D. Rees, T. Williams, and M. Gladwin, Sickle-cell disease, The Lancet, vol.376, issue.9757, pp.2018-2049, 2010.
DOI : 10.1016/S0140-6736(10)61029-X

URL : https://hal.archives-ouvertes.fr/hal-00552602

L. Parise and M. Telen, Erythrocyte adhesion in sickle cell disease, Curr Hematol Rep, 2003.

P. Frenette, Sickle Cell Vasoocclusion: Heterotypic, Multicellular Aggregations Driven by Leukocyte Adhesion, Microcirculation, vol.11, issue.2, pp.167-77, 2004.
DOI : 10.1080/mic.

D. Zhang, C. Xu, P. Manwani, and P. Frenette, Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology, Blood, vol.127, issue.7, pp.801-810, 2016.
DOI : 10.1182/blood-2015-09-618538

URL : http://www.bloodjournal.org/content/bloodjournal/127/7/801.full.pdf

D. Kaul and R. Hebbel, Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice, Journal of Clinical Investigation, vol.106, issue.3, pp.411-431, 2000.
DOI : 10.1172/JCI9225

URL : http://www.jci.org/articles/view/9225E1/files/pdf

G. Kato, V. Mcgowan, R. Machado, J. Little, and V. J. Taylor, Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease, Blood, vol.107, issue.6, pp.2279-85, 2006.
DOI : 10.1182/blood-2005-06-2373

G. Kato, M. Gladwin, and M. Steinberg, Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes, Blood Reviews, vol.21, issue.1, pp.37-47, 2007.
DOI : 10.1016/j.blre.2006.07.001

S. Charache, M. Terrin, R. Moore, G. Dover, F. Barton et al., Effect of Hydroxyurea on the Frequency of Painful Crises in Sickle Cell Anemia, New England Journal of Medicine, vol.332, issue.20, pp.1317-1339, 1995.
DOI : 10.1056/NEJM199505183322001

M. Steinberg, F. Barton, O. Castro, C. Pegelow, S. Ballas et al., Effect of Hydroxyurea on Mortality and Morbidity in Adult Sickle Cell Anemia, JAMA, vol.289, issue.13, pp.1645-51, 2003.
DOI : 10.1001/jama.289.13.1645

URL : https://jamanetwork.com/journals/jama/articlepdf/196300/JOC22074.pdf

G. Kato, New insights into sickle cell disease, Current Opinion in Hematology, vol.23, issue.3
DOI : 10.1097/MOH.0000000000000241

, Curr Opin Hematol, vol.23, issue.3, pp.224-256, 2016.

R. Hebbel and N. Key, Microparticles in sickle cell anaemia: promise and pitfalls, British Journal of Haematology, vol.4, issue.1, pp.16-29, 2016.
DOI : 10.3402/jev.v4.29260

B. György, T. Szabó, M. Pásztói, Z. Pál, P. Misják et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cellular and Molecular Life Sciences, vol.95, issue.3, pp.2667-88, 2011.
DOI : 10.1164/rccm.200712-1835OC

M. Colombo, G. Raposo, and C. Théry, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.255-89, 2014.
DOI : 10.1146/annurev-cellbio-101512-122326

L. Rajendran, J. Bali, M. Barr, F. Court, E. Krämer-albers et al., Emerging Roles of Extracellular Vesicles in the Nervous System, Journal of Neuroscience, vol.34, issue.46, pp.15482-15491, 2014.
DOI : 10.1523/JNEUROSCI.3258-14.2014

A. Beaudoin and G. Grondin, Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1071, issue.3, pp.203-222, 1991.
DOI : 10.1016/0304-4157(91)90014-N

J. Freyssinet, F. Toti, B. Hugel, C. Gidon-jeangirard, C. Kunzelmann et al.,

, Apoptosis in vascular disease, Thromb Haemost, vol.82, issue.2, pp.727-762, 1999.

G. Gilbert, P. Sims, T. Wiedmer, B. Furie, B. Furie et al., Platelet-derived microparticles express high affinity receptors for factor VIII, J Biol Chem, vol.266, issue.26, pp.17261-17269, 1991.

F. Hoyer, G. Nickenig, and N. Werner, Microparticles - messengers of biological information, Journal of Cellular and Molecular Medicine, vol.12, issue.9
DOI : 10.1161/01.CIR.101.8.841

, J Cell Mol Med, vol.14, issue.9, pp.2250-2256, 2010.

J. Suzuki, M. Umeda, P. Sims, and S. Nagata, Calcium-dependent phospholipid scrambling by TMEM16F, Nature, vol.13, issue.7325, pp.834-842, 2010.
DOI : 10.1016/j.exphem.2003.07.005

F. Toti, N. Satta, E. Fressinaud, D. Meyer, and J. Freyssinet, Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder, Blood, vol.87, issue.4, pp.1409-1424, 1996.

E. Castoldi, P. Collins, P. Williamson, and E. Bevers,

, novel TMEM16F mutations in a patient with Scott syndrome, Blood, vol.117, issue.16, pp.4399-400, 2011.

O. Morel, L. Jesel, J. Freyssinet, and F. Toti, Cellular Mechanisms Underlying the Formation of Circulating Microparticles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, pp.15-26, 2011.
DOI : 10.1161/ATVBAHA.109.200956

D. Connor, T. Exner, D. Ma, and J. Joseph, The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib, Thromb Haemost, vol.103, issue.5, pp.1044-52, 2010.

V. Combes, A. Simon, G. Grau, D. Arnoux, L. Camoin et al., In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant, Journal of Clinical Investigation, vol.104, issue.1, pp.93-102, 1999.
DOI : 10.1172/JCI4985

J. Jimenez, W. Jy, L. Mauro, C. Soderland, L. Horstman et al., Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis, Thrombosis Research, vol.109, issue.4
DOI : 10.1016/S0049-3848(03)00064-1

, Thromb Res, vol.109, issue.4, pp.175-80, 2003.

D. Burger, S. Schock, C. Thompson, A. Montezano, A. Hakim et al.,

, Microparticles: biomarkers and beyond, Clin Sci (Lond), vol.124, issue.7, pp.423-464, 2013.

P. Wolf, The Nature and Significance of Platelet Products in Human Plasma, British Journal of Haematology, vol.8, issue.3, pp.269-88, 1967.
DOI : 10.1136/jcp.6.1.34

A. Owens and N. Mackman, Microparticles in Hemostasis and Thrombosis, Circulation Research, vol.108, issue.10, pp.1284-97, 2011.
DOI : 10.1161/CIRCRESAHA.110.233056

J. Pereira, G. Alfaro, M. Goycoolea, T. Quiroga, M. Ocqueteau et al.,

, Circulating platelet-derived microparticles in systemic lupus erythematosus Association with increased thrombin generation and procoagulant state, Thromb Haemost, vol.95, issue.1, pp.94-103, 2006.

R. Kasthuri, S. Glover, J. W. Mceachron, T. Pawlinski, R. Arepally et al.,

, PF4/heparin-antibody complex induces monocyte tissue factor expression and release of tissue factor positive microparticles by activation of Fc?RI, Blood, vol.119, issue.22, pp.5285-93, 2012.

I. Hrachovinová, B. Cambien, A. Hafezi-moghadam, J. Kappelmayer, and R. Camphausen,

A. Widom, Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A, Nat Med, vol.9, issue.8, pp.1020-1025, 2003.

E. Bastida, A. Ordinas, G. Escolar, and G. Jamieson, Tissue factor in microvesicles shed from U87MG human glioblastoma cells induces coagulation, platelet aggregation, and thrombogenesis, Blood, vol.64, issue.1, pp.177-84, 1984.

B. Hugel, G. Socié, T. Vu, F. Toti, E. Gluckman et al., Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia, Blood, vol.93, issue.10, pp.3451-3457, 1999.

Z. Mallat, H. Benamer, B. Hugel, J. Benessiano, P. Steg et al., Elevated Levels of Shed Membrane Microparticles With Procoagulant Potential in the Peripheral Circulating Blood of Patients With Acute Coronary Syndromes, Circulation, vol.101, issue.8, pp.841-844, 2000.
DOI : 10.1161/01.CIR.101.8.841

R. Ye, C. Ye, Y. Huang, L. Liu, and S. Wang, Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis, Thrombosis Research, vol.130, issue.2, pp.253-261, 2012.
DOI : 10.1016/j.thromres.2011.10.014

D. Burger, A. Montezano, N. Nishigaki, Y. He, A. Carter et al., Endothelial Microparticle Formation by Angiotensin II Is Mediated via Ang II Receptor Type I/NADPH Oxidase/ Rho Kinase Pathways Targeted to Lipid Rafts, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.8, pp.311898-907, 2011.
DOI : 10.1161/ATVBAHA.110.222703

URL : http://atvb.ahajournals.org/content/atvbaha/31/8/1898.full.pdf

S. Essayagh, J. Xuereb, A. Terrisse, L. Tellier-cirioni, B. Pipy et al., Summary, Thrombosis and Haemostasis, vol.98, issue.10, pp.831-838, 2007.
DOI : 10.1160/TH07-02-0082

C. Yang, B. Mwaikambo, T. Zhu, C. Gagnon, J. Lafleur et al., Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.294, issue.2, pp.467-76, 2008.
DOI : 10.1159/000054077

URL : http://ajpregu.physiology.org/content/ajpregu/294/2/R467.full.pdf

J. Distler, A. Akhmetshina, C. Dees, A. Jüngel, M. Stürzl et al., Induction of apoptosis in circulating angiogenic cells by microparticles, Arthritis & Rheumatism, vol.10, issue.Suppl 3, pp.2067-77, 2011.
DOI : 10.2174/156652410791608225

URL : http://onlinelibrary.wiley.com/doi/10.1002/art.30361/pdf

M. Mesri and D. Altieri, Leukocyte Microparticles Stimulate Endothelial Cell Cytokine Release and Tissue Factor Induction in a JNK1 Signaling Pathway, Journal of Biological Chemistry, vol.89, issue.3, pp.23111-23119, 1999.
DOI : 10.1038/380075a0

URL : http://www.jbc.org/content/274/33/23111.full.pdf

C. Cerri, D. Chimenti, I. Conti, T. Neri, P. Paggiaro et al., Monocyte/Macrophage-Derived Microparticles Up-Regulate Inflammatory Mediator Synthesis by Human Airway Epithelial Cells, The Journal of Immunology, vol.177, issue.3
DOI : 10.4049/jimmunol.177.3.1975

URL : http://www.jimmunol.org/content/jimmunol/177/3/1975.full.pdf

, J Immunol, vol.177, issue.3, pp.1975-80, 2006.

O. Gasser and J. Schifferli, Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis, Blood, vol.104, issue.8, pp.2543-2551, 2004.
DOI : 10.1182/blood-2004-01-0361

URL : http://www.bloodjournal.org/content/104/8/2543.full.pdf

C. Eken, P. Martin, S. Sadallah, S. Treves, M. Schaller et al., Ectosomes Released by Polymorphonuclear Neutrophils Induce a MerTK-dependent Anti-inflammatory Pathway in Macrophages, Journal of Biological Chemistry, vol.177, issue.51, pp.39914-39935, 2010.
DOI : 10.1038/nature06307

O. Barry, D. Praticò, R. Savani, and G. Fitzgerald, Modulation of monocyte-endothelial cell interactions by platelet microparticles., Journal of Clinical Investigation, vol.102, issue.1, pp.136-180, 1998.
DOI : 10.1172/JCI2592

E. Van-der-pol, A. Böing, P. Harrison, A. Sturk, and R. Nieuwland, Classification, Functions, and Clinical Relevance of Extracellular Vesicles, Pharmacological Reviews, vol.64, issue.3, pp.676-705, 2012.
DOI : 10.1124/pr.112.005983

M. Martínez, A. Tesse, F. Zobairi, and R. Andriantsitohaina, Shed membrane microparticles from circulating and vascular cells in regulating vascular function, American Journal of Physiology-Heart and Circulatory Physiology, vol.288, issue.3, pp.1004-1013, 2005.
DOI : 10.1016/S0008-6363(03)00367-5

A. Terrisse, N. Puech, S. Allart, P. Gourdy, J. Xuereb et al., Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow, Journal of Thrombosis and Haemostasis, vol.11, issue.12
DOI : 10.4049/jimmunol.182.3.1756

, J Thromb Haemost, vol.8, issue.12, pp.2810-2819, 2010.

D. Faille, F. El-assaad, A. Mitchell, M. Alessi, G. Chimini et al., Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells, Journal of Cellular and Molecular Medicine, vol.79, issue.8, pp.1731-1739, 2012.
DOI : 10.1016/S0074-7742(07)79010-4

URL : https://hal.archives-ouvertes.fr/hal-00667773

F. Sabatier, V. Roux, F. Anfosso, L. Camoin, J. Sampol et al., Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity, Blood, vol.99, issue.11, pp.3962-70, 2002.
DOI : 10.1182/blood.V99.11.3962

S. Forlow, R. Mcever, and M. Nollert, Leukocyte-leukocyte interactions mediated by platelet microparticles under flow, Blood, vol.95, issue.4, pp.1317-1340, 2000.

T. Rozmyslowicz, M. Majka, J. Kijowski, S. Murphy, D. Conover et al.,

, Platelet-and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV, AIDS, vol.17, issue.1, pp.33-42, 2003.

O. Barry, D. Pratico, J. Lawson, and G. Fitzgerald, Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles., Journal of Clinical Investigation, vol.99, issue.9, pp.2118-2145, 1997.
DOI : 10.1172/JCI119385

URL : http://www.jci.org/articles/view/119385/files/pdf

S. Brodsky, F. Zhang, A. Nasjletti, and M. Goligorsky, Endothelium-derived microparticles impair endothelial function in vitro, American Journal of Physiology-Heart and Circulatory Physiology, vol.286, issue.5, pp.1910-1915, 2004.
DOI : 10.1152/ajprenal.2000.279.4.F671

URL : http://ajpheart.physiology.org/content/ajpheart/286/5/H1910.full.pdf

H. Mostefai, A. Agouni, N. Carusio, M. Mastronardi, C. Heymes et al.,

, Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells, J Immunol, vol.180, issue.7, pp.5028-5063, 2008.

R. Touyz, A. Briones, M. Sedeek, D. Burger, and A. Montezano, NOX Isoforms and Reactive Oxygen Species in Vascular Health, Molecular Interventions, vol.11, issue.1, pp.27-35, 2011.
DOI : 10.1124/mi.11.1.5

C. Donadee, N. Raat, T. Kanias, J. Tejero, J. Lee et al., Nitric Oxide Scavenging by Red Blood Cell Microparticles and Cell-Free Hemoglobin as a Mechanism for the Red Cell Storage Lesion, Circulation, vol.124, issue.4, pp.465-76, 2011.
DOI : 10.1161/CIRCULATIONAHA.110.008698

C. Liu, W. Zhao, G. Christ, M. Gladwin, and D. Kim-shapiro, Nitric oxide scavenging by red cell microparticles, Free Radical Biology and Medicine, vol.65, pp.1164-73, 2013.
DOI : 10.1016/j.freeradbiomed.2013.09.002

R. Lacroix, S. Robert, P. Poncelet, and F. Dignat-george, Overcoming Limitations of Microparticle Measurement by Flow Cytometry, Seminars in Thrombosis and Hemostasis, vol.36, issue.08, pp.807-825, 2010.
DOI : 10.1055/s-0030-1267034

Å. Thulin, C. Christersson, J. Alfredsson, and A. Siegbahn, Circulating cell-derived microparticles as biomarkers in cardiovascular disease, Biomarkers in Medicine, vol.87, issue.6, pp.1009-1031, 2016.
DOI : 10.1016/j.jjcc.2014.06.014

L. Pasalic, R. Williams, A. Siupa, H. Campbell, M. Henderson et al., Enumeration of extracellular vesicles by a new improved flow cytometric method is comparable to fluorescence mode nanoparticle tracking analysis, Nanomedicine: Nanotechnology, Biology and Medicine, vol.12, issue.4, pp.977-86, 2016.
DOI : 10.1016/j.nano.2015.12.370

U. Erdbrügger and J. Lannigan, Analytical challenges of extracellular vesicle detection: A comparison of different techniques, Cytometry Part A, vol.59, issue.Suppl 1, pp.123-157, 2016.
DOI : 10.1016/S0006-3495(91)82229-9

A. Revenfeld, R. Baek, M. Nielsen, A. Stensballe, K. Varming et al., Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood, Clinical Therapeutics, vol.36, issue.6, pp.830-876, 2014.
DOI : 10.1016/j.clinthera.2014.05.008

N. Arraud, C. Gounou, D. Turpin, and A. Brisson, Fluorescence triggering: A general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry, Cytometry Part A, vol.77, issue.2, pp.184-95, 2016.
DOI : 10.1002/cyto.a.20886

A. Shet, O. Aras, K. Gupta, M. Hass, D. Rausch et al., Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes, Blood, vol.102, issue.7, pp.2678-83, 2003.
DOI : 10.1182/blood-2003-03-0693

E. Van-beers, M. Schaap, R. Berckmans, R. Nieuwland, A. Sturk et al., Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease, Haematologica, vol.94, issue.11, pp.1513-1522, 2009.
DOI : 10.3324/haematol.2009.008938

A. Tantawy, A. Adly, E. Ismail, N. Habeeb, and A. Farouk, Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications, Platelets, vol.294, issue.6, pp.605-619, 2013.
DOI : 10.1001/jama.294.1.81

G. Gerotziafas, P. Van-dreden, M. Chaari, V. Galea, A. Khaterchi et al., The acceleration of the propagation phase of thrombin generation in patients with steady-state sickle cell disease is associated with circulating erythrocyte-derived microparticles, Thromb Haemost, vol.107, issue.6, pp.1044-52, 2012.

E. Mahfoudhi, Y. Lecluse, F. Driss, S. Abbes, C. Flaujac et al., Red cells exchanges in sickle cells disease lead to a selective reduction of erythrocytes-derived blood microparticles, British Journal of Haematology, vol.390, issue.4
DOI : 10.1016/j.bbrc.2009.09.102

, Br J Haematol, vol.156, issue.4, pp.545-552, 2012.

D. Nébor, R. M. Santiago, R. Vachiery, N. Picot, J. Broquere et al., Fetal hemoglobin and hydroxycarbamide moduate both plasma concentration and cellular origin of circulating microparticles in sickle cell anemia children, Haematologica, vol.98, issue.6, pp.862-869, 2013.
DOI : 10.3324/haematol.2012.073619

D. Nebor, A. Bowers, P. Connes, M. Hardy-dessources, J. Knight-madden et al., Plasma Concentration of Platelet-Derived Microparticles Is Related to Painful Vaso-Occlusive Phenotype Severity in Sickle Cell Anemia, PLoS ONE, vol.21, issue.1, p.87243, 2014.
DOI : 10.1371/journal.pone.0087243.t001

M. Kasar, C. Bo?a, M. Yeral, S. Asma, I. Kozanoglu et al., Clinical significance of circulating blood and endothelial cell microparticles in sickle-cell disease, Journal of Thrombosis and Thrombolysis, vol.14, issue.1, pp.167-75, 2014.
DOI : 10.1111/j.1751-553X.2007.00937.x

L. Van-tits, W. Van-heerde, P. Landburg, M. Boderie, F. Muskiet et al.,

, Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis, Biochem Biophys Res Commun, vol.390, issue.1, pp.161-165, 2009.

A. Piccin, C. Murphy, E. Eakins, J. Kunde, D. Corvetta et al., Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia, Journal of Extracellular Vesicles, vol.105, issue.1, p.28414, 2015.
DOI : 10.1182/blood-2004-05-1896

Y. Garnier, F. S. Etienne-julan, M. Elana, G. Petras, M. Doumdo et al.,

, Differences of microparticle patterns between sickle cell anemia and hemoglobin SC patients

, PLoS One, vol.12, issue.5, p.177397, 2017.

R. Hierso, N. Lemonne, R. Villaescusa, M. Lalanne-mistrih, C. K. Etienne-julan et al., Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study, British Journal of Haematology, vol.54, issue.5, pp.805-813, 2017.
DOI : 10.1194/jlr.M038281

URL : https://hal.archives-ouvertes.fr/inserm-01476067

A. Marsh, R. Schiffelers, F. Kuypers, S. Larkin, G. Gildengorin et al.,

, Microparticles as biomarkers of osteonecrosis of the hip in sickle cell disease, Br J Haematol, vol.168, issue.1, pp.135-143, 2015.

M. Westerman, A. Pizzey, J. Hirschman, M. Cerino, Y. Weil-weiner et al.,

, Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy, Br J Haematol, vol.142, issue.1, pp.126-161, 2008.

D. Brunetta, D. Santis, G. Silva-pinto, and A. ,

, Hydroxyurea increases plasma concentrations of microparticles and reduces coagulation activation and fibrinolysis in patients with sickle cell anemia, Acta Haematol, vol.133, issue.3, pp.287-94, 2015.

Y. Garnier, F. S. Connes, P. Garnier, M. Etienne-julan, M. Lemonne et al.,

, Decrease of externalized phosphatidylserine density on red blood cell-derived microparticles in SCA patients treated with hydroxycarbamide, Br J Haematol, 2017.

D. Allan, A. Limbrick, P. Thomas, and M. Westerman, Release of spectrin-free spicules on reoxygenation of sickled erythrocytes, Nature, vol.62, issue.5850, pp.612-615, 1982.
DOI : 10.1042/bj1880881

P. Franck, E. Bevers, B. Lubin, P. Comfurius, D. Chiu et al.,

, Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells, J Clin Invest, vol.75, issue.1, pp.183-90, 1985.

S. Liu, L. Derick, S. Zhai, and J. Palek, Uncoupling of the spectrin-based skeleton from the lipid bilayer in sickled red cells, Science, vol.252, issue.5005, pp.574-580, 1991.
DOI : 10.1126/science.2020854

B. Rank, N. Moyer, and R. Hebbel, Vesiculation of sickle erythrocytes during thermal stress, Blood, vol.72, issue.3, pp.1060-1063, 1988.

M. Nouraie, J. Lee, Y. Zhang, T. Kanias, X. Zhao et al., The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe, Haematologica, vol.98, issue.3, pp.464-72, 2013.
DOI : 10.3324/haematol.2012.068965

J. Cuschieri, E. Bulger, J. Billgrin, I. Garcia, and R. Maier, Acid Sphingomyelinase Is Required for Lipid Raft TLR4 Complex Formation, Surgical Infections, vol.8, issue.1, pp.91-106, 2007.
DOI : 10.1089/sur.2006.050

S. Dinkla, K. Wessels, W. Verdurmen, C. Tomelleri, J. Cluitmans et al., Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure, Cell Death & Disease, vol.50, issue.10, p.410, 2012.
DOI : 10.1182/blood-2010-10-312801

URL : http://www.nature.com/cddis/journal/v3/n10/pdf/cddis2012143a.pdf

A. Awojoodu, P. Keegan, A. Lane, Y. Zhang, K. Lynch et al., Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD, Blood, vol.124, issue.12, pp.1941-50, 2014.
DOI : 10.1182/blood-2014-01-543652

URL : http://www.bloodjournal.org/content/bloodjournal/124/12/1941.full.pdf

P. Browne, D. Mosher, M. Steinberg, and R. Hebbel, Disturbance of plasma and platelet thrombospondin levels in sickle cell disease, American Journal of Hematology, vol.81, issue.4, pp.296-301, 1996.
DOI : 10.1111/j.1365-2141.1992.tb02989.x

URL : http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-8652(199604)51:4<296::AID-AJH8>3.0.CO;2-R/pdf

S. Camus, B. Gausserès, P. Bonnin, L. Loufrani, L. Grimaud et al., Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease, Blood, vol.120, issue.25
DOI : 10.1182/blood-2012-02-413138

, Blood, vol.120, issue.25, pp.5050-5058, 2012.

R. Rother, L. Bell, P. Hillmen, and M. Gladwin, The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma Hemoglobin, JAMA, vol.293, issue.13
DOI : 10.1001/jama.293.13.1653

, JAMA, vol.293, issue.13, pp.1653-62, 2005.

J. Villagra, S. Shiva, L. Hunter, R. Machado, M. Gladwin et al., Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin, Blood, vol.110, issue.6, pp.2166-72, 2007.
DOI : 10.1182/blood-2006-12-061697

G. Annarapu, R. Singhal, A. Gupta, S. Chawla, H. Batra et al., HbS Binding to GP1b?? Activates Platelets in Sickle Cell Disease, PLOS ONE, vol.14, issue.3, p.167899, 2016.
DOI : 10.1371/journal.pone.0167899.s007

C. Helms, M. Marvel, W. Zhao, M. Stahle, R. Vest et al., Mechanisms of hemolysis-associated platelet activation, Journal of Thrombosis and Haemostasis, vol.99, issue.Suppl., pp.2148-54, 2013.
DOI : 10.1161/01.CIR.99.24.3118

D. Noubouossie, P. Lê, L. Rozen, F. Debaugnies, A. Ferster et al., Evaluation of the procoagulant activity of endogenous phospholipids in the platelet-free plasma of children with sickle cell disease using functional assays, Thrombosis Research, vol.130, issue.2, pp.259-64, 2012.
DOI : 10.1016/j.thromres.2011.10.016

R. Rother, L. Bell, P. Hillmen, and M. Gladwin, The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma Hemoglobin, JAMA, vol.293, issue.13
DOI : 10.1001/jama.293.13.1653

, JAMA, vol.293, issue.13, pp.1653-62, 2005.

K. Ataga and N. Key, Hypercoagulability in Sickle Cell Disease: New Approaches to an Old Problem, Hematology, vol.2007, issue.1, pp.91-97, 2007.
DOI : 10.1182/asheducation-2007.1.91

D. Zhang, C. Xu, D. Manwani, and P. Frenette, Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology, Blood, vol.127, issue.7, pp.801-810, 2016.
DOI : 10.1182/blood-2015-09-618538

S. Camus, D. Moraes, J. Bonnin, P. Abbyad, P. et al.,

, Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease, Blood, vol.125, issue.24, pp.3805-3819, 2015.