79074 0.79578 0.80265 0.81252 0.82827 0.85815 − − − −

0.4 0.79890 0.80469 0.81249 0.82353 0.84036 0.87078 − − − − −

0.5 0.81252 0.82095 0.83262 0.85005 0.88044 − − − − − −

0.6 0.82824 0.84036 0.85812 0.88818 − − − − − − −

0.7 0.84705 0.86490 0.89448 − − − − − − − −

0.8 0.87081 0.89979 − − − − − − − − −

0.9 0.90435 − − − − − − − − − −

1 1 − − − − − − − − − −

Let us turn to the Condorcet efficiency of PAV. Assume that a is the PAV winner. This requires to analyze what
may happen under Rule 1i, under Rule 1ii and under Rule 2i.

• Case 1: Rule 1i applies. In this case, no candidate receives a majority of the approvals and a, the Condorcet
winner, gets the highest AV score. This is fully described by the following inequalities system:

aMb
aMb
S (b) < S (a)
S (c) < S (a)
S (a) < n

2
S (b) < n

2
S (c) < n

2

⇒


aMb
aMb
S (b) < S (a)
S (c) < S (a)
S (a) < n

2

⇒


nab − nba > 0
nac − nca > 0
S (a) − S (b) > 0
S (a) − S (c) > 0
2S (a) − n > 0

The first four inequalities of the final system respectively correspond to Equations 1 to 4. We derive the last inequality
as follows:

− n1 − n2 + n3 + n4 + n5 + n6 − n7 − n8 − n9 + n10 − n11 + n12 − n13 − n14 + n15 − n16 + n17 + n18 − n19 > 0 (5)

So, a voting situation under which Rule 1i applies and that PAV elects the Condorcet winner is fully described by
Equations 1 to 5. This event is described by five constraints. In most of the social choice literature, when computing
under IC the probability of voting events described by more than four constraints most of the authors rely on Monte-
Carlo simulations. Thanks to Gehrlein (2017), the computations are made possible for events described by five
constraints through a formula based on normal positive orthants. As all the events in this paper are described by five
constraints, we then rely on this formula. In Appendix, while providing the proof of Theorem 2, we will say a few
words on how this formula is obtained.

Theorem 2. With three candidates and an infinite number of voters, the Condorcet efficiency of PAV under EIC when
Rule 1i applies is given by

CE∞PAV1i
(k34, k5) = 3

(Φ(R1i
5 )

P∞Con

)
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where R1i
5 =



1 x
y −ϕ

√
2x
y

√
x

2y

1 −ϕ
√

x
2y

√
2x
y

1 −

√
2x
3 −

√
2x
3

1 1
2
1


and ϕ = 2

√
3

3 ( x
√

y
y ).

. See Appendix B.

The proofs of all the subsequent Theorems are omitted since they follow the same scheme as that of Theorem 2.
Some computed values of CE∞PAV1i

(k34, k5) are provided in Table 4.

Table 4: Some values of the probabilities CE∞PAV1i
(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.02036 0.03998 0.06107 0.08340 0.10709 0.13240 0.15988 0.19044 0.22599 0.27138 −

0.1 0.02064 0.04067 0.06230 0.08533 0.10997 0.13666 0.16627 0.20074 0.24557 − −

0.2 0.02098 0.04151 0.06378 0.08770 0.11358 0.14219 0.17519 0.21733 − − −

0.3 0.02139 0.04250 0.06560 0.09065 0.11828 0.14988 0.18946 − − − −

0.4 0.02190 0.04375 0.06789 0.09455 0.12486 0.16222 − − − − −

0.5 0.02255 0.04535 0.07094 0.10003 0.13542 − − − − − −

0.6 0.02339 0.04751 0.07530 0.10890 − − − − − − −

0.7 0.02456 0.05064 0.08244 − − − − − − − −

0.8 0.02634 0.05595 − − − − − − − − −

0.9 0.02951 − − − − − − − − − −

1 − − − − − − − − − − −

• Case 2: Rule 1ii applies. Here, it is assumed that a the Condorcet winner is the only candidate with a majority
of approval votes. This is described by the following inequalities system:

aMb
aMc
S (a) > n

2
S (b) < n

2
S (c) < n

2

⇒


nab − nba > 0
nac − nca > 0
2S (a) − n > 0
n − 2S (b) > 0
n − 2S (c) > 0

From these inequalities, we were able to derive the five constraints that fully characterize a voting situation under
which Rule 1ii applies and that PAV elects the Condorcet winner. Using the same reasoning described above, we get
Theorem 3.

Theorem 3. With three candidates and an infinite number of voters, the Condorcet efficiency of the PAV when Rule
1ii applies is given by

CE∞PAV1ii
(k34, k5) = 3

(Φ(R1ii
5 )

P∞Con

)

where R1ii
5 =


1 x

y ϕ ϕ 0
1 ϕ 0 ϕ

1 4x−3
3

4x−3
3

1 3−4x
3
1


Some computed values of CE∞PAV1ii

(k34, k5) are provided in Table 5.

• Case 3: Rule 2i applies. It implies the following two subcases:
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Table 5: Some values of the probabilities CE∞PAV1ii
(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.39270 0.36729 0.34193 0.31617 0.28958 0.26169 0.23183 0.19895 0.16104 0.11293 −

0.1 0.39712 0.37177 0.34650 0.32089 0.29449 0.26692 0.23751 0.20539 0.16889 0.12469 −

0.2 0.40184 0.37654 0.35140 0.32595 0.29984 0.27264 0.24384 0.21277 0.17847 − −

0.3 0.40685 0.38164 0.35665 0.33142 0.30563 0.27893 0.25097 0.22137 − − −

0.4 0.41220 0.38713 0.36231 0.33736 0.31198 0.28594 0.25909 − − − −

0.5 0.41796 0.39303 0.36949 0.34384 0.31900 0.29387 − − − − −

0.6 0.42417 0.39944 0.37516 0.35100 0.32693 − − − − − −

0.7 0.43094 0.40646 0.38255 0.35907 − − − − − − −

0.8 0.43836 0.41423 0.39093 − − − − − − − −

0.9 0.44664 0.42307 − − − − − − − −

1 0.45613 − − − − − − − − − −

– two candidates receive a majority of approval votes. Let assume that candidates a and b are the majority-
approved; since aMb, it follows that a is the PAV winner. Thus, such a voting situation is fully described
by the following system: 

aMb
aMc
S (a) > n

2
S (b) > n

2
S (c) < n

2

⇒


nab − nba > 0
nac − nca > 0
2S (a) − n > 0
2S (b) − n > 0
n − 2S (c) > 0

– all the three candidates receive a majority of approval votes. Since aMb and aMb it follows that a is the
PAV winner. This is described by the following system:

aMb
aMc
S (a) > n

2
S (b) > n

2
S (c) > n

2

⇒


nab − nba > 0
nac − nca > 0
2S (a) − n > 0
2S (b) − n > 0
2S (c) − n > 0

As the two subcases are disjoints, we then derive Theorem 4.

Theorem 4. With three candidates and an infinite number of voters, the Condorcet efficiency PAV when Rule 2 applies
is given by

CE∞PAV2
(k34, k5) = 3

(Φ(R2i
5 ) + Φ(R2i′

5 )
P∞Con

)
where

R2i
5 =


1 x

y ϕ −ϕ 0
1 ϕ 0 ϕ

1 −4x+3
3

4x−3
3

1 4x−3
3
1

 and R2i′
5 =


1 x

y ϕ −ϕ 0
1 ϕ 0 −ϕ

1 −4x+3
3

4x−3
3

1 4x−3
3
1


Some computed values of CE∞PAV2

(k34, k5) are provided in Table 6.
From Tables 4, 5 and 6, it comes that PAV is more likely to select the Condorcet winner when Rule 2 applies.

As all the events described above are all mutually exclusive, we then derive in Corollary 1, the overall Condorcet
efficiency of PAV.

Corrolary 1. With three candidates and an infinite number of voters, the Condorcet efficiency of PAV is given by

CE∞PAV(k34, k5) = CE∞PAV1i
(k34, k5) + CE∞PAV1ii

(k34, k5) + CE∞PAV2
(k34, k5)
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Table 6: Some values of the probabilities CE∞PAV2
(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.26388 0.28030 0.29649 0.31267 0.32914 0.34620 0.36421 0.38385 0.40625 0.43445 −

0.1 0.26444 0.28086 0.29707 0.31331 0.32982 0.34695 0.36509 0.38489 0.40770 0.43771 −

0.2 0.26500 0.28144 0.29769 0.31398 0.33059 0.34786 0.36620 0.38645 0.40940 − −

0.3 0.26560 0.28206 0.29836 0.31475 0.33149 0.34897 0.36776 0.38834 − − −

0.4 0.26620 0.28272 0.29912 0.31565 0.33263 0.35052 0.37045 − − − −

0.5 0.26685 0.28344 0.29998 0.31674 0.33414 0.35306 − − − − −

0.6 0.26753 0.28426 0.30103 0.31818 0.33653 − − − − − −

0.7 0.26826 0.28523 0.30239 0.32046 − − − − − − −

0.8 0.26912 0.28647 0.30453 − − − − − − − −

0.9 0.27018 0.28847 − − − − − − − − −

1 0.27194 − − − − − − − − − −

Table 7 provides the Condorcet efficiency of PAV. From the comparison of figures in Tables 3 and 7, we notice
that for k5 < 0.7, AV performs better than PAV and we get the reverse for k5 > 0.7. It comes that, voters with total
indifference really matter as their proportion determine the dominance between AV and PAV in terms of the Condorcet
efficiency.

Table 7: Some values of the probabilities CE∞PAV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.67693 0.68757 0.69949 0.71224 0.72580 0.74028 0.75591 0.77323 0.79328 0.81876 −

0.1 0.68220 0.69331 0.70587 0.71953 0.73429 0.75052 0.76888 0.79102 0.82216 0.56241 −

0.2 0.68782 0.69949 0.71287 0.72762 0.74401 0.76268 0.78523 0.81655 0.58788 − −

0.3 0.69384 0.70620 0.72061 0.73683 0.75540 0.77779 0.80819 0.60972 − − −

0.4 0.70031 0.71360 0.72932 0.74756 0.76947 0.79868 0.62955 − − − −

0.5 0.70736 0.72182 0.74041 0.76061 0.78856 0.64694 − − − − −

0.6 0.71509 0.73121 0.75149 0.77809 0.66347 − − − − − −

0.7 0.72376 0.74234 0.76738 0.67954 − − − − − − −

0.8 0.73382 0.75665 0.69547 − − − − − − − −

0.9 0.74633 0.71155 − − − − − − − − −

1 0.72807 − − − − − − − − − −

4. Probability that PAV elects the Condorcet loser

Lepelley (1993) showed under an extension of IC assumption that if preferences are single-peaked, the election
of the Condorcet loser is much less frequent with AV than with the Plurality rule. More recently, Gehrlein et al.
(2016) built a framework to compare AV and the Plurality rule and they found under impartial anonymous culture-like
assumptions that AV is much less susceptible to elect the Condorcet loser than the Plurality rule. Notice that Gehrlein
et al. (2016) investigated different scenarios on voters’ preferences included the one assumed in this paper. In this
section, we first reconsider the likelihood of AV to elect the Condorcet loser when she exists under the EIC assumption
in three-candidate election.

Theorem 5. With three candidates and an infinite number of voters, the probability that AV elects the Condorcet loser
under the EIC assumption is given by

CL∞AV(k34, k5) = 3
(
Φ(R4)
P∞Con

)
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where R4 =


1 x

y −

√
2x
y −

√
x

2y

1 −
√

x
2y −

√
2x
y

1 1
2
1


Table 8 report the probability CL∞AV(k34, k5). In this table, one can notice that for a given value of one parameter,

the probability tends to decrease with the other parameter.

Table 8: Some values of the probabilities CL∞AV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 −

0.1 0.03393 0.03355 0.03311 0.03253 0.03174 0.03063 0.02896 0.02609 0.02013 − −

0.2 0.03063 0.02989 0.02896 0.02775 0.02609 0.02374 0.02013 0.01379 − − −

0.3 0.02724 0.02609 0.02464 0.02272 0.02013 0.01637 0.01051 − − − −

0.4 0.02374 0.02216 0.02013 0.01746 0.01379 0.00847 − − − − −

0.5 0.02013 0.01805 0.01541 0.01193 0.0071 − − − − − −

0.6 0.01637 0.01379 0.01051 0.00612 − − − − − − −

0.7 0.01249 0.00938 0.00538 − − − − − − − −

0.8 0.00847 0.00475 − − − − − − − − −

0.9 0.00436 − − − − − − − − − −

1 − − − − − − − − − − −

Let us now turn to the probability that PAV elects the Condorcet loser in order to envisage the comparison with
AV. We will proceed as we did for the Condorcet efficiency by computing the likelihood when the event is susceptible
to occur under the variety rules of PAV. We already know that the Condorcet loser can only be elected by PAV if Rule
1i or Rule 1ii apply. For each of these rules, Theorems 6 and 7 gives the likelihood of the election of the Condorcet
loser.

Theorem 6. With three candidates and an infinite number of voters, the probability that PAV elects the Condorcet
loser when Rule 1i applies is given by

CL∞PAV1i
(k34, k5) = 3

(
Φ(R̂5)
P∞Con

)

where R̂5 =



1 x
y −ϕ −

√
2x
y −

√
x

2y

1 −ϕ −
√

x
2y −

√
2x
y

1
√

6x
3 −

√
6x
3

1 1
2
1


In Table 9, we report the probabilities CL∞PAV1i

(k34, k5).

Theorem 7. With three candidates and an infinite number of voters, the probability that PAV elects the Condorcet
loser when Rule 1ii applies is given by

CL∞PAV1ii
(k34, k5) = 3

(
Φ(R̃5)
P∞Con

)

where R̃5 =


1 x

y −ϕ −ϕ 0
1 −ϕ 0 −ϕ

1 4x−3
3

4x−3
3

1 −4x+3
3
1


In Table 10, we report the probabilities CL∞PAV1ii

(k34, k5).
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Table 9: Some values of the probabilities CL∞PAV1i
(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.03134 0.02900 0.02735 0.02606 0.02499 0.02406 0.02320 0.02236 0.02152 0.02056 −

0.1 0.02839 0.02597 0.02413 0.02255 0.02106 0.01952 0.01776 0.01536 0.01129 −

0.2 0.02542 0.02283 0.02078 0.01893 0.01698 0.01482 0.01199 0.00781 − −

0.3 0.02235 0.01964 0.01737 0.01518 0.01278 0.00989 0.06600 − − −

0.4 0.01920 0.01639 0.01388 0.01134 0.00848 0.00489 − − − −

0.5 0.01598 0.01303 0.01038 0.00751 0.00416 − − − − −

0.6 0.01273 0.00964 0.00676 0.00361 − − − − − −

0.7 0.00944 0.00631 0.00325 − − − − − − −

0.8 0.00609 0.00301 − − − − − − − −

0.9 0.00285 − − − − − − − − −

1 − − − − − − − − − −

Table 10: Some values of the probabilities CL∞PAV1ii
(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.01076 0.00891 0.00755 0.00647 0.00557 0.00477 0.00403 0.00332 0.00258 0.00175 −

0.1 0.00962 0.00779 0.00646 0.00539 0.00446 0.00362 0.00281 0.00198 0.00105 − −

0.2 0.00846 0.00668 0.00537 0.00431 0.00337 0.00250 0.00165 0.00077 − − −

0.3 0.00729 0.00557 0.00429 0.00324 0.00232 0.00145 0.00063 − − − −

0.4 0.00611 0.00446 0.00323 0.00223 0.00134 0.00055 − − − − −

0.5 0.00493 0.00337 0.00222 0.00128 0.00051 − − − − − −

0.6 0.00376 0.00232 0.00128 0.00048 − − − − − − −

0.7 0.00262 0.00135 0.00048 − − − − − − − −

0.8 0.00155 0.00051 − − − − − − − − −

0.9 0.00059 − − − − − − − − − −

1 − − − − − − − − − − −

From Tables 9, 10, it comes that PAV is more likely to select the Condorcet loser when Rule 1i applies. As all the
events described in Theorems 6 and 7 are mutually exclusive, we then derive in Corollary 2, the overall probability
that the Condorcet loser is elected by PAV.

Corrolary 2. With three candidates and an infinite number of voters, the probability that PAV elects the Condorcet
loser under EIC assumption is given by

CL∞PAV(k34, k5) = CL∞PAV1i
(k34, k5) + CL∞PAV1ii

(k34, k5)

Comparing the figures of Table 8 and 11, it comes that PAV seems to be less likely to elect the Condorcet loser
than AV for k5 ≥ 0.1. When there is no voter with total indifference (k5 = 0), AV is less likely to elect the Condorcet
loser than PAV.

5. Conclusion

In this paper, we focused on the Preference Approval Voting which is a rule that combines approval and prefer-
ences. Under the extended impartial culture (EIC) assumption, we provided representations of the probability that
PAV elects the Condorcet winner when she exists in three-candidate elections under all the subcases that PAV can
induce then we derive the overall probability. It comes that PAV is more likely to select the Condorcet winner when
more candidates receive a majority of approval votes (Rule 2 applies). In each of the subcases, we noticed that for any
fixed number of voters with dichotomous preferences the probabilities tend to increase as the number of voters with

11



Table 11: Some values of the probabilities CL∞PAV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1k34 ↓

0 0.04210 0.03791 0.03490 0.03253 0.03056 0.02883 0.02723 0.02568 0.02410 0.02231 −

0.1 0.03801 0.03376 0.03059 0.02794 0.02552 0.02314 0.02057 0.01734 0.01234 − −

0.2 0.03388 0.02951 0.02615 0.02324 0.02035 0.01732 0.01364 0.00858 − − −

0.3 0.02964 0.02521 0.02166 0.01842 0.01510 0.01134 0.00663 − − − −

0.4 0.02531 0.02085 0.01711 0.01357 0.00982 0.00544 − − − − −

0.5 0.02091 0.01640 0.01260 0.00879 0.00467 − − − − − −

0.6 0.01649 0.01196 0.00804 0.00409 − − − − − − −

0.7 0.01206 0.00766 0.00373 − − − − − − − −

0.8 0.00764 0.00352 − − − − − − − − −

0.9 0.00344 − − − − − − − − − −

1 − − − − − − − − − − −

total indifference increases (the number of voters with strict ranking decreases). Comparing the Condorcet efficiency
of PAV to that of AV, we noticed that when the proportion of voters with total indifference is at least equal to 70% of
the electorate, AV is more likely to elect the Condorcet winner than PAV.

We also provided under EIC, a representation of the probability that AV elect the Condorcet loser when she
exists in three-candidate elections. For any fixed number of voters with dichotomous preferences this probability
tend to decrease as the number of voters with total indifference increases (the number of voters with strict ranking
decreases). We get the same picture with PAV. It comes that PAV is more likely to select the Condorcet loser when
no candidate receives a majority of approval votes (Rule 1i applies). We noticed that PAV seems to be less likely to
elect the Condorcet loser than AV when the proportion of voter with total indifference is greater or equal to 1% of the
electorate; when there is no voter with total indifference, AV is less likely to elect the Condorcet loser than PAV.

Appendix

Here, we will only focus on the proof of Theorems 1 and 2 since all the other Theorems follow the same schemes.

Appendix A: Proof of Theorem 1

A situation under which AV elects the Condorcet winner is fully described by Equations 1 to 4. In order to get
a representation of the Condorcet efficiency of AV, we follow the same technique as Gehrlein and Fishburn (1978a).
So, considering each of Equations 1 to 4, we define the following four discrete variables:

X1 = 1 : p1 + p2 + p5 + p7 + p8 + p11 + p14 + p16
−1 : p3 − p4 + p6 + p9 + p10 + p12 p15 + p17

0 : p13 + p18 + p19

X2 = 1 : p1 + p2 + p3 + p7 + p8 + p9 + p13 + p16
−1 : p4 + p5 + p6 + p10 + p11 + p12 + p15 + p18

0 : p14 + p17 + p19

X3 = 1 : p1 + p2 + p8 + p11 + p14 + p16
−1 : p3 + p4 + p10 + p12 + p15 + p17
0 : p5 + p6 + p7 + p9 + p13 + p18 + p19

X4 = 1 : p1 + p2 + p7 + p9 + p13 + p16
−1 : p5 + p6 + p10 + p12 + p15 + p18
0 : p3 + p4 + p8 + p11 + p14 + p17 + p19
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where pi is the probability that a voter who is randomly selected from the electorate is associated with the ith

ranking of Table 1; X1 > 0 indicates that a is preferred to b and X1 < 0 indicates the reverse. Similarly, X2 > 0
indicates that a is preferred to c. X3 and X4 respectively represent S (a) − S (b) and S (a) − S (c). Equations 1 to 4 fully
describe a situation under which AV elects the Condorcet winner when the average value X j of each of the X j (for
j = 1, 2, 3, 4) are positive. According the Gehrlein and Fishburn (1978a,b), the probability of such a situation is equal
to the joint probability X1 > 0, X2 > 0 , X3 > 0 and X4 > 0; when n→ ∞, it is equivalent to the quadrivariate normal
positive orthant probability Φ(R4) such that X j

√
n ≥ E(X j

√
n) and R4 is a correlation matrix between the variables X j.

The expectation value of X j is E(X j) = 0, the variances (V(X j) = E(X2
j )) and covariances (Cov(X j, Xk) = E(X jXk))

are:

V(X1) = V(X2) =
3k1 + 3k2 + 2k3 + 2k4

3
=

3 − 3k5 − k34

3

V(X3) = V(X4) =
2(k1 + k2 + k3 + k4)

3
=

2(1 − k5)
3

Cov(X1, X2) = Cov(X1, X4) = Cov(X2, X3) = Cov(X3, X4) =
1 − k5

3
Cov(X1, X3) = Cov(X2, X4) = 2Cov(X1, X2)

We derive the correlation matrix R4 where the components r jk are r jk = rk j =
Cov(X j,Xk)
√

V(X j)V(Xk)
:

R4 =


1 1−k5

3−3k5−k34

√
2(1−k5)

3−3k5−k34

√
1−k5

2(3−3k5−k34)

1
√

1−k5
2(3−3k5−k34)

√
2(1−k5)

3−3k5−k34

1 1
2
1


Gehrlein (1979) has developed a general representation of the orthant probabilities for obtaining numerical values

of Φ(R4) as a function of a series of bounded integrals over a single variable10. Given r jk the correlation terms in the
matrix R4, this general representation is defined as follows:

f (r12, r13, r14, r23, r24, r34) =
1
16

+
arcsin(r12) + arcsin(r13) + arcsin(r23)

8π

+
r14

4π2

[ ∫ 1

0

arccos
(

r24r34z2−r13r14r24z2+r12r13+r2
14r23z2−r12r14r34z2−r23√

(1−r2
14z2−r2

13−r2
34z2+2r13r14r34z2)(1−r2

24z2−r2
12−r2

14z2+2r12r14r24z2)

)
√

1 − r2
14z2

dz
]

+
r24

4π2

[ ∫ 1

0

arccos
(

r14r34z2−r14r23r24z2+r12r23+r2
24r13z2−r12r24r34z2−r13√

(1−r2
24z2−r2

23−r2
34z2+2r23r24r34z2)(1−r2

24z2−r2
12−r2

14z2+2r12r14r24z2)

)
√

1 − r2
24z2

dz
]

+
r34

4π2

[ ∫ 1

0

arccos
(

r14r24z2−r14r23r34z2+r13r23+r2
34r12z2−r13r24r34z2−r12√

(1−r2
24z2−r2

23−r2
34z2+2r23r24r34z2)(1−r2

14z2−r2
13−r2

34z2+2r13r14r34z2)

)
√

1 − r2
34z2

dz
]

So, Φ(R4) = f (r12, r13, r14, r23, r24, r34). We then gets CE∞AV(k34, k5) = 3
(

Φ(R4)
P∞Con

)
.

Appendix B: Proof of Theorem 2
A voting situation under which Rule 1i applies and that PAV elects the Condorcet winner is fully described by

Equations 1 to 5. We proceed as in Appendix A by defining for each equation, a discrete variable. As we have already
defined the discrete variables X1, X2, X3 and X4 for Equations 1 to 4, it remains for us to define the discrete variable
X5 associated with Equation 5.

X5 = 1 : p3 + p4 + p5 + p6 + p10 + p12 + p15 + p17 + p18
−1 : p1 p2 + p7 + p8 + p9 + p11 + p13 + p14 + p16 + p19

10Notice that Φ(R4) can also be obtained following the works of David and Mallows (1961).

13



Equations 1 to 5 fully describe a situation under which AV elects the Condorcet winner when the average value
X j of each of the X j (for j = 1, 2, 3, 4, 5) are positive. According the Gehrlein and Fishburn (1978a,b), the probability
of such a situation is equal to the joint probability X1 > 0, X2 > 0 , X3 > 0, X4 > 0 and X5 > 0; when n → ∞, it
is equivalent to the quadrivariate normal positive orthant probability Φ(R5) such that X j

√
n ≥ E(X j

√
n) and R5 is a

correlation matrix between the variables X j. It remains for us to compute the following variances and covariances:

V(X5) = 1
Cov(X1, X5) = Cov(X2, X5) = Cov(X3, X5) = Cov(X4, X5) = −2Cov(X1, X2)

We derive the correlation matrix R5:

R1i
5 =



1 1−k5
3−3k5−k34

−
2
√

3
3 (

(1−k5)
√

3−3k5−k34
3−3k5−k34

)
√

2(1−k5)
3−3k5−k34

√
1−k5

2(3−3k5−k34)

1 −
2
√

3
3 (

(1−k5)
√

3−3k5−k34
3−3k5−k34

)
√

1−k5
2(3−3k5−k34)

√
2(1−k5)

3−3k5−k34

1 −

√
2(1−k5)

3 −

√
2(1−k5)

3
1 1

2
1


where ϕ = 2

√
3

3 ( x
√

y
y ).

Based on the Boole’s Theorem, Gehrlein (2017, 2014) developed a general representation of the orthant probabil-
ities for obtaining numerical values of Φ(R5) as a linear combination of Φ(R4) values, where matrices R4 are obtained
from correlation terms in R5.

Φ(R5) =
1
2

(
f (r12, r13, r14, r23, r24, r34) − f (r12, r13,−r15, r23,−r25,−r35) + f (r12,−r14,−r15,−r24,−r25, r45)

− f (−r13,−r14,−r15, r34, r35, r45) + f (r23, r24, r25, r34, r35, r45)
)

Then we get CE∞PAV1i
(k34, k5) = 3

(
Φ(R1i

5 )
P∞Con

)
.
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