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Abstract Under Approval Voting (AV), each voter just distinguishes the candidates he approves
of from those appearing as unacceptable. The Preference Approval Voting (PAV) is a hybrid
version of the approval voting first introduced by Brams and Sanver (2009). Under PAV, each
voter ranks all the candidates and then indicates the ones he approves. In this paper, we provide
analytical representations for the probability that PAV elects the Condorcet winner when she exists
in three-candidate elections with large electorates. We also provide analytical representations for
the probability that PAV elects the Condorcet loser. We perform our analysis by assuming the
assumption of the Extended Impartial Culture. This analysis allows us to measure at which extend,
PAV performs better than AV both on the propensity of electing the Condorcet loser and on that
of the non-election of the Condorcet loser.
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1 Introduction

Popularized by Brams and Fishburn (1978), the Approval Voting (AV) rule is a voting system
under which each voter approves (any number of) candidates that he considers as acceptable
and the winner is the most-approved candidate. This rule has made (and continues to be) the
subject of numerous research works in political science, economics and computer science. To have
a quick overview of these works, the reader may refer to the books of Brams (2008), Brams and
Fishburn (2007) and to the Handbook of Approval Voting edited by Laslier and Sanver (2010).
Under AV, there is no need to rank the candidates as under the scoring rules1. This absence of
rankings gave rise to a controversy between Saari and van Newenhizen (1988a,b) and Brams et al.
(1988a,b). Saari and van Newenhizen (1988b) blame AV of hiding the real preferences of the voters
which can be strict between the candidates approved by a voter. Brams and Sanver (2009) may
have brought what appears as a possible response to this criticism by introducing the Preference
Approval Voting (PAV). Under PAV, each voter ranks all the candidates then indicates the ones
he approves.2 According to Brams and Sanver (2009), the winner under PAV is determined by
two rules:

Rule 1 : The PAV winner is the AV winner if3

i. no candidate receives a majority of approval votes (i.e approved by more than half of the
electorate)

ii. exactly one candidate receives a majority of approval votes.

Rule 2 : In the case that two or more candidates receive a majority of approval votes,
i. The PAV winner is the ones among these candidates who is preferred by a majority to every

other majority-approved candidate.
ii. In the case of a cycle among the majority-approved candidates, then the AV winner among

them is the PAV winner.

Brams and Sanver (2009) noticed that it is Rule 2 that clearly differentiate PAV from AV. They
pointed out that for some situations where a Condorcet winner exists, this candidate may not be
a PAV winner under each of the subcases of Rule 1 and Rule 2. When she exists, a Condorcet
winner is a candidate who defeats each of the other candidates in pairwise comparisons. We know
that AV always elects the Condorcet winner when she exists given that voters’ preferences are
dichotomous (Ju, 2010, Xu, 2010). This is no more the case when the voters’ true preferences are
assumed to be strict orderings (Gehrlein and Lepelley, 1998) or when indifference are allowed in
the voters’ true preferences (Diss et al., 2010). For large electorates, Gehrlein and Lepelley (1998)
found that AV has the same Condorcet efficiency (probability of electing the Condorcet winner
when she exists) as both the Plurality rule and the Antiplurality rule.4 Going from a more general
framework, Diss et al. (2010) found that for large electorates and three candidates, AV performs
better that both the Plurality rule and the Antiplurality rule on the Condorcet efficiency; they
also found some scenarios under which AV performs better than the Borda rule. Their results were
strongly reinforced by Gehrlein and Lepelley (2015).

As just stated, many works have been focused on the Condorcet efficiency of AV while nothing
is known about PAV as no work has been done on the subject. Thus, one of objective of this
paper is to try to fill this void for voting situations with three candidates by computing the
Condorcet efficiency of PAV when indifference are allowed as in Diss et al. (2010). So, we provide a
representation of the limiting probability of the Condorcet efficiency of PAV. All the computations
are done under the extended impartial culture assumption introduced by Diss et al. (2010); this

1 A scoring rule is a voting rule under which voters give points to candidates according to the ranks they have
in voter’s preferences. The winner is the candidate with the highest total number of points.

2 Brams and Sanver (2009) also introduced the Fallback Voting under which voters only rank the candidates they
approve. In this paper, we are not concerned with this rule.

3 Here, we have chose to split Rule 1 into two. This will be helpful for our analysis.
4 The Plurality rule is a scoring rule under which each voter votes only for (gives one point to) his top ranked

candidate and the winner is the ones with the highest total number first places; under the Antiplurality rule, the
winner is the candidate with the fewest total number of last places.
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assumption will be defined later. By definition, it is obvious that PAV performs better than AV
on electing the Condorcet winner when she exists. It would be interesting to measure the extent
of this dominance. In order to better reflect this, we first provide a more general representation of
the limiting probability of the Condorcet efficiency of AV. Then, the representation provided by
Diss et al. (2010) comes as a particular case of ours.

Some works have looked on the probability that AV elects the Condorcet loser when she exists.
A Condorcet loser is a candidate, when she exists, who is defeated by each of the other candidates in
pairwise comparisons. Gehrlein and Lepelley (1998) showed that with more than three candidates
and under the impartial culture assumption, AV is more likely to elect the Condorcet loser than
the Plurality rule. For three-candidate elections, they showed that AV has the same probability
of electing the Condorcet loser as both the Plurality rule and the Antiplurality rule. This result is
a bit challenged by a recent paper by Gehrlein et al. (2016). Using impartial anonymous culture-
like assumptions5 and considering a range of scenarios, Gehrlein et al. (2016) concluded that in
three-candidate elections, AV is less likely to elect the Condorcet loser than both the Plurality
rule and the Antiplurality rule. By definition of PAV, it comes that it is less likely to elect the
Condorcet loser when she exists. The second objective of this paper is to focus on the probability
that PAV elects the Condorcet loser when she exists. We provide for AV and for PAV, analytical
representations of the limiting probability of electing the Condorcet loser when she exists under
the extended impartial culture assumption. By doing so, we will highlight the extent of dominance
of PAV on AV

The rest of the paper is structured as follows: Section 2 is devoted to basic notations and
definitions. Section 3 presents our results on the Condorcet efficiency. Section 4 deals with our
results on the probability of electing the Condorcet loser. Section 5 concludes.

2 Preliminaries

2.1 Preferences in three-candidate elections

Let N be a set of n voters (n ≥ 2) and A = {a, b, c} a set of three candidates. We assume that voters
rank all the candidates, indifference is allowed and they indicate which candidates they approve by
underlining the names of the candidates6. So, there are 19 possible types of preferences. Following
Diss et al. (2010), these 19 types of preferences can be partitioned into five classes of preferences:

– Class I: this class is made of voters with strict rankings and who only approve their top ranked
candidates. These voters are labelled 1 to 6 in Table 1.

– Class II: voters in this class also have strict ranking and they approve their top two ranked
candidates. These types of voters are labelled 7 to 12 in Table 1.

– Class III: in this class, voters are indifferent between their two preferred candidates or do not
consider the difference significant enough to reveal their true strict preference. These types of
voters are labelled 13 to 15 in Table 1.

– Class IV: Voters rank one candidate strictly above the two other between whom they are
indifferent. These types of voters are labelled 16 to 17 in Table 1.

– Class V: the voters of this class are indifferent between the three candidates, thus they approve
all the three candidates(type 19).

If we denote by nt the number of voter of type t, a voting situation is an 19-tuple ñ =
(n1, n2, . . . , nt, . . . , n19) that indicates the total number nt of voters casting each type of preferences

such that
∑19
t=1 nt = n. We denote by pt the probability that a voter chooses the preference type

t such that
∑19
t=1 pt = 1. In Table 2, S(a) denotes the AV score candidate a given the labels of

Table 1.
Given a, b ∈ A, we denote by nab the total number of voters who strictly prefer a to b. If

nab > nba, we say that a majority dominates candidate b; or equivalently, a beats b in a pairwise

5 Under impartial anonymous culture-like assumptions, voting situations are assumed to be equally likely.
6 It is assumed that voters vote sincerely. So, we are not concerned with strategic behaviors.
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Table 1 The 19 possible preferences types with three candidates

Class I: a � b � c p1 Class II: a � b � c p7
a � c � b p2 a � c � b p8
b � a � c p3 b � a � c p9
b � c � a p4 b � c � a p10
c � a � b p5 c � a � b p11
c � b � a p6 c � b � a p12

Class III: a ∼ b � c p13 Class IV: a � b ∼ c p16
a ∼ c � b p14 b � a ∼ c p17
b ∼ c � a p15 c � a ∼ b p18

Class V: a ∼ b ∼ c p19

Table 2 The AV score of the candidates

S(a) = n1 + n2 + n7 + n8 + n9 + n11 + n13 + n14 + n16 + n19
S(b) = n3 + n4 + n7 + n9 + n10 + n12 + n13 + n15 + n17 + n19
S(c) = n5 + n6 + n8 + n10 + n11 + n12 + n14 + n15 + n18 + n19

majority voting. In such a case, we will simply write aMb. Candidate a is said to be the Condorcet
winner (resp. the Condorcet loser) if for all b ∈ A \ {a}, aMb (resp. bMa). If for a given voting
situation we get aMb, bMc and cMa, this describes a majority cycle.

2.2 PAV, the Condorcet winner and the Condorcet loser

By the definition of PAV, it is obvious that with three candidates, if there is a Condorcet winner
who belongs to the subset of majority-approved candidates, she is always elected if Rule 2i applies
while rule 2ii will never apply. So, Rule 1i and 1ii can fail to elect the Condorcet winner. It is
also obvious that if there is a Condorcet loser in a three-candidate election, she cannot be elected
under Rule 2i and 2ii; so, PAV may elect the Condorcet loser only when Rule 1i or 1ii apply.

In order to motivate the paper, let us take the following two voting profiles7 each with 9 voters
Vi (i = 1..9) in order to illustrate that in three-candidate elections, PAV can fail to select the
Condorcet winner when she exists (under Rules 1i, 1ii and 2i) and that it can select the Condorcet
loser (under Rules 1i and 1ii).

Profile 1

V1:a � c � b V2:a � c � b V3:b � c � a
V4:b � c � a V5:c � a � b V6:c � a � b
V7:b � a � c V8:c � b � a V9:a � b � c

Profile 2

V1:a � c � b V2:b � a � c V3:b � c � a
V4:b � c � a V5:c � a � b V6:c � a � b
V7:c � a � b V8: a � b � c V9:c � b � a

Under both profiles, the reader can check that c is the Condorcet winner and b is the Condorcet
loser. Under the first profile, we get S(a) = S(c) = 3 and S(b) = 4; no candidate gets the majority
of the approvals (5 votes), according to Rule 1i, b is the winner since she is the AV winner. Thus,

7 Other examples are provided in Brams (2008), Brams and Sanver (2009).
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PAV under Rule 1i fails to select the Condorcet winner but selects the Condorcet loser. Under
the second profile, b is the unique majority-approved candidate with 5 votes; Rule 1ii applies and
b is the PAV winner: PAV under Rule 1i fails to elect the Condorcet winner but can select the
Condorcet loser.

To get a profile under which Rule 2i applies and that PAV fails to select the Condorcet winner,
the reader only need to add the following groups of voters to Profile 1: 3 voters with a � b � c, 2
voters with a � c � b, 3 voters with c � a � b and 4 voters with c � b � a.

The profiles we just used illustrate that under some voting situations, PAV can fail to elect the
Condorcet winner when she exists and that it can elect the Condorcet loser when she exists. These
two behaviors of PAV are just rare oddities or are a common occurrence? The aim of this paper is
then to provide an answer to this question. So, we compute the Condorcet efficiency of PAV and
its probability of electing the Condorcet loser for voting situations with three candidates. Before
starting this task, we need to define a probability model for this.

2.3 The probability model: the Extended Impartial Culture assumption

The Impartial Culture (IC) assumption, first introduced in the social choice literature by Gehrlein
and Fishburn (1976), is one of the hypothesis used in the social choice literature when computing
the likelihood of voting events. Under IC, it is assumed that each voter chooses her preference
according to a uniform probability distribution. When only strict ranking are allowed with m
candidates, IC gives a probability 1

m! for each of the m! rankings to be chosen independently. The
likelihood of a given voting situation ñ = (n1, n2, ..., nt, ..., nm!) is

Prob(ñ = (n1, n2, ..., nt, ..., nm!)) =
n!∏m!
t=1 nt!

× (m!)−n

For more details about the IC assumption, see among others Berg and Lepelley (1994), Gehrlein
and Fishburn (1980b, 1976), Gehrlein and Lepelley (2010, 2017). According to Gehrlein (1979), one
can derive the likelihood of most voting events under the IC assumption by using existing results
on the representations of quadrivariate normal rules as suggested by Plackett (1954).8 Gehrlein-
Fishburn’s technique usually needs a good knowledge of the existing formulas in statistics for the
representation of quadrivariate positive orthants (Abrahamson, 1964, David and Mallows, 1961,
Gehrlein, 1979).

When indifference is allowed, the Impartial Weak Ordering Culture (IWOC) was introduced
by Gehrlein and Fishburn (1980a) as an extension of IC. See Gehrlein and Lepelley (2015, 1998),
Gehrlein and Valognes (2001), Lepelley and Martin (2001), Merlin and Valognes (2004) for a non
exhaustive review of theoretical works taken under IWOC-like assumptions. Recently, Diss et al.
(2010) provided an extension of IC that allows the possibility that voters could have dichotomous
preferences with complete indifference between two of the candidates and also the possibility
of a complete indifference between all three candidates: the Extended Impartial Culture (EIC)
assumption. Let us describes how it works. Consider the 5 classes of preferences described in
Table 1 and let us denote by k1 the probability that a voter’s preference belongs to Class I;
by k2 the probability that a voter’s preference belongs to Class II; by k3 the probability that a
voter’s preference belongs to Class III; by k4 the probability that a voter’s preference belongs
to Class IV and by k5 the probability that a voter’s preference belongs to Class V such that
k1 + k2 + k3 + k4 + k5 = 1. Under EIC, it is assumed that the rankings within a class are equally
likely: pt = k1

6 for t = 1, 2, ..., 6, pt = k2
6 for t = 7, 8, ..., 12, pt = k3

3 for t = 13, 14, 15, pt = k4
3 for

t = 16, 17, 18 and p19 = k5.

8 Assume (X1, X2, · · · , Xn) a vector of n random variables with a nonsingular multivariate normal distribution.
Plackett (1954) evaluated the probability P (X1 > x1, X2 > x2, · · · , Xn > xn); he ended with a reduction formula
of this probability based on the numerical quadrature for n = 3, 4.
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With the 19 preference types of Table 1, the likelihood of a given voting situation ñ =
(n1, n2, ..., nt, ..., n19) is given by

Prob(ñ = (n1, n2, ..., nt, ..., n19)) =
n!∏19
t=1 nt!

×
19∏
t=1

pnt
t

Diss et al. (2010) used EIC to analyze the Condorcet efficiency of AV and all the scoring rules.
They also provided the limiting probability that a Condorcet winner exists as follows9:

P∞Con =
3

4
+

3

2π
arcsin

(
k1 + k2 + k3 + k4

3k1 + 3k2 + 2k3 + 2k4

)

Given that k1 + k2 + k3 + k4 + k5 = 1, we can rewrite P∞Con:

P∞Con(k34, k5) =
3

4
+

3

2π
arcsin

(
1− k5

3− k3 − k4 − 3k5

)
=

3

4
+

3

2π
arcsin

(
1− k5

3− k34 − 3k5

)
with k34 = k3 + k4

3 Probability that PAV elects the Condorcet winner

By computing the Condorcet efficiency of PAV, we first turn to that of AV. Diss et al. (2010)
compute the Condorcet efficiency of AV under EIC assumption by assuming that p19 = 0. They
made this assumption because the preference type of Class V has no impact on the outcome under
AV; this is not the case under PAV where type 19 can really matter. Gehrlein and Lepelley (2015)
provide a representation of the limiting probability of the Condorcet efficiency of AV by assuming
that p19 ≥ 0. In this paper, we provide an alternative form of this representation, then we move
to that of PAV.

Given the voting situation ñ on A = {a, b, c}, assume that candidate a is the Condorcet winner;
this means that aMb and aMb. Using the labels of Table 1 these are respectively equivalent to
Equations 1 and 2.

n1 + n2 − n3 − n4 + n5 − n6 + n7 + n8 − n9 − n10 + n11 − n12 + n14 − n15 + n16 − n17 > 0 (1)

n1 + n2 + n3 − n4 − n5 − n6 + n7 + n8 + n9 − n10 − n11 − n12 + n13 − n15 + n16 − n18 > 0 (2)

Candidate a is also the AV winner means that S(a) > S(b) and S(a) > S(c) which are respectively
equivalent to Equations 3 and 4.

n1 + n2 − n3 − n4 + n8 − n10 + n11 − n12 + n14 − n15 + n16 − n17 > 0 (3)

n1 + n2 − n5 − n6 + n7 + n9 − n10 − n12 + n13 − n15 + n16 − n18 > 0 (4)

So, a voting situation under which AV elects the Condorcet winner is fully described by Equations
1 to 4. In order to get a representation of the Condorcet efficiency of AV, we follow the same
technique as Gehrlein and Fishburn (1978a). So, considering each of Equations 1 to 4, we define
the following four discrete variables:

X1 = 1 : p1 + p2 + p5 + p7 + p8 + p11 + p14 + p16
−1 : p3 − p4 + p6 + p9 + p10 + p12p15 + p17

0 : p13 + p18 + p19

X2 = 1 : p1 + p2 + p3 + p7 + p8 + p9 + p13 + p16
−1 : p4 + p5 + p6 + p10 + p11 + p12 + p15 + p18

0 : p14 + p17 + p19

9 Notice that P∞Con is also the probability that a Condorcet loser exists.
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X3 = 1 : p1 + p2 + p8 + p11 + p14 + p16
−1 : p3 + p4 + p10 + p12 + p15 + p17

0 : p5 + p6 + p7 + p9 + p13 + p18 + p19

X4 = 1 : p1 + p2 + p7 + p9 + p13 + p16
−1 : p5 + p6 + p10 + p12 + p15 + p18

0 : p3 + p4 + p8 + p11 + p14 + p17 + p19

where pi is the probability that a voter who is randomly selected from the electorate is as-
sociated with the ith ranking of Table 1; X1 > 0 indicates that a is preferred to b and X1 < 0
indicates the reverse. Similarly, X2 > 0 indicates that a is preferred to c. X3 and X4 respectively
represent S(a) − S(b) and S(a) − S(c). Equations 1 to 4 fully describe a situation under which
AV elects the Condorcet winner when the average value Xj of each of the Xj (for j = 1, 2, 3, 4)
are positive. According the Gehrlein and Fishburn (1978a,b), the probability of such a situation is
equal to the joint probability X1 > 0, X2 > 0 , X3 > 0 and X4 > 0; when n→∞, it is equivalent
to the quadrivariate normal positive orthant probability Φ(R4) such that Xj

√
n ≥ E(Xj

√
n) and

R4 is a correlation matrix between the variables Xj . The expectation value of Xj is E(Xj) = 0,
the variances (V (Xj) = E(X2

j )) and covariances (Cov(Xj , Xk) = E(XjXk)) are:

V (X1) = V (X2) =
3k1 + 3k2 + 2k3 + 2k4

3
=

3− 3k5 − k34
3

V (X3) = V (X4) =
2(k1 + k2 + k3 + k4)

3
=

2(1− k5)

3

Cov(X1, X2) = Cov(X1, X4) = Cov(X2, X3) = Cov(X3, X4) =
1− k5

3
Cov(X1, X3) = Cov(X2, X4) = 2Cov(X1, X2)

We derive the correlation matrix R4 where the components rjk are rjk = rkj =
Cov(Xj ,Xk)√
V (Xj)V (Xk)

:

R4 =


1 1−k5

3−3k5−k34

√
2(1−k5)

3−3k5−k34

√
1−k5

2(3−3k5−k34)

1
√

1−k5
2(3−3k5−k34)

√
2(1−k5)

3−3k5−k34
1 1

2
1


Gehrlein (1979) has developed a general representation of the orthant probabilities for obtaining

numerical values of Φ(R4) as a function of a series of bounded integrals over a single variable. Given
rjk the correlation terms in the matrix R4, this general representation is defined as follows:

Φ(R4) = f(r12, r13, r14, r23, r24, r34)

=
1

16
+

arcsin(r12) + arcsin(r13) + arcsin(r23)

8π

+
r14
4π2

[∫ 1

0

arccos

(
r24r34z

2−r13r14r24z2+r12r13+r214r23z
2−r12r14r34z2−r23√

(1−r214z2−r213−r234z2+2r13r14r34z2)(1−r224z2−r212−r214z2+2r12r14r24z2)

)
√

1− r214z2
dz

]

+
r24
4π2

[∫ 1

0

arccos

(
r14r34z

2−r14r23r24z2+r12r23+r224r13z
2−r12r24r34z2−r13√

(1−r224z2−r223−r234z2+2r23r24r34z2)(1−r224z2−r212−r214z2+2r12r14r24z2)

)
√

1− r224z2
dz

]

+
r34
4π2

[∫ 1

0

arccos

(
r14r24z

2−r14r23r34z2+r13r23+r234r12z
2−r13r24r34z2−r12√

(1−r224z2−r223−r234z2+2r23r24r34z2)(1−r214z2−r213−r234z2+2r13r14r34z2)

)
√

1− r234z2
dz

]
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Let us define the following quantities:

N1(k34, k5, z) =
1

2
(z + 1)(z − 1)(1− k5 − k34)(3− 3k5 − k34)−

3
2 (2(1− k5))

1
2 ;

N2(k34, k5, z) = −1

4

(
(k34 + 7k5 − 7)z2 − 4k34 − 10k5 + 10

)
(3− 3k5 − k34)−

3
2 (2(1− k5))

1
2 ;

D1(k34, k5, z) =
1

4
(z − 2)(z + 2)(1− k5 − k34)(3k5 + k34 − 3)−1;

D2(k34, k5, z) =

(
16− 32k5 − 12k34 + 16k25 + 12k5k34 + 2k234 + (22k5 + 5k34 − 5k5k34 − 11k25 − 11)z2

)
2(3k5 + k34 − 3)2

;

D3(k34, k5, z) = −1

4

(
(k34 + 7k5 − 7)z2 − 4k34 − 10k5 + 10

)
(3k5 + k34 − 3)−1;

µ(k34, k5, z) = 1 + z2(1− k5)(2(3k5 + k34 − 3))−1;

ν(k34, k5, z) = 1 + 2z2(1− k5)(3k5 + k34 − 3)−1

Then we derive Theorem 1 which gives the representation of the limiting Condorcet efficiency of
AV.

Theorem 1 With three candidates and an infinite number of voters, the Condorcet efficiency of
AV is given by:

CE∞AV(k34, k5) = 3

(
Φ(R4)

P∞Con

)

=

(
3

(
π + 2 arccos

(
k5 − 1

3k5 + k34 − 3

)))−1
×

{
3π

4
+

3

2
arcsin

(
1− k5

3− 3k5 − k34

)

+
3

2
arcsin

(√
2(1− k5)

3− 3k5 − k34

)
+

3

2
arcsin

(
1

2

√
2(1− k5)

3− 3k5 − k34

)

+
3

2π

√
2(1− k5)

3− 3k5 − k34

(∫ 1

0

arccos

(
N1(k34,k5,z)√

D1(k34,k5,z)×D2(k34,k5,z)

)
√
µ(k34, k5, z)

dz

)

+
3

π

√
2(1− k5)

3− 3k5 − k34

(∫ 1

0

arccos

(
N2(k34,k5,z)√

D2(k34,k5,z)×D3(k34,k5,z)

)
√
ν(k34, k5, z)

dz

)

+
3

4

(∫ 1

0

1√
1− z2

4

dz

)}

In Table 3, we report some computed values of CE∞AV(k34, k5). It comes out that given the
proportion of voters of each of the types 3, 4 and 5, AV always elects the Condorcet winner in
more than 75% of the cases. In this table, one can notice that for a given value of one parameter,
the probability tends to increase with the other parameter. Notice that for k5 = 0, we recover the
same figures as Diss et al. (2010); for k34 = 0, we get the same figures obtained by Gehrlein and
Lepelley (2015).

Let us turn to the Condorcet efficiency of PAV. Assume without loss of generality that a is the
PAV winner on A = {a, b, c}. By definition, PAV elects the Condorcet winner when she exists if
one of the following cases holds:

– i) when no candidate receive a majority of approvals, the Condorcet winner is the AV winner;
– ii) the Condorcet winner is among the majority approved candidates.
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Table 3 Some values of the probabilities CE∞AV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k34 ↓
0 0.75720 0.75720 0.75720 0.75720 0.75720 0.75723 0.75723 0.75720 0.75720 0.75720 −
0.1 0.76626 0.76725 0.76860 0.77031 0.77271 0.77604 0.78132 0.79074 0.81249 − −
0.2 0.77604 0.77835 0.78135 0.78525 0.79074 0.79890 0.81249 0.84033 − − −
0.3 0.78684 0.79074 0.79578 0.80265 0.81252 0.82827 0.85815 − − − −
0.4 0.79890 0.80469 0.81249 0.82353 0.84036 0.87078 − − − − −
0.5 0.81252 0.82095 0.83262 0.85005 0.88044 − − − − − −
0.6 0.82824 0.84036 0.85812 0.88818 − − − − − − −
0.7 0.84705 0.86490 0.89448 − − − − − − − −
0.8 0.87081 0.89979 − − − − − − − − −
0.9 0.90435 − − − − − − − − − −
1 1 − − − − − − − − − −

These two cases are disjoints and they fully describe the situations under which PAV always selects
the Condorcet winner when she exists. So, given the voting situation ñ on A = {a, b, c}, we get

– Case 1: when no candidate receive a majority of approvals



aMb
aMb
S(b) < S(a)
S(c) < S(a)
S(a) < n

2
S(b) < n

2
S(c) < n

2

⇒


aMb
aMb
S(b) < S(a)
S(c) < S(a)
S(a) < n

2

⇒


nab − nba > 0
nac − nca > 0
S(a)− S(b) > 0
S(a)− S(c) > 0
−2S(a) + n > 0

The first four inequalities of the final system respectively correspond to Equations 1 to 4. We
derive the last inequality as follows:

−n1−n2+n3+n4+n5+n6−n7−n8−n9+n10−n11+n12−n13−n14+n15−n16+n17+n18−n19 > 0
(5)

So, a voting situation under which no candidate is majority-approved and that PAV elects
the Condorcet winner is fully described by Equations 1 to 5. We proceed as in the proof of
Theorem 1 by defining for each equation, a discrete variable. As we have already defined the
discrete variables X1, X2, X3 and X4 for Equations 1 to 4, it remains for us to define the
discrete variable X5 associated with Equation 5.

X5 = 1 : p3 + p4 + p5 + p6 + p10 + p12 + p15 + p17 + p18
−1 : p1 + p2 + p7 + p8 + p9 + p11 + p13 + p14 + p16 + p19

Following Gehrlein and Fishburn (1978a,b), the probability of such a situation is equal to the
joint probability X1 > 0, X2 > 0 , X3 > 0, X4 > 0 and X5 > 0; when n→∞, it is equivalent
to the quadrivariate normal positive orthant probability Φ(R5) such that Xj

√
n ≥ E(Xj

√
n)

and R5 is a correlation matrix between the variables Xj . It remains for us to compute the
following variances and covariances:

V (X5) = 1

Cov(X1, X5) = Cov(X2, X5) = Cov(X3, X5) = Cov(X4, X5) = −2Cov(X1, X2)
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We derive the correlation matrix R5:

R5 =



1 1−k5
3−3k5−k34 −

2
√
3

3 ( (1−k5)
√
3−3k5−k34

3−3k5−k34 )
√

2(1−k5)
3−3k5−k34

√
1−k5

2(3−3k5−k34)

1 − 2
√
3

3 ( (1−k5)
√
3−3k5−k34

3−3k5−k34 )
√

1−k5
2(3−3k5−k34)

√
2(1−k5)

3−3k5−k34

1 −
√

2(1−k5)
3 −

√
2(1−k5)

3

1 1
2
1


Based on the Boole’s Theorem, Gehrlein (2017, 2014) developed a general representation of
the orthant probabilities for obtaining numerical values of Φ(R5) as a linear combination of
Φ(R4) values, where matrices R4 are obtained from correlation terms in R5.

Φ(R5) =
1

2

(
f(r12, r13, r14, r23, r24, r34)− f(r12, r13,−r15, r23,−r25,−r35) + f(r12,−r14,−r15,−r24,−r25, r45)

−f(−r13,−r14,−r15, r34, r35, r45) + f(r23, r24, r25, r34, r35, r45)

)
Then, the probability of electing the Condorcet winner in this case is equal to 3Φ(R5)

P∞
Con

. For sake

of space, we do not report the expression of Φ(R5) here; This will also be the case throughout
the paper for all the orthant probabilities associated with 5× 5-correlation matrix.

– Case 2: the Condorcet winner is among the majority approved candidates.aMb
aMb
S(a) > n

2

⇒

nab − nba > 0
nac − nca > 0
2S(a)− n > 0

The first two inequalities of this system respectively correspond to Equations 1 and 2; the last
inequality is derive from Equation 5. We then derive R3 the matrix associated with the final
system we obtain

R3 =


1 1−k5

3−3k5−k34

2(1−k5)√
3(3−3k5−k34)

1
2(1−k5)√

3(3−3k5−k34)

1


Following David and Mallows (1961), we derive Φ(R3) the corresponding positive-orthant

probability.

Φ(R3) =
1

8
+

1

4π

[
arcsin

(
1− k5

3− 3k5 − k34

)
+ 2 arcsin

(
2(1− k5)√

3(3− 3k5 − k34)

)]
In this case, the probability of electing the Condorcet winner is equal to 3Φ(R3)

P∞
Con

.

From the above, we derive Theorem 2 which gives the representation of the limiting Condorcet
efficiency of PAV.

Theorem 2 With three candidates and an infinite number of voters, the Condorcet efficiency of
PAV is given by:

CE∞PAV(k34, k5) = 3

(
Φ(R5) + Φ(R3)

P∞Con

)
In Appendix, we provide an external link to the full formula of CE∞PAV(k34, k5). In Table 4 we
display some values of CE∞PAV(k34, k5).

In Table 4, we notice that given a value of k5, the probability tends to increase with k34 and
vice versa; PAV always elects the Condorcet winner in more than 88% of the cases. A comparison
between the figures of Table 4 to those of Table 3 clearly allows us to see the dominance order of
PAV on AV in terms of Condorcet’s efficiency: for all k5 and k34, PAV is more efficient than AV;
moreover, the efficiency of PAV is, in all cases, at least 10% higher than that of AV.
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Table 4 Some values of the probabilities CE∞PAV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k34 ↓

0 0.90229 0.89834 0.89543 0.89309 0.89109 0.88931 0.88767 0.88608 0.88443 0.88256 −
0.1 0.90815 0.90464 0.90233 0.90083 0.90001 0.89995 0.90098 0.90415 0.91341 − −
0.2 0.91436 0.91137 0.90981 0.90935 0.91004 0.91231 0.91737 0.92932 − − −
0.3 0.92095 0.91859 0.91795 0.91884 0.9216 0.92736 0.93979 − − − −
0.4 0.92799 0.92642 0.92696 0.92968 0.9355 0.94759 − − − − −
0.5 0.93557 0.93501 0.93717 0.94259 0.95391 − − − − − −
0.6 0.94381 0.94463 0.94916 0.95941 − − − − − − −
0.7 0.95288 0.95576 0.96452 − − − − − − − −
0.8 0.96316 0.96967 − − − − − − − − −
0.9 0.97555 − − − − − − − − − −
1 1 − − − − − − − − − −

4 Probability that AV and PAV elect the Condorcet loser

Lepelley (1993) showed under an extension of IC assumption that if preferences are single-peaked,
the election of the Condorcet loser is much less frequent with AV than with the Plurality rule.
More recently, Gehrlein et al. (2016) built a framework to compare AV and the Plurality rule and
they found under impartial anonymous culture-like assumptions that AV is much less susceptible
to elect the Condorcet loser than the Plurality rule. Notice that Gehrlein et al. (2016) investigated
different scenarios on voters’ preferences included the one assumed in this paper. In this section,
we first reconsider the likelihood of AV to elect the Condorcet loser when she exists under the EIC
assumption in three-candidate election.

Given the voting situation ñ on A = {a, b, c}, assume that candidate a is the Condorcet loser
and she is the AV winner; this means that bMa, cMa, S(a) > S(b) and S(a) > S(c). Using the
same technique as before, we derive the correlation matrix R4 as follows:

R4 =


1 x
y −

√
2x
y −

√
x
2y

1 −
√

x
2y −

√
2x
y

1 1
2
1



and following Gehrlein (2017, 1979), we derive Theorem 3.
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Theorem 3 With three candidates and an infinite number of voters, the probability that AV elects
the Condorcet loser under the EIC assumption is given by

CL∞AV(k34, k5) = 3

(
Φ(R4)

P∞Con

)

=

(
3

(
π + 2 arccos

(
k5 − 1

3k5 + k34 − 3

)))−1
×

{
3π

4
+

3

2
arcsin

(
1− k5

3− 3k5 − k34

)

+
3

2
arcsin

(√
2(1− k5)

3− 3k5 − k34

)
+

3

2
arcsin

(
1

2

√
2(1− k5)

3− 3k5 − k34

)

− 3

2π

√
2(1− k5)

(3− 3k5 − k34)

(∫ 1

0

arccos

(
N1(k34,k5,z)√

D1(k34,k5,z)×D2(k34,k5,z)

)
√
µ(k34, k5, z)

dz

)

− 3

π

√
2(1− k5)

3− 3k5 − k34

(∫ 1

0

arccos

(
N2(k34,k5,z)√

D2(k34,k5,z)×D3(k34,k5,z)

)
√
ν(k34, k5, z)

dz

)

+
3

4

(∫ 1

0

1√
1− z2

4

dz

)}

Table 5 reports some values of CL∞AV(k34, k5). In this table, one can notice that given the value of
one of the parameters, the probability tends to decrease with the other parameter. We notice that
the probability is maximized (3.709%) when there is no voters who are indifferent between their
two preferred candidates (k34 = 0).

Table 5 Some values of the probabilities CL∞AV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k34 ↓
0 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 0.03709 −
0.1 0.03393 0.03355 0.03311 0.03253 0.03174 0.03063 0.02896 0.02609 0.02013 − −
0.2 0.03063 0.02989 0.02896 0.02775 0.02609 0.02374 0.02013 0.01379 − − −
0.3 0.02724 0.02609 0.02464 0.02272 0.02013 0.01637 0.01051 − − − −
0.4 0.02374 0.02216 0.02013 0.01746 0.01379 0.00847 − − − − −
0.5 0.02013 0.01805 0.01541 0.01193 0.0071 − − − − − −
0.6 0.01637 0.01379 0.01051 0.00612 − − − − − − −
0.7 0.01249 0.00938 0.00538 − − − − − − − −
0.8 0.00847 0.00475 − − − − − − − − −
0.9 0.00436 − − − − − − − − − −
1 − − − − − − − − − − −

Let us now turn to the probability that PAV elects the Condorcet loser in order to envisage
the comparison with AV. By definition, there are two cases under which the Condorcet loser may
be elected when she exists. These two cases are disjoints and they fully describe the situations
under which PAV selects the Condorcet loser when she exists. So, given the voting situation ñ on
A = {a, b, c}, by assuming that candidate a is the Condorcet loser, we get

– Case 1: if no candidate is majority-approved
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bMa
cMa
S(b) < S(a)
S(c) < S(a)
S(a) < n

2
S(b) < n

2
S(c) < n

2

⇒


bMa
cMa
S(b) < S(a)
S(c) < S(a)
S(a) < n

2

⇒


nba − nab > 0
nca − nac > 0
S(a)− S(b) > 0
S(a)− S(c) > 0
−2S(a) + n > 0

Following the same technique as before, we derive the correlation matrix R̂5:

R̂5 =



1 1−k5
3−3k5−k34 −

√
2(1−k5)

3−3k5−k34 −
√

1−k5
2(3−3k5−k34)

2(1−k5)√
3(3−3k5−k34)

1 −
√

1−k5
2(3−3k5−k34) −

√
2(1−k5)

3−3k5−k34
2(1−k5)√

3(3−3k5−k34)

1 1
2 −

√
6(1−k5)

3

1 −
√

6(1−k5)
3

1


– Case 2: if only the Condorcet loser receives a majority of approvals


bMa
cMa
S(b) < n

2
S(c) < n

2
S(a) > n

2

⇒


nba − nab > 0
nca − nac > 0
2S(a)− n > 0
−2S(b) + n > 0
−2S(c) + n > 0

Following the same technique as before, we derive the correlation matrix R̃5:

R̃5 =


1 1−k5

3−3k5−k34 −
2(1−k5)√

3(3−3k5−k34)
0 − 2(1−k5)√

3(3−3k5−k34)

1 0 − 2(1−k5)√
3(3−3k5−k34)

− 2(1−k5)√
3(3−3k5−k34)

1 −3+4k5
3

3−4k5
3

1 3−4k5
3
1


We then derive Theorem 4 which gives the representation of the limiting Condorcet efficiency

of PAV.

Theorem 4 With three candidates and an infinite number of voters, the probability that PAV
elects the Condorcet loser when she exists is given by:

CL∞PAV(k34, k5) = 3

(
Φ(R̂5) + Φ(R̃5)

P∞Con

)

In Appendix, we provide an external link to the full formula of CL∞PAV(k34, k5). Table 6 displays
some values of CL∞PAV(k34, k5) which teach us that PAV elects the Condorcet loser in less than
1.9%. We also notice that given the value of one of the parameters, the probability tends to
decrease with the other parameter. More, the probability tends to be maximized when there is no
voters who are indifferent between their two preferred candidates (k34 = 0).

The comparison between the figures of Table 6 to those of Table 5 highlights at which extend
PAV is less likely to elect the Condorcet loser than AV: the propensity of electing the Condorcet
loser under AV is quite the double of that under PAV for all couple of values (k5, k34).
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Table 6 Some values of the probabilities CL∞PAV(k34, k5)

k5 → 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k34 ↓

0 0.01655 0.01701 0.01729 0.01750 0.01766 0.01780 0.01792 0.01804 0.01815 0.01828 −
0.1 0.01515 0.01540 0.01545 0.01535 0.01513 0.01473 0.01402 0.01272 0.00988 − −
0.2 0.01370 0.01374 0.01354 0.01313 0.01246 0.01144 0.00977 0.00675 − − −
0.3 0.01221 0.01203 0.01154 0.01078 0.00965 0.00791 0.00512 − − − −
0.4 0.01067 0.01024 0.00946 0.00832 0.00665 0.00413 − − − − −
0.5 0.00907 0.00839 0.00729 0.00572 0.00345 − − − − − −
0.6 0.00742 0.00645 0.00500 0.00296 − − − − − − −
0.7 0.00570 0.00442 0.00259 − − − − − − − −
0.8 0.00392 0.00229 − − − − − − − − −
0.9 0.00202 − − − − − − − − − −
1 − − − − − − − − − − −

5 Conclusion

In this paper, we focused on the Preference Approval Voting (PAV) which is a voting rule com-
bining approval and preferences. This rule was first introduced by Brams and Sanver (2009). As
nothing is known on the propensity of this rule of electing the Condorcet winner/loser when she
exists, the main objective of the paper was to fill this void. Under the extended impartial culture
(EIC) assumption, we have provided for in three-candidate elections, representation of the limiting
probability that PAV elects the Condorcet winner when she exists. In addition to the analysis of
Diss et al. (2010) and Gehrlein and Lepelley (2015), we have provided another representation of
the limiting Condorcet efficiency of Approval Voting (AV) under EIC. By definition, PAV is built
to be more Condorcet-efficient than AV. Our analysis has helped us to highlight at which extend
PAV performs better than AV on the Condorcet criterion. It comes out that AV always elects the
Condorcet winner in more than 75% of the cases, while PAV does in more than 88% of the cases
and that the efficiency of PAV is, in all cases, at least 10% higher than that of AV.

We also focused, in three-candidate elections, on the probability of electing the Condorcet loser
when she exists. As part of our analysis, we have the representation of the limiting probability for
AV and also for PAV. For both rules, it comes out that the probability is maximized when there
is no voters who are indifferent between their two preferred candidates. By definition, we know
that PAV is less susceptible to elect the Condorcet loser than AV in all the cases. We noted that
in all the cases, the propensity of electing the Condorcet loser under AV is quite the double of
that under PAV.

Appendix

For space constraints, here are the links to:

– The full representation of CE∞PAV(k34, k5), the limiting probability that PAV elects the Con-
dorcet winner when she exists.

https://www.dropbox.com/s/vfvgoyg8k391bnz/Full%20CE_PAV.pdf?dl=0

– The full representation of CL∞PAV(k34, k5), the limiting probability that PAV elects the Con-
dorcet loser when she exists.

https://www.dropbox.com/s/k1og7q1pgbh16o6/Full%20CL_PAV.pdf?dl=0

https://www.dropbox.com/s/vfvgoyg8k391bnz/Full%20CE_PAV.pdf?dl=0
https://www.dropbox.com/s/k1og7q1pgbh16o6/Full%20CL_PAV.pdf?dl=0
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