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Abstract 

Several pathophysiological pathways in sickle cell disease (SCD), the most prevalent 

hemoglobinopathy worldwide, result in activation of circulating blood cells and the release of 

submicron vesicles, so-called microparticles (MPs). MPs are candidate biomarkers in vascular 

disease that exhibit functional biological properties. Compared to healthy individuals, higher 

level of plasma MPs, mostly derived from platelets and red blood cells (RBC), has been 

repeatedly observed in SCD patients in their steady-state condition. In contrast, conflicting 

results have been obtained on the impact of SCD complications and hydroxyurea treatment on 

circulating MP concentrations, largely due to non-standardized pre- and analytical procedures. 

Several factors responsible for the increased release of MPs by RBC have been identified in 

SCD such as sickling/unsickling, oxidative stress and abnormal activity of RBC acid 

sphingomyelinase. Besides their well-known pro-coagulant effect, sickle RBC-derived MPs 

produced ex vivo can induce ROS production by endothelial cells and promote a pro-

inflammatory and pro-adhesive phenotype that may lead to renal occlusion in SCD mice. 

However, the functional properties of circulating MPs in human sickle cell disease remain to 

be studied and fully characterized. 
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Introduction 

Sickle cell disease (SCD) is a group of genetic disorders that have in common the production 

of the abnormal hemoglobin S (HbS) instead of hemoglobin A. HbS occurs as a result of a 

single base mutation in exon 1 of the -globin gene that causes the substitution of valine for 

glutamic acid at the sixth position of the -globin molecule. Sickle cell anemia (SCA) refers 

to the disorder produced by homozygous HbS inheritance, whereas co-inheritance of HbS and 

hemoglobin C or -thalassemia are at the origin of the two other sickle cell syndromes most 

commonly encountered, i.e. hemoglobin SC (HbSC) disease and hemoglobin S/-thalassemia 

(HbS/-thal) [1]. 

 

In deoxygenated conditions and after a delay period, HbS molecules polymerize inducing the 

sickling of affected red blood cells (RBC) and leading to decreased deformability and 

increased fragility. Sickle RBC, which exhibit abnormal adhesive properties to endothelial 

cells [2], do not easily traverse the microcirculation, causing frequent vaso-occlusive episodes 

[3]. Vaso-occlusion is not only due to sickling of RBC, but also to endothelial-leukocyte-RBC 

interactions, and is enhanced by inflammatory processes and endothelial-leukocyte-RBC 

interactions [4,5]. Vascular obstruction and ischemia are followed by a restoration of blood 

flow, which further provokes reperfusion injury. These cycles of hypoxia-reperfusion cause 

oxidant and inflammatory stress, which increase the expression of several endothelial cell 

adhesion molecules [5]. Furthermore, sickle RBC exhibit a reduced lifespan associated with 

intravascular hemolysis, leading to the release of free Hb and heme into the blood. These 

bioactive molecules are responsible for the decrease in nitric oxide (NO) bioavailability, 

which may be involved in several sickle complications such as priapism, leg ulcer, pulmonary 

hypertension and stroke [6,7]. Currently, hydroxyurea (HU) is the only drug known to reduce 
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the occurrence of some complications such as painful vaso-occlusive crisis (VOC), acute 

chest syndrome (ACS) and the need for transfusion [8,9]. Originally prescribed to SCA 

patients because of its ability to induce expression of fetal hemoglobin (which is known to 

alleviate HbS polymerization), it has subsequently been shown to possess pleotropic effect 

that in aggregate contribute to its therapeutic efficacy [10]. 

 

Several of the pathophysiological pathways known to be associated with SCD, such as 

oxidative and inflammation stress, may activate circulating blood cells and lead to the release 

of sub-micron vesicles, named microparticles (MP) [11]. During the last two decades, a large 

number of studies in the SCD field have been performed to better describe the quantitative 

and qualitative profile of MPs in SCD patients and their involvement in SCD 

pathophysiological processes. In this review, we will focus on the characteristics and 

functional properties of plasma MPs and present evidence that MPs could be both biomarkers 

and bio-effectors in SCD. 

 

 

Microparticles: definition and genesis 

MPs fall under the umbrella term of extracellular vesicles (EV), which is used to designate all 

types of vesicles released from cells, the best characterized being exosomes, apoptotic 

vesicles (also called apoptotic bodies), and MPs [12]. These various types of EV differ in 

regards to several characteristics such as size, density, morphology, composition (protein, 

lipid and nucleic acid) as well as sub-cellular origin [12]. It should be noted that the overlap 

of some of these parameters between EV sub-types has been associated with technical 

purification difficulties and thus the ability to attribute particular functions to each subtype 

[12]. Nevertheless, there is accumulating evidence that EV carry diverse cargoes including 
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proteins, RNA species such as mRNA and miRNA and lipids that can be transported and 

exchanged between cells, strongly suggesting that EV play key roles in cell-cell 

communication at both paracrine and systemic levels [13,14]. 

 

MPs are defined as phospholipid microvesicles with a diameter ranging from 100 to 1,000 nm 

that are derived from the cytoplasmic membrane of cells submitted to stress conditions that 

result in apoptosis or activation. These conditions lead to local cytoskeletal rearrangements 

and membrane budding [15,16]. Indeed, the increase of intracellular Ca
2+

 induced by these 

conditions affects the function of three enzymes, namely floppase, scrambase and flippase 

that are involved in the asymmetry of the cellular lipid bilayers, and leads to the 

externalization of phosphatidylserine (PS) [17,18]. PS exposure is believed to be a key event 

in MP formation. Indeed, Scott syndrome, characterized by impaired ability to externalize PS 

and linked to genetic defects of several enzymes involved in cell PS exposure, has been 

associated with a decrease of MP shedding and a bleeding disorder [19,20,21]. Moreover, the 

rise of intracellular Ca
2+

 activates proteases that cleave the cytoskeleton, weaken its 

interaction with the cytoplasmic membrane, thereby allowing the release of MPs [22]. 

Accordingly, MPs are usually described as exhibiting PS externalization, although MPs 

without externalized PS have also been described [23]. 

 

The protein composition of MPs reflects that of the cell from which they are derived, 

including cell-type specific antigens which allow the identification of their cellular origin. 

Moreover, MPs also contain functional molecules that could have been induced on the 

parental cell by the factor responsible for triggering MP release [24,25]. Thus, both cell origin 

and nature of trigger(s) impact the phenotype of MPs and their functional properties. It has 

been shown for example that the level of externalized PS and the type of membrane receptors 
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exhibited by endothelial cell-derived MP vary according not only to the triggering factor, 

namely apoptotic stimuli or tumor necrosis factor, but also to the vascular origin of the 

endothelial cells [25]. 

 

MPs have been detected in multiple biological fluids including urine, broncho-alveolar lavage 

fluid, sputum, synovial fluid, ascites, saliva and plasma [26]. In physiological conditions, it 

has been shown that plasma samples contain platelet-, erythrocyte-, endothelial cell- and 

leukocyte-derived MPs [22]. 

 

Functional properties of MPs 

A large number of functional properties have been associated with MPs. The first and 

probably best described property is the ability to promote coagulation [27,28]. Two physical 

characteristics of MPs have been linked to their procoagulant activity. The externalization of 

PS results in a negatively charged surface, allowing assembly of coagulation factors and 

thrombin generation [29]. MPs released from endothelial cells and monocytes may also 

display tissue factor (TF) on their surface and thus support coagulation via the factor VII 

(FVII)/TF-dependent pathway [24,30]. Furthermore, it has been shown that MPs from 

leukocytes can transfer TF to platelets and contribute to the recruitment of cells and the 

accumulation of TF at sites of vascular injury [31]. Furthermore, tumor-derived MPs are 

known to exhibit procoagulant properties [32]. In agreement with their described 

procoagulant properties, high MP concentrations have been detected in various clinical 

conditions associated with increased incidence of thrombosis including paroxysmal nocturnal 

hemoglobinuria [33], cardiovascular disease [34] and deep venous thrombosis [35]. 

 



7 
 

Various blood cell-derived MPs have also been shown to regulate the production of reactive 

oxygen species (ROS) and thus oxidative stress level. MPs shed by endothelial cells [36], 

monocytes [37] and lymphocytes [38] promote endothelial O2
-
 and H2O2 production in 

cultured endothelial cells through processes involving different enzymatic systems, and thus 

may induce apoptosis [39].  

 

Pro-inflammatory stimuli provoke the release of MPs, which in turn may directly contribute 

to the inflammatory response. For instance, MPs derived from polymorphonuclear leukocytes 

or from monocytes promote the production of IL-6/MCP in cultured endothelial cells [40] and 

IL-8/MCP in airway epithelial cells [41], respectively. The effects of MPs seem to be cell 

type-dependent since it has been shown that macrophages are inhibited upon incubation with 

MPs released from polymorphonuclear leukocytes [42,43] suggesting that some MPs may 

exhibit both pro- and anti-inflammatory properties. 

 

MPs from various blood cell types may also induce a pro-adhesive phenotype to endothelial 

cells. In this respect, treatment of endothelial cells with platelet- and endothelial cell-derived 

MPs are associated with increased expression of cell adhesion molecules and monocyte-

endothelial cell interactions [36,44]. 

 

In addition to previously cited biological pathways, MPs have been implicated in the 

regulation of angiogenesis, vascular function and apoptosis [45,46]. 

 

However, it should be noted that most of the previously cited studies addressing these 

mechanisms have been performed with MPs generated in vitro. Since the biological content 
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and the properties are related to the triggers leading to their release, the functional properties 

of circulating MPs produced in vivo need to be confirmed. 

 

Mechanisms of MP-mediated biological effects 

In contrast to coagulation, the molecular mechanisms involved in the other biological effects 

mediated by MPs remain elusive and alternative putative processes have been proposed. 

Several studies have documented direct physical interactions of MPs with their target cells 

[36,47,48]. Triggering of signaling pathways may result from binding of MP surface antigens 

to their specific counter-receptor. For example, the induction of monocytic cells adhesive 

receptor expression by endothelial-derived MPs could be inhibited by treatment with 

antibodies directed against ICAM-1, an adhesive receptor expressed by MP-derived 

endothelial cells, and its counter receptor, beta2 integrin expressed by monocytes [49]. 

Complementary experiments strongly suggested that the induced pro-adhesive phenotype of 

monocytic cells did not involve membrane fusion, but rather receptor binding [49]. 

Alternatively, the binding of MPs to target cells may change the panel of exposed antigens 

and thus modify functional properties of these cells. For instance, such a mechanism has been 

proposed for the increase of leukocyte-leukocyte interactions mediated by platelet-derived 

MPs [50]. The fusion of MPs with cells and the subsequent transfer of their content has also 

been proposed to be involved in the cellular relocation of functional membrane receptors [51] 

and bioactive substances such as lipids [44,52] shown to mediate several MP functional 

properties. 

 

MPs may contain enzymes with reactive oxygen species (ROS)-generating capacity [53,54]. 

Thus, they have the potential to directly produce ROS known to be involved in several 

pathways mediated by MPs such as apoptosis, inflammation and endothelial dysfunction [55]. 
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However, the de novo production of ROS by MPs remains to be proven. In contrast, it has 

been unambiguously shown that MPs derived from erythrocytes may scavenge nitric oxide 

(NO) almost as efficiently as plasma hemoglobin because of their hemoglobin high content 

[56,57]. 

 

In aggregate, these studies strongly suggest that the diverse biological effects induced by MPs 

are mediated by several distinct mechanisms.  

 

Characterization of MPs 

A large number of approaches have been used for MP characterization and detection 

including flow cytometry, solid-phase methods followed by enzyme-linked immunosorbent 

assay or functional assay, electron microscopy, atomic force microscopy, nanoparticle 

tracking analysis, dynamic light scattering and tunable resistive pulse sensing [26,58,59]. 

Each of these approaches has inherent advantages and limitations; however, since this topic 

was recently reviewed, it will not be discussed further in the present report [60,61,62]. Up to 

now, the most widespread technique used to analyze MPs is flow cytometry. This approach 

allows rapid determination of cellular origins and enumeration of MPs, and is available at 

most research facilities. However, flow cytometry has its own limitations, in particular for the 

detection of small vesicles [58], although recent generation flow cytometers are capable of 

detecting MPs as small as approximately 0.2 m in diameter [63]. In addition to differences 

of flow cytometer characteristics, it has been clearly established that analytical and pre-

analytical procedures such as sample preparation are important sources of variability [61]. 

Indeed, the lack of consensus in these variables contributes to the difficulty in drawing firm 

conclusions about MP characteristics and roles in clinical conditions such as SCD [11]. 
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Quantitative and qualitative microparticles pattern in sickle cell disease 

Compared to healthy individuals, a 3- to 4-fold increase of plasma MPs has been repeatedly 

reported in SCD patients at steady-state condition, i.e. remote from acute complications, by 

multiple groups [11] using either flow cytometry [64 - 71] or solid-phase methods [72]. In 

these studies, MPs were found to derive mainly from platelets and RBCs; those originating 

from other blood-cell types such as endothelial cells, monocytes or granulocytes were either 

detected at variable levels or were undetectable [65]. Surprisingly, one group reported lower 

concentrations of MPs in SCD patients compared to controls [73]. 

 

Multiple reasons could account for these discordant results. Since several of these studies 

were performed in SCD patients with a variety of sickle cell syndromes, i.e. SCA, HbSC 

disease or S/-thal [64 – 66,71,73], it is tempting to speculate that these discrepancies could 

be related to the proportion of patients with each syndrome. However, a recent study 

performed on 180 SCD children -- 84 with HbSC disease and 96 with SCA -- showed that 

although the former group exhibited lower blood MP concentrations, resulting mainly from a 

decrease of MPs originating from RBC and to a lesser extent from platelets, no significant 

difference in the numbers of MPs derived from other blood cells between the two groups was 

detected [74]. To our knowledge, no study dedicated to patients with S/-thal has been 

conducted. Therefore, the variability of the cellular origins of MPs in SCD patients reported 

in the literature is most likely the consequence of non-standardized pre-analytical and 

analytical procedures, known to be critical factors impacting MP pattern, both quantitatively 

and qualitatively [11]. 

 

The clinical course of the disease may also affect MP concentration. So far, conflicting results 

have been obtained on the impact of SCD complications on circulating MP concentrations. 
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Six studies described increased numbers of MPs during sickle cell crises compared to steady-

state disease [64,66,71,72,73,75], while van Beers EJ et al detected similar MP concentrations 

in both conditions [65]. In addition, the cellular origins of MPs for which an increased 

concentration was observed varied between studies. Several important parameters differed 

between these studies, including cross-sectional or longitudinal design, clinical definition of 

sickle crisis or delay between blood sampling and hospital admission, among others. The 

largest longitudinal survey published so far, with 32 SCA patients, showed a 2-fold increase 

in the concentration of RBC-derived MPs during painful vaso-occlusive crisis [75]. Such an 

increase in MPs originating from RBC has also been reported by three other groups 

[66,71,73]. However, further studies are warranted to better document the quantitative and 

qualitative changes in MPs during SCD-related complications. 

 

High MP concentrations were reported in SCD patients exhibiting a severe vaso-occlusive 

phenotype [66,69] and a past history of complications such as acute chest syndrome, 

pulmonary hypertension [66] or osteonecrosis of the femoral head [76]. Nevertheless, such 

associations with previous vaso-occlusive complications, acute chest syndrome or pulmonary 

hypertension have not been reproduced in other studies [74], while the usefulness of MPs as 

biomarkers of osteonecrosis need to be confirmed. 

 

Hydroxyurea (HU) effect on MP profiles 

The effect of HU therapy on circulating MPs remains unclear. Indeed, HU treatment has been 

associated with either reduced plasma concentration of MPs, mainly those originated from 

RBC and platelets [66,69,77], increased levels of MPs [73,78] or no change in MP 

concentration [71]. Since MP concentrations exhibit high inter-individual variability, the 

cross-sectional design of the previously cited studies may account partly for these inconsistent 
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results. Currently, only one longitudinal study of patients treated with HU has been performed 

demonstrating similar MP concentrations before and after 2 years of treatment [79]. 

Interestingly, modification of two quantitative flow cytometry parameters of MPs shed by 

RBC, namely forward scatter (FS) and mean fluorescence intensity (MFI) of Annexin V 

(related to MP size and density of phosphatidylserine at the membrane surface, respectively), 

were detected in this study. HU-treated patients exhibited significantly higher FS indices and 

lower MFI values compared to values before treatment. Moreover, the relationship between 

these two parameters and HU dose strengthens the hypothesis of an HU-mediated effect. 

Further studies are needed to confirm these observations and, more importantly, to analyze 

their potential functional consequences. 

 

Triggering factors of MP release in sickle cell disease 

Several factors responsible for the increased release of MPs have been identified in SCD. The 

best characterized are those targeting RBCs and platelets, while those affecting the other 

blood cell types have been less studied. 

 

Sickle RBCs were the first pathologic cell type to be identified as a source of MPs [80]. 

Indeed, it has been established that repeated RBC sickling/unsickling induce the shedding of 

MPs due to uncoupling between the membrane skeleton and the lipid bilayer, resulting partly 

from RBC membrane protein oxidation [81 - 83]. These oxidative processes, as well as 

sickling of RBC, are the main driving forces of intravascular hemolysis. Therefore, it is not 

surprising that several studies have detected relationships between RBC-derived MP 

concentration and Hb, as well as expression of hemolytic parameters [65,69,77,84]. 

Another mechanism induced by alteration in the RBC membrane is involved in the generation 

of sickle RBC-derived MPs. Mechanical stress in RBC, exacerbated in SCD, activates 
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sphingomyelinase, an enzyme implicated in membrane stability, vesiculation and MP 

formation [85,86]. A recent study showed that the abnormal activation of acid 

sphingomyelinase in sickle RBCs enhanced the shedding of MPs by these cells [87]. 

In addition, it has been shown that thrombospondin-1, a major platelet protein detected at high 

level in sickle plasma [88], triggers in vitro erythrocyte conversion into spicule-covered 

echinocytes and induces RBC-derived MP shedding [89]. 

 

Several mechanisms responsible for enhanced MP release by platelets in sickle patients have 

been characterized. Free hemoglobin, detected at high levels in SCD patient blood as a 

consequence of intravascular hemolysis, is clearly a major factor contributing to platelet 

activation in SCD by limiting the bioavailability of NO, a molecule known to inhibit platelet 

activation [90,91]. More recently, it has been shown that free HbS may directly participate in 

platelet activation. Indeed, its binding to GP1b on the platelet surface induced activation via 

the Lyn, PI3K, Akt and ERK pathway with associated shedding of MPs [92]. Lastly, the 

release of intra-erythrocyte ADP by intravascular hemolysis may also lead to platelet 

activation [93]. 

 

MP formation from other blood cell types is presumably the consequence of several 

pathophysiological processes such as hypoxia/reperfusion, inflammation, and oxidative stress, 

among others. 

 

Microparticles in sickle pathophysiology 

The involvement of MPs in pathophysiological processes of SCD including coagulation, 

inflammation and abnormal cellular adherence has been proposed in several studies. 
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Different cell type-specific MPs may trigger coagulation through TF-independent or TF-

dependent mechanisms. The former mechanism may involve MPs originating from RBCs and 

platelets, the two most abundant circulating MPs in SCD that do not express TF but exhibit 

docking sites for activated clotting factors; indeed, an accelerating effect on thrombin 

generation was observed with RBC-derived MPs in in vitro assays [67,94]. Accordingly, 

positive correlations between RBC-derived MP concentrations and expression of coagulation 

markers such as prothrombin fragment F1+2 and D-dimer as well as acceleration in the 

propagation phase of thrombin generation have been observed [65,67]. Interestingly, a recent 

study presented evidence that the density of externalized PS, assessed by the mean fluorescent 

intensity of Annexin V, is higher for RBC-derived MPs compared to platelet-derived MPs 

[74]. On the other hand, initiation of coagulation by TF-bearing MPs was supported by the 

inhibition of clotting activity of sickle MPs in normal plasma using a neutralizing antibody to 

TF, as well as the correlations between TF positive MP numbers and levels of circulating 

coagulation markers [64]. Despite these discrepancies, these data strongly suggest that MPs of 

various cellular origins in SCD are bio-effectors involved in the hypercoagulation state and 

thrombosis, both considered a leading cause of death and significant contributors to vessel 

occlusion in SCD patients [95 - 97]. 

 

Other functional properties for sickle RBC-derived MPs have been documented. Injection of 

RBC-derived MPs, produced in vitro from sickle RBCs, in SCD mice induced renal vaso-

occlusion [89]. In vitro, these MPs induced ROS production by endothelial cells, endothelial 

apoptosis and a pro-adhesive phenotype. A subsequent study by the same group demonstrated 

heme docked by externalized PS in MPs could be the dominant driving factor of these 

biological effects, which also included compromised microvascular dilation [98]. In addition, 

these MPs could be internalized by monocytes, where they promoted the production and 
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secretion of some proinflammatory cytokines and enhanced monocyte adhesion to endothelial 

cells [87]. Although these data strongly suggest functional links between RBC-derived MPs 

with pathologic processes in SCD, it is worthwhile to note that these studies have been 

performed with MPs generated in vitro and thus which may not fully recapitulate the 

properties of circulating MPs. 

 

Conclusion 

This overview describes the current state of knowledge regarding MP formation, structural 

characteristics, biological impacts and factors which affect genesis and function of MPs 

derived from blood cells in SCD. Despite a significant volume of studies, uncertainties remain 

including the precise quantitative and qualitative pattern of circulating MPs in SCD, at steady 

state, during acute SCD complications and in SCD patients treated with HU. These unsolved 

points illustrate the need for standardized procedures and improved protocols for MP 

purification and analysis. Carefully designed studies based on large and well-characterized 

SCD cohorts are currently needed to clarify the biomarker status of MPs in SCD. 

Furthermore, the functional properties of circulating MPs, in addition to those generated in 

vitro, remain to be resolved. 
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