T. Bezembinder, The plurality majority converse under single peakedness, Social Choice and Welfare, vol.13, issue.3, pp.365-380, 1996.
DOI : 10.1007/BF00179239

D. Cervone, W. V. Gehrlein, and W. Zwicker, Which Scoring Rule Maximizes Condorcet Efficiency Under Iac?, Theory and Decision, vol.2, issue.2, pp.145-185, 2005.
DOI : 10.1007/978-3-0348-4118-4_13

A. Colman, The likelihood of the Borda effect in small decision-making committees, British Journal of Mathematical and Statistical Psychology, vol.33, issue.1, pp.50-56
DOI : 10.1111/j.2044-8317.1980.tb00776.x

A. Colman, The weak Borda effect and plurality-majority disagreement, British Journal of Mathematical and Statistical Psychology, vol.37, issue.2, pp.288-292
DOI : 10.1111/j.2044-8317.1984.tb00807.x

A. Colman, Rejoinder to Gillett, British Journal of Mathematical and Statistical Psychology, vol.39, issue.1, pp.87-89
DOI : 10.1111/j.2044-8317.1986.tb00848.x

A. Colman and I. Poutney, Borda's voting paradox: Theoretical likelihood and electoral occurrences, Behavioral Science, vol.20, issue.1, pp.15-20, 1978.
DOI : 10.1007/978-1-349-00140-8

C. Marquis-de, Essai sur l'application de l'analysè a la probabilité des décisions renduesà rendues`renduesà la pluralité des voix, 1785.

F. N. David and M. C. , The variance of Spearman's rho in normal samples, Biometrika, vol.48, issue.1-2, pp.19-28, 1961.
DOI : 10.1093/biomet/48.1-2.19

M. Diss and W. V. Gehrlein, Borda???s Paradox with weighted scoring rules, Social Choice and Welfare, vol.2, issue.1, pp.121-136, 2012.
DOI : 10.1007/BF01213253

M. Diss and A. Tlidi, Another perspective on Borda???s paradox, Theory and Decision, vol.41, issue.3, pp.99-121, 2018.
DOI : 10.2307/1914033

W. Gehrlein, Computing Multivariate Normal Positive Orthant Probabilities with 4 and 5 Variables Available at https://www.researchgate.net/publication, 2017.

W. Gehrlein, Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic, Social Choice and Welfare, vol.19, issue.3, pp.503-512, 2002.
DOI : 10.1007/s003550100127

W. Gehrlein, A representation for quadrivariate normal positive orthant probabilities, Communications in Statistics - Simulation and Computation, vol.58, issue.4, pp.349-358, 1979.
DOI : 10.1093/biomet/49.3-4.433

W. V. Gehrlein and P. C. Fishburn, The probability of the paradox of voting: A computable solution, Journal of Economic Theory, vol.13, issue.1, pp.14-25, 1976.
DOI : 10.1016/0022-0531(76)90063-6

W. Gehrlein and P. Fishburn, Coincidence probabilities for simple majority and positional voting rules, Social Science Research, vol.7, issue.3, pp.272-283, 1978.
DOI : 10.1016/0049-089X(78)90014-5

W. Gehrlein and P. Fishburn, Probabilities of election outcomes for large electorates, Journal of Economic Theory, vol.19, issue.1, pp.38-49, 1978.
DOI : 10.1016/0022-0531(78)90054-6

W. V. Gehrlein and D. Lepelley, Voting paradoxes and group coherence, 2011.
DOI : 10.1007/978-3-642-03107-6

URL : https://hal.archives-ouvertes.fr/hal-01243452

W. Gehrlein and D. Lepelley, On the probability of observing Borda???s paradox, Social Choice and Welfare, vol.54, issue.1, pp.1-23, 2010.
DOI : 10.1007/s00355-009-0415-3

URL : https://hal.archives-ouvertes.fr/hal-01243471

W. Gehrlein and D. Lepelley, The Condorcet efficiency of approval voting and the probability of electing the Condorcet loser, Journal of Mathematical Economics, vol.29, issue.3, pp.271-283, 1998.
DOI : 10.1016/S0304-4068(97)00020-7

R. Gillett, The weak Borda effect is of little relevance to social choice theory, British Journal of Mathematical and Statistical Psychology, vol.39, issue.1, pp.79-86, 1986.
DOI : 10.1111/j.2044-8317.1986.tb00847.x

R. Gillett, The weak Borda effect is an unsatisfactory index of plurality/majority disagreement, British Journal of Mathematical and Statistical Psychology, vol.37, issue.1, pp.128-130, 1984.
DOI : 10.1111/j.2044-8317.1984.tb00794.x

E. Kamwa and F. Valognes, Scoring rules and preference restrictions: The strong Borda paradox revisited. Revue d'Economie Politique, pp.375-395, 2017.
DOI : 10.3917/redp.273.0375

URL : https://hal.archives-ouvertes.fr/hal-01631180

D. Lepelley, Constant scoring rules, condorcet criteria and single-peaked preferences, Economic Theory, vol.41, issue.3, pp.491-500, 1996.
DOI : 10.1007/BF00193810

D. Lepelley, On the probability of electing the Condorcet, Mathematical Social Sciences, vol.25, issue.2, pp.105-116, 1993.
DOI : 10.1016/0165-4896(93)90046-L

D. Lepelley, A. Louichi, and H. Smaoui, On Ehrhart polynomials and probability calculations in voting theory, Social Choice and Welfare, vol.25, issue.6, pp.363-383, 2008.
DOI : 10.1007/s00355-007-0236-1

URL : https://hal.archives-ouvertes.fr/hal-01245310

D. Lepelley, A. Louichi, and F. Valognes, Computer simulations of voting systems Applications of simulations to social sciences, pp.181-194, 2000.

D. Lepelley, P. Pierron, and F. Valognes, Scoring rules, Condorcet efficiency and social homogeneity, Theory and Decision, vol.49, issue.2, pp.175-196, 2000.
DOI : 10.1023/A:1005257316414

H. Nurmi and M. Suojanen, Assessing Contestability of Electoral Outcomes, Quality & Quantity, vol.106, issue.6, pp.719-733, 2001.
DOI : 10.1017/CBO9780511606076

W. Riker, Liberalism against populism: a confrontation between the theory of democracy and the theory of social choice Geometry of voting, 1982.

D. G. Saari and M. Tataru, The likelihood of dubious election outcomes, Economic Theory, vol.13, issue.2, pp.345-363, 1999.
DOI : 10.1007/s001990050258

D. Saari and F. Valognes, The geometry of Black's single peakedness and related conditions, Journal of Mathematical Economics, vol.32, issue.4, pp.429-456, 1999.
DOI : 10.1016/S0304-4068(98)00062-7

M. Tataru and M. V. , On the relationship of the Condorcet winner and positional voting rules, Mathematical Social Sciences, vol.34, issue.1, pp.81-90, 1997.
DOI : 10.1016/S0165-4896(97)00005-X

A. Taylor, A Glimpse of Impossibility, Perspectives on Political Science, vol.20, issue.1, pp.23-26, 1997.
DOI : 10.1007/978-1-4612-2512-6

J. Van-newenhizen, The Borda method is most likely to respect the Condorcet principle, Economic Theory, vol.41, issue.1, pp.69-83, 1992.
DOI : 10.1007/BF01213253

S. Verdoolaege, K. M. Woods, M. Bruynooghe, and R. Cools, Computation and Manipulation of Enumerators of Integer Projections of Parametric Polytopes, 2005.

R. Weber, M. C. Wilson, and G. Pritchard, Comparison of voting systems Probability calculations under the IAC hypothesis, Mathematical Social Sciences, vol.54, pp.244-256, 1978.

H. P. Young, Condorcet's Theory of Voting, The American Political Science Review, vol.82, issue.4, pp.1231-1244, 1988.
DOI : 10.2307/1961757