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Under Approval Voting (AV), each voter just distinguishes the candidates he approves of from those appearing as unacceptable. The Preference Approval Voting (PAV) is a hybrid version of the approval voting first introduced by Brams and Sanver (2009). Under PAV, each voter ranks all the candidates and then indicates the ones he approves. In this paper, we provide analytical representations for the probability that PAV elects the Condorcet winner when she exists in three-candidate elections with large electorates. We also provide analytical representations for the probability that PAV elects the Condorcet loser. We perform our analysis by assuming the assumption of the Extended Impartial Culture. This analysis allows us to measure at which extend, PAV performs better than AV both on the propensity of electing the Condorcet loser and on that of the non-election of the Condorcet loser.

Introduction

Popularized by [START_REF] Brams | Approval Voting[END_REF], the Approval Voting (AV) rule is a voting system under which each voter approves (any number of) candidates that he considers as acceptable and the winner is the most-approved candidate. This rule has made (and continues to be) the subject of numerous research works in political science, economics and computer science. To have a quick overview of these works, the reader may refer to the books of [START_REF] Brams | Mathematics and Democracy : Designing Better Voting and Fair-Division Procedures[END_REF], [START_REF] Brams | Approval Voting[END_REF] and to the Handbook of Approval Voting edited by [START_REF] Laslier | Handbook on Approval Voting[END_REF]. Under AV, there is no need to rank the candidates as under the scoring rules 1 . This absence of rankings gave rise to a controversy between Saari and van Newenhizen (1988a,b) and Brams et al. (1988a,b). Saari and van Newenhizen (1988b) blame AV of hiding the real preferences of the voters which can be strict between the candidates approved by a voter. [START_REF] Brams | Voting systems that combine approval and preferences[END_REF] may have brought what appears as a possible response to this criticism by introducing the Preference Approval Voting (PAV). Under PAV, each voter ranks all the candidates then indicates the ones he approves. 2 According to [START_REF] Brams | Voting systems that combine approval and preferences[END_REF], the winner under PAV is determined by two rules:

Rule 1 : The PAV winner is the AV winner if 3 i. no candidate receives a majority of approval votes (i.e approved by more than half of the electorate) ii. exactly one candidate receives a majority of approval votes.

Rule 2 : In the case that two or more candidates receive a majority of approval votes, i. The PAV winner is the ones among these candidates who is preferred by a majority to every other majority-approved candidate. ii. In the case of a cycle among the majority-approved candidates, then the AV winner among them is the PAV winner. [START_REF] Brams | Voting systems that combine approval and preferences[END_REF] noticed that it is Rule 2 that clearly differentiate PAV from AV. They pointed out that for some situations where a Condorcet winner exists, this candidate may not be a PAV winner under each of the subcases of Rule 1 and Rule 2. When she exists, a Condorcet winner is a candidate who defeats each of the other candidates in pairwise comparisons. We know that AV always elects the Condorcet winner when she exists given that voters' preferences are dichotomous [START_REF] Ju | Collective choices for simple preferences[END_REF][START_REF] Xu | Axiomatizations of approval voting[END_REF]. This is no more the case when the voters' true preferences are assumed to be strict orderings [START_REF] Gehrlein | The Condorcet efficiency of approval voting and the probability of electing the Condorcet loser[END_REF] or when indifference are allowed in the voters' true preferences [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF]. For large electorates, [START_REF] Gehrlein | The Condorcet efficiency of approval voting and the probability of electing the Condorcet loser[END_REF] found that AV has the same Condorcet efficiency (probability of electing the Condorcet winner when she exists) as both the Plurality rule and the Antiplurality rule. 4 Going from a more general framework, [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF] found that for large electorates and three candidates, AV performs better that both the Plurality rule and the Antiplurality rule on the Condorcet efficiency; they also found some scenarios under which AV performs better than the Borda rule. Their results were strongly reinforced by [START_REF] Gehrlein | The Condorcet Efficiency Advantage that Voter Indifference Gives to Approval Voting Over Some Other Voting Rules[END_REF].

As just stated, many works have been focused on the Condorcet efficiency of AV while nothing is known about PAV as no work has been done on the subject. Thus, one of objective of this paper is to try to fill this void for voting situations with three candidates by computing the Condorcet efficiency of PAV when indifference are allowed as in [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF]. So, we provide a representation of the limiting probability of the Condorcet efficiency of PAV. All the computations are done under the extended impartial culture assumption introduced by [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF]; this assumption will be defined later. By definition, it is obvious that PAV performs better than AV on electing the Condorcet winner when she exists. It would be interesting to measure the extent of this dominance. In order to better reflect this, we first provide a more general representation of the limiting probability of the Condorcet efficiency of AV. Then, the representation provided by [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF] comes as a particular case of ours.

Some works have looked on the probability that AV elects the Condorcet loser when she exists. A Condorcet loser is a candidate, when she exists, who is defeated by each of the other candidates in pairwise comparisons. [START_REF] Gehrlein | The Condorcet efficiency of approval voting and the probability of electing the Condorcet loser[END_REF] showed that with more than three candidates and under the impartial culture assumption, AV is more likely to elect the Condorcet loser than the Plurality rule. For three-candidate elections, they showed that AV has the same probability of electing the Condorcet loser as both the Plurality rule and the Antiplurality rule. This result is a bit challenged by a recent paper by [START_REF] Moyouwou | A note on Approval Voting and electing the Condorcet loser[END_REF]. Using impartial anonymous culturelike assumptions5 and considering a range of scenarios, [START_REF] Moyouwou | A note on Approval Voting and electing the Condorcet loser[END_REF] concluded that in three-candidate elections, AV is less likely to elect the Condorcet loser than both the Plurality rule and the Antiplurality rule. By definition of PAV, it comes that it is less likely to elect the Condorcet loser when she exists. The second objective of this paper is to focus on the probability that PAV elects the Condorcet loser when she exists. We provide for AV and for PAV, analytical representations of the limiting probability of electing the Condorcet loser when she exists under the extended impartial culture assumption. By doing so, we will highlight the extent of dominance of PAV on AV

The rest of the paper is structured as follows: Section 2 is devoted to basic notations and definitions. Section 3 presents our results on the Condorcet efficiency. Section 4 deals with our results on the probability of electing the Condorcet loser. Section 5 concludes.

Preliminaries

Preferences in three-candidate elections

Let N be a set of n voters (n ≥ 2) and A = {a, b, c} a set of three candidates. We assume that voters rank all the candidates, indifference is allowed and they indicate which candidates they approve by underlining the names of the candidates6 . So, there are 19 possible types of preferences. Following [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF], these 19 types of preferences can be partitioned into five classes of preferences:

-Class I: this class is made of voters with strict rankings and who only approve their top ranked candidates. These voters are labelled 1 to 6 in Table 1. -Class II: voters in this class also have strict ranking and they approve their top two ranked candidates. These types of voters are labelled 7 to 12 in Table 1. -Class III: in this class, voters are indifferent between their two preferred candidates or do not consider the difference significant enough to reveal their true strict preference. These types of voters are labelled 13 to 15 in Table 1. -Class IV: Voters rank one candidate strictly above the two other between whom they are indifferent. These types of voters are labelled 16 to 17 in Table 1. -Class V: the voters of this class are indifferent between the three candidates, thus they approve all the three candidates(type 19).

If we denote by n t the number of voter of type t, a voting situation is an 19-tuple ñ = (n 1 , n 2 , . . . , n t , . . . , n 19 ) that indicates the total number n t of voters casting each type of preferences such that 19 t=1 n t = n. We denote by p t the probability that a voter chooses the preference type t such that 19 t=1 p t = 1. In Table 2, S(a) denotes the AV score candidate a given the labels of Table 1.

Given a, b ∈ A, we denote by n ab the total number of voters who strictly prefer a to b. If n ab > n ba , we say that a majority dominates candidate b; or equivalently, a beats b in a pairwise Table 2 The AV score of the candidates

S(a) = n 1 + n 2 + n 7 + n 8 + n 9 + n 11 + n 13 + n 14 + n 16 + n 19 S(b) = n 3 + n 4 + n 7 + n 9 + n 10 + n 12 + n 13 + n 15 + n 17 + n 19 S(c) = n 5 + n 6 + n 8 + n 10 + n 11 + n 12 + n 14 + n 15 + n 18 + n 19
majority voting. In such a case, we will simply write aMb. Candidate a is said to be the Condorcet winner (resp. the Condorcet loser ) if for all b ∈ A \ {a}, aMb (resp. bMa). If for a given voting situation we get aMb, bMc and cMa, this describes a majority cycle.

PAV, the Condorcet winner and the Condorcet loser

By the definition of PAV, it is obvious that with three candidates, if there is a Condorcet winner who belongs to the subset of majority-approved candidates, she is always elected if Rule 2i applies while rule 2ii will never apply. So, Rule 1i and 1ii can fail to elect the Condorcet winner. It is also obvious that if there is a Condorcet loser in a three-candidate election, she cannot be elected under Rule 2i and 2ii; so, PAV may elect the Condorcet loser only when Rule 1i or 1ii apply.

In order to motivate the paper, let us take the following two voting profiles7 each with 9 voters V i (i = 1..9) in order to illustrate that in three-candidate elections, PAV can fail to select the Condorcet winner when she exists (under Rules 1i, 1ii and 2i) and that it can select the Condorcet loser (under Rules 1i and 1ii). The profiles we just used illustrate that under some voting situations, PAV can fail to elect the Condorcet winner when she exists and that it can elect the Condorcet loser when she exists. These two behaviors of PAV are just rare oddities or are a common occurrence? The aim of this paper is then to provide an answer to this question. So, we compute the Condorcet efficiency of PAV and its probability of electing the Condorcet loser for voting situations with three candidates. Before starting this task, we need to define a probability model for this.

Profile 1 V 1 :a c b V 2 :a c b V 3 :b c a V 4 :b c a V 5 :c a b V 6 :c a b V 7 :b a c V 8 :c b a V 9 :a b c Profile 2 V 1 :a c b V 2 :b a c V 3 :b c a V 4 :b c a V 5 :c a b V 6 :c a b V 7 :c a b V 8 : a b c V 9 :

The probability model: the Extended Impartial Culture assumption

The Impartial Culture (IC) assumption, first introduced in the social choice literature by [START_REF] Gehrlein | The probability of the paradox of voting: A computable solution[END_REF], is one of the hypothesis used in the social choice literature when computing the likelihood of voting events. Under IC, it is assumed that each voter chooses her preference according to a uniform probability distribution. When only strict ranking are allowed with m candidates, IC gives a probability 1 m! for each of the m! rankings to be chosen independently. The likelihood of a given voting situation ñ = (n 1 , n 2 , ..., n t , ..., n m! ) is

P rob(ñ = (n 1 , n 2 , ..., n t , ..., n m! )) = n! m! t=1 n t ! × (m!) -n
For more details about the IC assumption, see among others [START_REF] Berg | On probability models in voting theory[END_REF], Gehrlein andFishburn (1980b, 1976), Gehrlein andLepelley (2010, 2017). According to [START_REF] Gehrlein | A representation for quadrivariate normal positive orthant probabilities[END_REF], one can derive the likelihood of most voting events under the IC assumption by using existing results on the representations of quadrivariate normal rules as suggested by [START_REF] Plackett | A Reduction Formula for Normal Multivariate Integrals[END_REF]. 8 Gehrlein-Fishburn's technique usually needs a good knowledge of the existing formulas in statistics for the representation of quadrivariate positive orthants [START_REF] Abrahamson | Orthant Probabilities for the Quadrivariate Normal Distribution[END_REF][START_REF] Mallows | The variance of Spearman's rho in normal samples[END_REF][START_REF] Gehrlein | A representation for quadrivariate normal positive orthant probabilities[END_REF].

When indifference is allowed, the Impartial Weak Ordering Culture (IWOC) was introduced by Gehrlein and Fishburn (1980a) as an extension of IC. See Gehrlein andLepelley (2015, 1998), [START_REF] Gehrlein | Condorcet efficiency: a preference for indifference[END_REF], [START_REF] Lepelley | Condorcet's paradox for weak preference orderings[END_REF], [START_REF] Merlin | The impact of indifferent voters on the likelihood of some voting paradoxes[END_REF] for a non exhaustive review of theoretical works taken under IWOC-like assumptions. Recently, [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF] provided an extension of IC that allows the possibility that voters could have dichotomous preferences with complete indifference between two of the candidates and also the possibility of a complete indifference between all three candidates: the Extended Impartial Culture (EIC) assumption. Let us describes how it works. Consider the 5 classes of preferences described in Table 1 and let us denote by k 1 the probability that a voter's preference belongs to Class I; by k 2 the probability that a voter's preference belongs to Class II; by k 3 the probability that a voter's preference belongs to Class III; by k 4 the probability that a voter's preference belongs to Class IV and by k 5 the probability that a voter's preference belongs to Class V such that 

k 1 + k 2 + k 3 + k 4 + k 5 = 1.
P ∞ Con = 3 4 + 3 2π arcsin k 1 + k 2 + k 3 + k 4 3k 1 + 3k 2 + 2k 3 + 2k 4 Given that k 1 + k 2 + k 3 + k 4 + k 5 = 1, we can rewrite P ∞ Con : P ∞ Con (k 34 , k 5 ) = 3 4 + 3 2π arcsin 1 -k 5 3 -k 3 -k 4 -3k 5 = 3 4 + 3 2π arcsin 1 -k 5 3 -k 34 -3k 5 with k 34 = k 3 + k 4
3 Probability that PAV elects the Condorcet winner

By computing the Condorcet efficiency of PAV, we first turn to that of AV. [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF] compute the Condorcet efficiency of AV under EIC assumption by assuming that p 19 = 0. They made this assumption because the preference type of Class V has no impact on the outcome under AV; this is not the case under PAV where type 19 can really matter. [START_REF] Gehrlein | The Condorcet Efficiency Advantage that Voter Indifference Gives to Approval Voting Over Some Other Voting Rules[END_REF] provide a representation of the limiting probability of the Condorcet efficiency of AV by assuming that p 19 ≥ 0. In this paper, we provide an alternative form of this representation, then we move to that of PAV.

Given the voting situation ñ on A = {a, b, c}, assume that candidate a is the Condorcet winner; this means that aMb and aMb. Using the labels of Table 1 these are respectively equivalent to Equations 1 and 2. n 1 + n 2 -n 3 -n 4 + n 5 -n 6 + n 7 + n 8 -n 9 -n 10 + n 11 -n 12 + n 14 -n 15 + n 16 -n 17 > 0 (1)

n 1 + n 2 + n 3 -n 4 -n 5 -n 6 + n 7 + n 8 + n 9 -n 10 -n 11 -n 12 + n 13 -n 15 + n 16 -n 18 > 0 (2)
Candidate a is also the AV winner means that S(a) > S(b) and S(a) > S(c) which are respectively equivalent to Equations 3 and 4.

n 1 + n 2 -n 3 -n 4 + n 8 -n 10 + n 11 -n 12 + n 14 -n 15 + n 16 -n 17 > 0 (3) n 1 + n 2 -n 5 -n 6 + n 7 + n 9 -n 10 -n 12 + n 13 -n 15 + n 16 -n 18 > 0 (4)
So, a voting situation under which AV elects the Condorcet winner is fully described by Equations 1 to 4. In order to get a representation of the Condorcet efficiency of AV, we follow the same technique as Gehrlein and Fishburn (1978a). So, considering each of Equations 1 to 4, we define the following four discrete variables: where p i is the probability that a voter who is randomly selected from the electorate is associated with the i th ranking of Table 1; X 1 > 0 indicates that a is preferred to b and X 1 < 0 indicates the reverse. Similarly, X 2 > 0 indicates that a is preferred to c. X 3 and X 4 respectively represent S(a) -S(b) and S(a) -S(c). Equations 1 to 4 fully describe a situation under which AV elects the Condorcet winner when the average value X j of each of the X j (for j = 1, 2, 3, 4) are positive. According the Gehrlein and Fishburn (1978a,b), the probability of such a situation is equal to the joint probability X 1 > 0, X 2 > 0 , X 3 > 0 and X 4 > 0; when n → ∞, it is equivalent to the quadrivariate normal positive orthant probability Φ(R 4 ) such that X j √ n ≥ E(X j √ n) and R 4 is a correlation matrix between the variables X j . The expectation value of X j is E(X j ) = 0, the variances (V (X j ) = E(X 2 j )) and covariances (Cov(X j , X k ) = E(X j X k )) are:

X 1 = 1 : p 1 +
V (X 1 ) = V (X 2 ) = 3k 1 + 3k 2 + 2k 3 + 2k 4 3 = 3 -3k 5 -k 34 3 V (X 3 ) = V (X 4 ) = 2(k 1 + k 2 + k 3 + k 4 ) 3 = 2(1 -k 5 ) 3 Cov(X 1 , X 2 ) = Cov(X 1 , X 4 ) = Cov(X 2 , X 3 ) = Cov(X 3 , X 4 ) = 1 -k 5 3 Cov(X 1 , X 3 ) = Cov(X 2 , X 4 ) = 2Cov(X 1 , X 2 )
We derive the correlation matrix R 4 where the components r jk are r jk = r kj = [START_REF] Gehrlein | A representation for quadrivariate normal positive orthant probabilities[END_REF] has developed a general representation of the orthant probabilities for obtaining numerical values of Φ(R 4 ) as a function of a series of bounded integrals over a single variable. Given r jk the correlation terms in the matrix R 4 , this general representation is defined as follows:

Cov(Xj ,X k ) √ V (Xj )V (X k ) : R 4 =       1 1-k5 3-3k5-k34 2(1-k5) 3-3k5-k34 1-k5 2(3-3k5-k34) 1 1-k5 2(3-3k5-k34) 2(1-k5) 3-3k5-k34 1 1 2 1      
Φ(R 4 ) = f (r 12 , r 13 , r 14 , r 23 , r 24 , r 34 ) = 1 16 + arcsin(r 12 ) + arcsin(r 13 ) + arcsin(r 23 ) 8π

+ r 14 4π 2 1 0 arccos r24r34z 2 -r13r14r24z 2 +r12r13+r 2 14 r23z 2 -r12r14r34z 2 -r23 √ (1-r 2 14 z 2 -r 2 13 -r 2 34 z 2 +2r13r14r34z 2 )(1-r 2 24 z 2 -r 2 12 -r 2 14 z 2 +2r12r14r24z 2 ) 1 -r 2 14 z 2 dz + r 24 4π 2 1 0 arccos r14r34z 2 -r14r23r24z 2 +r12r23+r 2 24 r13z 2 -r12r24r34z 2 -r13 √ (1-r 2 24 z 2 -r 2 23 -r 2 34 z 2 +2r23r24r34z 2 )(1-r 2 24 z 2 -r 2 12 -r 2 14 z 2 +2r12r14r24z 2 ) 1 -r 2 24 z 2 dz + r 34 4π 2 1 0 arccos r14r24z 2 -r14r23r34z 2 +r13r23+r 2 34 r12z 2 -r13r24r34z 2 -r12 √ (1-r 2 24 z 2 -r 2 23 -r 2 34 z 2 +2r23r24r34z 2 )(1-r 2 14 z 2 -r 2 13 -r 2 34 z 2 +2r13r14r34z 2 ) 1 -r 2 34 z 2 dz
Let us define the following quantities:

N 1 (k 34 , k 5 , z) = 1 2 (z + 1)(z -1)(1 -k 5 -k 34 )(3 -3k 5 -k 34 ) -3 2 (2(1 -k 5 )) 1 2 ; N 2 (k 34 , k 5 , z) = - 1 4 (k 34 + 7k 5 -7)z 2 -4k 34 -10k 5 + 10 (3 -3k 5 -k 34 ) -3 2 (2(1 -k 5 )) 1 2 ; D 1 (k 34 , k 5 , z) = 1 4 (z -2)(z + 2)(1 -k 5 -k 34 )(3k 5 + k 34 -3) -1 ; D 2 (k 34 , k 5 , z) = 16 -32k 5 -12k 34 + 16k 2 5 + 12k 5 k 34 + 2k 2 34 + (22k 5 + 5k 34 -5k 5 k 34 -11k 2 5 -11)z 2 2(3k 5 + k 34 -3) 2 ; D 3 (k 34 , k 5 , z) = - 1 4 (k 34 + 7k 5 -7)z 2 -4k 34 -10k 5 + 10 (3k 5 + k 34 -3) -1 ; µ(k 34 , k 5 , z) = 1 + z 2 (1 -k 5 )(2(3k 5 + k 34 -3)) -1 ; ν(k 34 , k 5 , z) = 1 + 2z 2 (1 -k 5 )(3k 5 + k 34 -3) -1
Then we derive Theorem 1 which gives the representation of the limiting Condorcet efficiency of AV.

Theorem 1 With three candidates and an infinite number of voters, the Condorcet efficiency of AV is given by:

CE ∞ AV (k 34 , k 5 ) = 3 Φ(R 4 ) P ∞ Con = 3 π + 2 arccos k 5 1 3k 5 + k 34 -3 -1 × 3π 4 + 3 2 arcsin 1 -k 5 3 -3k 5 -k 34 + 3 2 arcsin 2(1 -k 5 ) 3 -3k 5 -k 34 + 3 2 arcsin 1 2 2(1 -k 5 ) 3 -3k 5 -k 34 + 3 2π 2(1 -k 5 ) 3 -3k 5 -k 34 1 0 arccos N1(k34,k5,z) √ D1(k34,k5,z)×D2(k34,k5,z) µ(k 34 , k 5 , z) dz + 3 π 2(1 -k 5 ) 3 -3k 5 -k 34 1 0 arccos N2(k34,k5,z) √ D2(k34,k5,z)×D3(k34,k5,z) ν(k 34 , k 5 , z) dz + 3 4 1 0 1 1 -z 2 4 dz
In Table 3, we report some computed values of CE ∞ AV (k 34 , k 5 ). It comes out that given the proportion of voters of each of the types 3, 4 and 5, AV always elects the Condorcet winner in more than 75% of the cases. In this table, one can notice that for a given value of one parameter, the probability tends to increase with the other parameter. Notice that for k 5 = 0, we recover the same figures as [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF]; for k 34 = 0, we get the same figures obtained by [START_REF] Gehrlein | The Condorcet Efficiency Advantage that Voter Indifference Gives to Approval Voting Over Some Other Voting Rules[END_REF].

Let us turn to the Condorcet efficiency of PAV. Assume without loss of generality that a is the PAV winner on A = {a, b, c}. By definition, PAV elects the Condorcet winner when she exists if one of the following cases holds:

i) when no candidate receive a majority of approvals, the Condorcet winner is the AV winner; ii) the Condorcet winner is among the majority approved candidates. 

- - - - - - - - 0.9 0.90435 - - - - - - - - - - 1 1 - - - - - - - - - -
These two cases are disjoints and they fully describe the situations under which PAV always selects the Condorcet winner when she exists. So, given the voting situation ñ on A = {a, b, c}, we get -Case 1: when no candidate receive a majority of approvals

                   aMb aMb S(b) < S(a) S(c) < S(a) S(a) < n 2 S(b) < n 2 S(c) < n 2 ⇒            aMb aMb S(b) < S(a) S(c) < S(a) S(a) < n 2 ⇒            n ab -n ba > 0 n ac -n ca > 0 S(a) -S(b) > 0 S(a) -S(c) > 0 -2S(a) + n > 0
The first four inequalities of the final system respectively correspond to Equations 1 to 4. We derive the last inequality as follows:

-n 1 -n 2 +n 3 +n 4 +n 5 +n 6 -n 7 -n 8 -n 9 +n 10 -n 11 +n 12 -n 13 -n 14 +n 15 -n 16 +n 17 +n 18 -n 19 > 0 (5) So, a voting situation under which no candidate is majority-approved and that PAV elects the Condorcet winner is fully described by Equations 1 to 5. We proceed as in the proof of Theorem 1 by defining for each equation, a discrete variable. As we have already defined the discrete variables X 1 , X 2 , X 3 and X 4 for Equations 1 to 4, it remains for us to define the discrete variable X 5 associated with Equation 5. Following Gehrlein and Fishburn (1978a,b), the probability of such a situation is equal to the joint probability X 1 > 0, X 2 > 0 , X 3 > 0, X 4 > 0 and X 5 > 0; when n → ∞, it is equivalent to the quadrivariate normal positive orthant probability Φ(R 5 ) such that X j √ n ≥ E(X j √ n) and R 5 is a correlation matrix between the variables X j . It remains for us to compute the following variances and covariances:

X
V (X 5 ) = 1 Cov(X 1 , X 5 ) = Cov(X 2 , X 5 ) = Cov(X 3 , X 5 ) = Cov(X 4 , X 5 ) = -2Cov(X 1 , X 2 )
We derive the correlation matrix R 5 :

R 5 =          1 1-k5 3-3k5-k34 -2 √ 3 3 ( (1-k5) √ 3-3k5-k34 3-3k5-k34 ) 2(1-k5) 3-3k5-k34 1-k5 2(3-3k5-k34) 1 -2 √ 3 3 ( (1-k5) √ 3-3k5-k34 3-3k5-k34 ) 1-k5 2(3-3k5-k34) 2(1-k5) 3-3k5-k34 1 -2(1-k5) 3 -2(1-k5) 3 1 1 2 1         
Based on the Boole's Theorem, [START_REF] Gehrlein | Computing Multivariate Normal Positive Orthant Probabilities with 4 and 5 Variables[END_REF]Gehrlein ( , 2014) ) developed a general representation of the orthant probabilities for obtaining numerical values of Φ(R 5 ) as a linear combination of Φ(R 4 ) values, where matrices R 4 are obtained from correlation terms in R 5 .

Φ(R 5 ) = 1 2 f (r 12 , r 13 , r 14 , r 23 , r 24 , r 34 ) -f (r 12 , r 13 , -r 15 , r 23 , -r 25 , -r 35 ) + f (r 12 , -r 14 , -r 15 , -r 24 , -r 25 , r 45 )

-f (-r 13 , -r 14 , -r 15 , r 34 , r 35 , r 45 ) + f (r 23 , r 24 , r 25 , r 34 , r 35 , r 45 )

Then, the probability of electing the Condorcet winner in this case is equal to 3Φ(R5) P ∞

Con

. For sake of space, we do not report the expression of Φ(R 5 ) here; This will also be the case throughout the paper for all the orthant probabilities associated with 5 × 5-correlation matrix.

-Case 2: the Condorcet winner is among the majority approved candidates.

   aMb aMb S(a) > n 2 ⇒    n ab -n ba > 0 n ac -n ca > 0 2S(a) -n > 0
The first two inequalities of this system respectively correspond to Equations 1 and 2; the last inequality is derive from Equation 5. We then derive R 3 the matrix associated with the final system we obtain

R 3 =     1 1-k 5 3-3k 5 -k 34 2(1-k 5 ) √ 3(3-3k 5 -k 34 ) 1 2(1-k 5 ) √ 3(3-3k 5 -k 34 ) 1    
Following David and [START_REF] Mallows | The variance of Spearman's rho in normal samples[END_REF], we derive Φ(R 3 ) the corresponding positive-orthant probability.

Φ(R 3 ) = 1 8 + 1 4π arcsin 1 -k 5 3 -3k 5 -k 34 + 2 arcsin 2(1 -k 5 ) 3(3 -3k 5 -k 34 )
In this case, the probability of electing the Condorcet winner is equal to 3Φ(R3)

P ∞ Con .
From the above, we derive Theorem 2 which gives the representation of the limiting Condorcet efficiency of PAV. Theorem 2 With three candidates and an infinite number of voters, the Condorcet efficiency of PAV is given by:

CE ∞ PAV (k 34 , k 5 ) = 3 Φ(R 5 ) + Φ(R 3 ) P ∞

Con

In Appendix, we provide an external link to the full formula of CE ∞ PAV (k 34 , k 5 ). In Table 4 we display some values of CE ∞ PAV (k 34 , k 5 ). In Table 4, we notice that given a value of k 5 , the probability tends to increase with k 34 and vice versa; PAV always elects the Condorcet winner in more than 88% of the cases. A comparison between the figures of Table 4 to those of Table 3 clearly allows us to see the dominance order of PAV on AV in terms of Condorcet's efficiency: for all k 5 and k 34 , PAV is more efficient than AV; moreover, the efficiency of PAV is, in all cases, at least 10% higher than that of AV. Theorem 4 With three candidates and an infinite number of voters, the probability that PAV elects the Condorcet loser when she exists is given by:

CL ∞ PAV (k 34 , k 5 ) = 3 Φ( R 5 ) + Φ( R 5 ) P ∞

Con

In Appendix, we provide an external link to the full formula of CL ∞ PAV (k 34 , k 5 ). Table 6 displays some values of CL ∞ PAV (k 34 , k 5 ) which teach us that PAV elects the Condorcet loser in less than 1.9%. We also notice that given the value of one of the parameters, the probability tends to decrease with the other parameter. More, the probability tends to be maximized when there is no voters who are indifferent between their two preferred candidates (k 34 = 0).

The comparison between the figures of Table 6 to those of Table 5 highlights at which extend PAV is less likely to elect the Condorcet loser than AV: the propensity of electing the Condorcet loser under AV is quite the double of that under PAV for all couple of values (k 5 , k 34 ).

  a ∼ b c p 13 Class IV: a b ∼ c p 16 a ∼ c b p 14 b a ∼ c p 17 b ∼ c a p 15 c a ∼ b p 18 Class V: a ∼ b ∼ c p 19

c b a

 a Under both profiles, the reader can check that c is the Condorcet winner and b is the Condorcet loser. Under the first profile, we get S(a) = S(c) = 3 and S(b) = 4; no candidate gets the majority of the approvals (5 votes), according to Rule 1i, b is the winner since she is the AV winner. Thus, PAV under Rule 1i fails to select the Condorcet winner but selects the Condorcet loser. Under the second profile, b is the unique majority-approved candidate with 5 votes; Rule 1ii applies and b is the PAV winner: PAV under Rule 1i fails to elect the Condorcet winner but can select the Condorcet loser.To get a profile under which Rule 2i applies and that PAV fails to select the Condorcet winner, the reader only need to add the following groups of voters to Profile 1: 3 voters with a b c, 2 voters with a c b, 3 voters with c a b and 4 voters with c b a.

-n

  ba -n ab > 0 n ca -n ac > 0 S(a) -S(b) > 0 S(a) -S(c) > 0 -2S(a) + n > 0Following the same technique as before, we derive the correlation matrix R 5 : Case 2: if only the Condorcet loser receives a majority of approvals ba -n ab > 0 n ca -n ac > 0 2S(a) -n > 0 -2S(b) + n > 0 -2S(c) + n > 0Following the same technique as before, we derive the correlation matrix R 5 :We then derive Theorem 4 which gives the representation of the limiting Condorcet efficiency of PAV.

Table 1

 1 The 19 possible preferences types with three candidates

  Under EIC, it is assumed that the rankings within a class are equally likely: p t = k1 6 for t = 1, 2, ..., 6, p t = k2 6 for t = 7, 8, ..., 12, p t = k3 3 for t = 13, 14, 15, p t = k4 3 for t = 16, 17, 18 and p 19 = k 5 .With the 19 preference types of Table1, the likelihood of a given voting situation ñ = (n 1 , n 2 , ..., n t , ..., n 19 ) is given by P rob(ñ = (n 1 , n 2 , ..., n t , ..., n 19 )) =[START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF] used EIC to analyze the Condorcet efficiency of AV and all the scoring rules. They also provided the limiting probability that a Condorcet winner exists as follows 9 :

	n! 19 t=1 n t !	×	19 t=1	p nt t

  p 2 + p 5 + p 7 + p 8 + p 11 + p 14 + p 16 -1 : p 3 -p 4 + p 6 + p 9 + p 10 + p 12 p 15 + p 17 0 : p 13 + p 18 + p 19 X 2 = 1 : p 1 + p 2 + p 3 + p 7 + p 8 + p 9 + p 13 + p 16 3 = 1 : p 1 + p 2 + p 8 + p 11 + p 14 + p 16 -1 : p 3 + p 4 + p 10 + p 12 + p 15 + p 17 0 : p 5 + p 6 + p 7 + p 9 + p 13 + p 18 + p 19 X 4 = 1 : p 1 + p 2 + p 7 + p 9 + p 13 + p 16 -1 : p 5 + p 6 + p 10 + p 12 + p 15 + p 18 0 : p 3 + p 4 + p 8 + p 11 + p 14 + p 17 + p 19

-1 : p 4 + p 5 + p 6 + p 10 + p 11 + p 12 + p 15 + p 18 0 : p 14 + p 17 + p 19 X

Table 3

 3 Some values of the probabilities CE ∞ AV (k 34 , k 5 )

	k 5 → k 34 ↓	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	0	0.75720 0.75720 0.75720 0.75720 0.75720 0.75723 0.75723 0.75720 0.75720 0.75720 -
	0.1	0.76626 0.76725 0.76860 0.77031 0.77271 0.77604 0.78132 0.79074 0.81249	-	-
	0.2	0.77604 0.77835 0.78135 0.78525 0.79074 0.79890 0.81249 0.84033	-	-	-
	0.3	0.78684 0.79074 0.79578 0.80265 0.81252 0.82827 0.85815	-	-	-	-
	0.4	0.79890 0.80469 0.81249 0.82353 0.84036 0.87078	-	-	-	-	-
	0.5	0.81252 0.82095 0.83262 0.85005 0.88044	-	-	-	-	-	-
	0.6	0.82824 0.84036 0.85812 0.88818	-	-	-	-	-	-	-
	0.7	0.84705 0.86490 0.89448	-	-	-	-	-	-	-	-
	0.8	0.87081 0.89979	-								

  5 = 1 : p 3 + p 4 + p 5 + p 6 + p 10 + p 12 + p 15 + p 17 + p 18 -1 : p 1 + p 2 + p 7 + p 8 + p 9 + p 11 + p 13 + p 14 + p 16 + p 19

Under impartial anonymous culture-like assumptions, voting situations are assumed to be equally likely.

It is assumed that voters vote sincerely. So, we are not concerned with strategic behaviors.

Other examples are provided in[START_REF] Brams | Mathematics and Democracy : Designing Better Voting and Fair-Division Procedures[END_REF],[START_REF] Brams | Voting systems that combine approval and preferences[END_REF].

Assume (X 1 , X 2 , • • • , Xn) a vector of n random variables with a nonsingular multivariate normal distribution.[START_REF] Plackett | A Reduction Formula for Normal Multivariate Integrals[END_REF] evaluated the probability P (X 1 > x 1 , X 2 > x 2 , • • • , Xn > xn); he ended with a reduction formula of this probability based on the numerical quadrature for n = 3, 4.

Notice that P ∞ Con is also the probability that a Condorcet loser exists.

4 Probability that AV and PAV elect the Condorcet loser [START_REF] Lepelley | On the probability of electing the Condorcet loser[END_REF] showed under an extension of IC assumption that if preferences are single-peaked, the election of the Condorcet loser is much less frequent with AV than with the Plurality rule.

More recently, [START_REF] Moyouwou | A note on Approval Voting and electing the Condorcet loser[END_REF] built a framework to compare AV and the Plurality rule and they found under impartial anonymous culture-like assumptions that AV is much less susceptible to elect the Condorcet loser than the Plurality rule. Notice that [START_REF] Moyouwou | A note on Approval Voting and electing the Condorcet loser[END_REF] investigated different scenarios on voters' preferences included the one assumed in this paper. In this section, we first reconsider the likelihood of AV to elect the Condorcet loser when she exists under the EIC assumption in three-candidate election.

Given the voting situation ñ on A = {a, b, c}, assume that candidate a is the Condorcet loser and she is the AV winner; this means that bMa, cMa, S(a) > S(b) and S(a) > S(c). Using the same technique as before, we derive the correlation matrix R 4 as follows:

and following [START_REF] Gehrlein | Computing Multivariate Normal Positive Orthant Probabilities with 4 and 5 Variables[END_REF][START_REF] Gehrlein | A representation for quadrivariate normal positive orthant probabilities[END_REF], we derive Theorem 3.

Theorem 3 With three candidates and an infinite number of voters, the probability that AV elects the Condorcet loser under the EIC assumption is given by

Table 5 reports some values of CL ∞ AV (k 34 , k 5 ). In this table, one can notice that given the value of one of the parameters, the probability tends to decrease with the other parameter. We notice that the probability is maximized (3.709%) when there is no voters who are indifferent between their two preferred candidates (k 34 = 0). 

Let us now turn to the probability that PAV elects the Condorcet loser in order to envisage the comparison with AV. By definition, there are two cases under which the Condorcet loser may be elected when she exists. These two cases are disjoints and they fully describe the situations under which PAV selects the Condorcet loser when she exists. So, given the voting situation ñ on A = {a, b, c}, by assuming that candidate a is the Condorcet loser, we get -Case 1: if no candidate is majority-approved 

Conclusion

In this paper, we focused on the Preference Approval Voting (PAV) which is a voting rule bining approval and preferences. This rule was first introduced by [START_REF] Brams | Voting systems that combine approval and preferences[END_REF]. As nothing is known on the propensity of this rule of electing the Condorcet winner/loser when she exists, the main objective of the paper was to fill this void. Under the extended impartial culture (EIC) assumption, we have provided for in three-candidate elections, representation of the limiting probability that PAV elects the Condorcet winner when she exists. In addition to the analysis of [START_REF] Diss | On the condorcet efficiency of approval voting and extended scoring rules for three alternatives[END_REF] and [START_REF] Gehrlein | The Condorcet Efficiency Advantage that Voter Indifference Gives to Approval Voting Over Some Other Voting Rules[END_REF], we have provided another representation of the limiting Condorcet efficiency of Approval Voting (AV) under EIC. By definition, PAV is built to be more Condorcet-efficient than AV. Our analysis has helped us to highlight at which extend PAV performs better than AV on the Condorcet criterion. It comes out that AV always elects the Condorcet winner in more than 75% of the cases, while PAV does in more than 88% of the cases and that the efficiency of PAV is, in all cases, at least 10% higher than that of AV. We also focused, in three-candidate elections, on the probability of electing the Condorcet loser when she exists. As part of our analysis, we have the representation of the limiting probability for AV and also for PAV. For both rules, it comes out that the probability is maximized when there is no voters who are indifferent between their two preferred candidates. By definition, we know that PAV is less susceptible to elect the Condorcet loser than AV in all the cases. We noted that in all the cases, the propensity of electing the Condorcet loser under AV is quite the double of that under PAV.

Appendix

For space constraints, here are the links to:

-The full representation of CE ∞ PAV (k 34 , k 5 ), the limiting probability that PAV elects the Condorcet winner when she exists. https://www.dropbox.com/s/vfvgoyg8k391bnz/Full%20CE_PAV.pdf?dl=0 -The full representation of CL ∞ PAV (k 34 , k 5 ), the limiting probability that PAV elects the Condorcet loser when she exists. https://www.dropbox.com/s/k1og7q1pgbh16o6/Full%20CL_PAV.pdf?dl=0