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Abstract. We extend classical results from the Colombeau algebra, con-
cerning point-value characterizations of generalized functions, to the more
general case of multi-parameter (C,E,P)–algebras. Our investigations in-
clude considerations of the different definitions of subspaces related to
tempered generalized functions.
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1. Introduction

Pointvalue characterizations are useful for proving existence and unique-
ness of solutions to various differential problems, and the well-definedness of
(generalized) point-values is also relevant for considerations of the possibiliy of
composition of generalized functions.

We extend the known results in two ways: We consider multi-indices as regu-
larisation parameters. and scales other than the polynomial scale, in particular
those generated by a given set of nets. This setting allows a fine analysis of
the singular spectrum of solutions to a given problem, and to clearly identify
the contribution of the different sources, like initial data or irregular coeffi-
cients [13, 8].

The results extend, mutatis mutandis, the known results from the usual
Colombeau algebra [9, 2, 15], which are reproduced in the corresponding case.
Nevertheless, the consideration of several parameters and non-polynomial scales
is not always completely straightforward. Asymptotic bounds usually given
explicitely in terms of ε ∈ (0, 1], e.g., in the notion of slow scale nets, do not
make manifest in how far they correspond to the regularization and to what
extent they are related to the choice of the polynomial scale. Since in our
approach the parameters themselves cannot be used as a numerical value, the
relation with the asymptotic scale is necessarily made manifest in an explicit
manner.
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2. (C, E ,P)–algebras

We consider the setting of (C, E ,P)–algebras [12, 13], which is a special case
of the asymptotic extension of topological algebras as described in [10].

Definition 2.1. Assume given a filter base BΛ on a set of indices λ ∈ Λ. For
x, y ∈ KΛ with K = R or C, the notation x = O(y) (resp. x = o(y)) means that
there is (resp. for all) c > 0 and some Λ′ ∈ BΛ, |xλ| ≤ c |yλ| for all λ ∈ Λ′.
Then for any solid subring S ⊂ KΛ, i.e., a subring such that

(1) ∀(x, s) ∈ KΛ × S : x = O(s) ⇒ x ∈ S ,

and any semi-normed K–vector space (E ,P), we define

(2) H(S,E,P) =
{
f ∈ EΛ | ∀p ∈ P : p(f) ∈ S

}
,

where p(f) = (p(fλ))λ∈Λ ∈ RΛ
+ ⊂ KΛ. We will also consider H(S,K,P) for any

subset K ⊂ E which does not need to be a vector (sub)space.

Example 1. A left filtering partial order ≺ on Λ induces the base of filter
BΛ = {Λλ; λ ∈ Λ} with Λλ = {λ′ ∈ Λ | λ′ ≺ λ}. Examples for (Λ,≺) are (N,≥)
and ((0, 1] ,≤). In practical applications it can be useful to have several inde-
pendent parameters, λ = (ε, η, ...), which may correspond to different processes
of regularization, requiring different respective scales [14, 8]. We may also con-
sider more complex types of parameters, e.g. λ = (ε, ϕ) ∈ (0, 1]×D(Ω), where
D(Ω), the space of compactly supported smooth functions, would be equipped
with an appropriate filter.

Example 2. The set of complex nets of at most polynomial growth indexed by
(0, 1] can be written as A =

{
x ∈ C(0,1] | lim sup |xε|1/| log ε| < ∞}

[3]. For E =
C∞(Rn) with the usual family of seminorms P = { pK,α : f 7→ ‖∂αf‖L∞(K); K b
Rn, α ∈ Nn }, this yields H(A,E,P) = EM , Colombeau’s moderate nets.

Proposition 2.2. Consider Λ and (E ,P) as in the above Definition 2.1.

1. If A is a solid subring of KΛ, then H(A,E,P) is an A–module for component-
wise multiplication, and an A–algebra if E is a topological algebra.

2. If I is a solid ideal of A, then H(I,E,P) is an A–linear subspace of H(A,E,P),
and an ideal of H(A,E,P) if E is a topological algebra.

3. As a consequence, the factor space H(A,E,P)/H(I,E,P) is again an A–
module, but also an A/I–module (and an algebra, if E is a topological
algebra).

4. For (E ,P) = (K, {|·|}), we get H(A,K,|·|)/H(I,K,|·|) = A/I.

Definition 2.3. Consider (E ,P) and A, I as in the above Proposition 2.2.
The factor ring C = A/I is called the ring of generalized numbers associated
to A and I, and the C–algebra AC(E ,P) := H(A,E,P)/H(I,E,P) is called the
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(C, E ,P)–algebra of generalized functions. If (E ,P) is a sheaf of K–algebras over
a topological space X, then we let (for open sets Ω ⊂ X)

(3) AC(E ,P) := Ω 7→ AC(E(Ω),P(Ω)) .

Example 3. Assume that for all a ∈ A there is ā ∈ A∗ with a = O(ā), where A∗

is the set of invertible elements of the ring A. Then we have the “canonically”
associated ideal IA := {x ∈ A | ∀a ∈ A∗ : x = o(a)}, which is solid if A is:
For A as in Example 2, we get nets going to zero faster than any power, IA ={
x ∈ C]0,1] | lim |xε|1/| log ε| = 0

}
. With E ,P as before, this yields Colombeau’s

simplified (or “special” [9]) algebra Gs(Rn) over the generalized numbers C.
Example 4 ((“Overgenerated” (C, E ,P)–algebras.)). For any nonempty subset
B0 ⊂ (R∗+)Λ, let B = 〈B0〉 be the closure of B0 under addition and division
(consisting of rational fractions of “linear combinations” with positive integer
(or rational) coefficients of products of elements of B0.) Then A = AB0 ={
x ∈ KΛ | ∃b ∈ B : x = O(b)

}
is a solid ring, and C = CB0 = A/IA is said to

be generated by the set B0, and ACB0
(E ,P) the (C, E ,P)–algebra generated

by B0. (In earlier publications, the term “overgenerated” had been used to
describe this construction.) In practical applications, this construction is useful
to construct the adequate algebra for a given differential problem [5, 6, 7]. For
B0 =

{
(ε)ε∈(0,1]

}
we get back Colombeau’s polynomial scale. Sometimes we use

the fact that B is countable whenever B0 is countable or finite. (Actually every
(C, E ,P)–algebra whose ideal is IA as given in Example 3, is generated by the
set B0 = A∗ ∩ RΛ

+, but this set is uncountable except for pathological cases.)
Remark 2.4. The assignment f 7→ (f)λ∈Λ + H(I,E,P) defines a map i : E →
AC(E) iff 1l = (1)λ∈Λ ∈ A, or equivalently, if A contains at least one (and
thus any) nonzero constant sequence. Then this map is injective iff (E ,P)
is Hausdorff and 1l /∈ I ( ⇐⇒ I 6= A). We shall assume these three
conditions to hold throughout the sequel of this paper. (The condition
(xλ)λ∈Λ ∈ I ⇒ lim (xλ)λ∈Λ = 0 is sufficient but not necessary to have 1l /∈ I;
and for A = AB0 and IA as in Example 4, all these conditions on A an I are
satisfied for arbitrary sets B0.)

Proposition 2.5. If (E ,P) is a presheaf of semi-normed K–algebras over a
topological space X, i.e.,

1. for any open Ω ⊂ X, the algebra E(Ω) is endowed with the set P(Ω) of
seminorms such that, if Ω1 ⊂ Ω2 ⊂ Ω and ρ2

1 is the restriction from Ω2

to Ω1, then for each p ∈ P(Ω1), we have p ◦ ρ2
1 ∈ P(Ω2).

2. for any open covering (Ui)i of an open set Ω ⊂ X and each p ∈ P(Ω),
there is a finite subfamily (Ui1 , ..., Uin) of (Ui)i and p1 ∈ P(Ui1), ...,
pn ∈ P(Uin) such that for all u ∈ E(Ω), p(u) ≤ p1(u|Ui1

)+...+pn(u|Uin
) ,

then AC(E ,P) defined in (3) is again a presheaf.
Moreover, if˙ E is a fine sheaf, then AC(E ,P) also is a fine sheaf.

The proof is given in [12], and, for the last statement, in [10].
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3. Multiparameter algebras of tempered generalized func-
tions

We first study the relations between two closely related definitions of spaces
of tempered generalized functions, which generalize the “simplified” version
Gτ (Ω) of the corresponding space introduced by Colombeau in [1]. An impor-
tant property of functions in Gτ (Ω) is that their point-values in (not necessarily
compactly supported) generalized points are well-defined. This is also relevant
when considering the possibility of composition of generalized functions. In the
previously introduced framework it is most natural to consider

AC(OM )(Ω) := AC(OM (Ω),Pτ (Ω)) ,

the C–extension of Schwartz’s space OM (Ω) of “multipliers” or slowly increasing
functions, with topology given by the family of semi-norms

Pτ (Ω) = { pϕ,α : f 7→ ‖ϕ · ∂αf‖L∞(Ω) ; ϕ ∈ S(Ω), α ∈ Nn } .

Elements of OM (Ω) are smooth functions for which all these seminorms are
finite,

OM (Ω) = {f ∈ C∞(Ω) | ∀α ∈ Nn ∀ϕ ∈ S(Ω) : pϕ,α(f) < ∞} .

For the sequel, it is also important to note that OM (Ω) is a topological algebra,
which is trivial if Ω is bounded, but else (and in particular for Ω = Rn) requires a
rather lengthy proof of Lemma 4 of [2] (personal communication by A. Delcroix).

It is well known [11] that for Ω = Rn, we have OM (Rn) = Og
M (Rn), where

Og
M (Ω) = {f ∈ C∞(Ω) | ∀α ∈ Nn ∃r ∈ N : q−r,α(f) < ∞} ,

with qr,α : f 7→ sup
{ |(1 + ‖x‖)r ∂αf(x)| ; x ∈ Ω

}
. We do not claim, however,

that the topologies induced by Pτ (Rn) resp.Qτ = {qr,α} are the same. Actually,
the qr,α are not seminorms on the whole of Og

M (Ω), which could be written
as projective limit of the inductive limit of the spaces Er,α on which these
seminorms are finite. For the same reason, the corresponding factor algebra

(4) Gτ,C(Ω) = Mτ,A(Ω)/Mτ,I(Ω)

where for any S ⊂ KΛ,

(5) Mτ,S(Ω) =
{
f ∈ (Og

M (Ω))Λ | ∀α ∈ Nn ∃r ∈ N : (q−r,α(fλ))λ ∈ S
}

,

does not fit in the framework of (C, E ,P)–algebras as defined in Def. 2.3. (It
is included, however, in the more general concept reviewed in [3].) Since we
will not apply the construction of Def. 2.3 with this space, we do not need to
know whether Og

M (Ω) is a topological algebra. The obvious estimates using the
qr,α are sufficient to establish Mτ,A(Ω) as an algebra and Mτ,I(Ω) as an ideal
thereof.
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Remark 3.1. In the above definition, the integer r ∈ N must not depend on
λ ∈ Λ, i.e., for any representative u ∈ u, the whole net u = (uλ)λ must lie in a
subspace of C∞(Ω) on which some q−r,α is finite, for given α ∈ N.

Theorem 3.2. (i) Consider C = A/I as in Def. 2.3. Then, for S = A and
S = I, we have Mτ,S(Rn) ⊂ H(S,OM ,Pτ )(Rn).
(ii) Assume the additional hypothesis that the base of filter BΛ is countable, and
that A and I are given as

A =
{

x ∈ KΛ | ∃` ∈ Z : x = O(b(`))
}

, I =
{

x ∈ KΛ | ∀` ∈ Z : x = o(b(`))
}

in terms of a countable set
{
b(k) ; k ∈ Z} ⊂ RΛ

+ such that ∀k, ` ∈ Z : k <

` ⇒ b(k) = o(b(`)). Then we have: Mτ,A(Rn) = H(A,OM ,Pτ )(Rn) and therefore
AC(OM )(Rn) can be seen as Gτ,C(Rn) modulo the canonical image, in Gτ,C(Rn),
of the larger ideal H(I,OM ,Pτ )(Rn).

Remark 3.3. Such a countable set
{
b(`)

}
exists for asymptotic algebras [4] and

thus in the Colombeau case. In most applications, when A/I is generated by
a finite number of nets, we can choose a subset of B (c.f. Example 4) with
the required property. The hypothesis on

{
b(`)

}
could be relaxed, but for the

scope of this short paper, we have to confine ourselves to this somehow limited
framework, leaving a more general treatment for a future work.

To prove the above theorem, we will use the following Lemma:

Lemma 3.4. Consider f ∈ H(A,OM ,Pτ )(Ω), with A as in Theorem 3.2. We
have f ∈Mτ,A(Ω) if, and only if,
(6)

∀α ∈ Nn ∃`, r ∈ N ∃K b Ω ∃Λ′ ∈ BΛ ∀λ ∈ Λ′ ∀x /∈ K :
(1 + ‖x‖)`

(∂αfλ(x))λ

≤ b
(r)
λ .

Proof. From the definition (5) of Mτ,A(Ω), it is clear that (6) is satisfied for
any f ∈Mτ,A(Ω), with any K b Ω, and ` = p, r = `′, where b(`′) is dominating
q−p,α(f) in (5). Conversely, assume that (6) holds for some f ∈ H(A,OM ,Pτ ). We
have to show that for each α ∈ Nn, there is r′′ such that the analogous relation
is verified also inside K. For this, it is sufficient to consider the definition of
H(A,OM ,Pτ ) with the seminorm pϕ,α for ϕ ∈ D(Ω) ⊂ S(Ω) equal to 1 on K: This
implies that pϕ,α(f) is an element of A, which by the hypothesis is dominated
by some b(r′).
Multiplying by (1+‖x‖)−` and restricting x to K makes the left-hand side only
smaller. Thus, for `′′ = max {`, `′}, choosing r′′ such that br + br′ = O(br′′) we
have the inequality in (6) for all x ∈ Ω, i.e., f ∈Mτ,A(Ω).

Proof. of Theorem 3.2. (i) From the definitions (of S in particular), we have
Mτ,X(Ω) ⊂ H(X,OM ,Pτ )(Ω) for X = A and X = I: For any α, if such p
exists in (5), then, since any ϕ ∈ S decreases faster than (1 + ‖x‖)−p, one
has pϕ,α ≤ C q−p,α (with C = sup |(1 + ‖x‖)p ϕ(x)|), and since X is solid,
q−p,α(f) ∈ X ⇒ pϕ,α(f) ∈ X.
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(ii) For the converse inclusion with X = A and Ω = Rn, we assume that BΛ

has an equivalent countable base Λ1 ⊃ Λ2 ⊃ .... Then, in view of Lemma 3.4, if
f /∈Mτ,A(Ω) then

∃α ∈ Nn ∀`, r ∈ N ∀K b Ω ∀Λ′ ∈ BΛ ∃λ ∈ Λ′ ∃x /∈ K :
|∂αfλ(x)|
(1 + ‖x‖)`

> b
(r)
λ .

For Ω = Rn, this allows to construct, for some α ∈ Nn, the sequence (x`)`∈N and
(λ`)`∈N such that ‖x`+1‖ ≥ ‖x`‖ + 2, λ` ∈ Λ` and (1 + ‖x`‖2)−` |∂αfλ`

(x`)| ≥
b
(r)
λ`

for all ` ∈ N. Let us consider the element ϕ ∈ S which consists of “bumps”
of height 1 centered in these x`,

ϕ(x) =
∑

`∈N
(1 + ‖x`‖2)−`ρ(x− x`), ρ ∈ D(Rn), supp ρ ⊂ B1(o), 0 ≤ ρ ≤ 1 = ρ(o).

Obviously, it is such that pϕ,α(fλ`
) ≥ b

(`)
λ`

for every `, therefore (pϕ,α(fλ))λ is
not dominated by any a ∈ A and thus f /∈ H(A,OM ,Pτ ).

We have the following characterization of the ideal H(I,OM ,Pτ ):

Lemma 3.5. Under the same hypotheses as in part (ii) of Theorem 3.2,

H(I,OM ,Pτ )(Rn) =

=
{
u ∈ OM (Rn)Λ | ∀α ∈ Nn ∀` ∈ Z ∃p ∈ N : q−p,α(uλ) = o(b(`)

λ )
}

.

Proof. With the quantifiers and asymptotics exchanged, the proof of the non-
trivial inclusion is here the same as for H(A,OM ,Pτ ) ⊂ Mτ,A in the preceding
theorem.

4. Generalized points and point values of generalized func-
tions

Here we generalize classical results concerning point values in the Colombeau
algebra, as given, e.g., in [9], to the multiparametric algebras introduced above.

Definition 4.1. For a given ring of generalized numbers C = A/I, the gener-
alized points in Ω ⊂ Rn, Ω̃ = ΩA / ∼ , are equivalence classes of A–moderate
sequences x ∈ ΩA = H(A,Ω,‖·‖) =

{
x ∈ ΩΛ | (‖xλ‖)λ ∈ A

}
modulo the equiva-

lence relation

x ∼ y ⇐⇒ (‖xλ − yλ‖)λ ∈ I ⇐⇒ x− y ∈ H(I,Rn,‖·‖) .

The compactly supported points in Ω̃ are those having a representative in a
compact set, Ω̃c = Ω̃ ∩ {

x̃ ; x ∈ KΛ, K b Ω
}

, or equivalently, those having
a compact support, defined as the set of cluster points of any representative.

Remark 4.2. Since an open set Ω ( Rn is not a vector space, we cannot write Ω̃
as quotient vector space, but have to use the set-theoretic formulation modulo
an equivalence relation. However, for applications (where we are only interested
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in the behavior for “λ small enough”), it amounts to the same to consider points
of R̃n = AC(Rn, ‖ · ‖) which have a representative in ΩΛ. Since elements of I
have zero limit, this implies that, for open Ω, all representatives of such points
lie in Ω for λ small enough. (However, for some values of λ, we may have
xλ /∈ Ω. Then, an expression f(xλ) is not defined for these λ, if the domain of
f is Ω.)

We now prove the following generalization of Proposition 1.2.45 in [9]:

Theorem 4.3. Let C = A/I be a ring of generalized numbers, E the space of
C∞ functions on a connected open Ω ⊂ Rn, with topology given by the supre-
mum norms of all derivatives on compact sets, P =

{
pK,α : f 7→ ‖∂αf‖L∞(K)

}
.

Then, for any u ∈ AC(E ,P) and x̃ ∈ Ω̃c, u(x̃) is a well defined element of
C = K̃.

This means that the sequence (uλ(xλ))λ is an element of A, for any rep-
resentatives (uλ)λ resp. (xλ)λ of u resp. x̃, and that its class modulo I is
independent of the choice of these representatives.

Proof. Consider representatives (uλ)λ, (vλ)λ of u and (xλ)λ, (yλ)λ of x̃. Let us
first show that (uλ(xλ))λ ∈ A. Indeed, we can assume that for all “sufficiently
small” λ, xλ lies in some compact K. Then, since for all compact sets K and
α ∈ Nn, pK,α(uλ) ∈ A, we have that (uλ(xλ))λ ∈ A. In the same way we have
for any j ∈ H(I,E,P), (jλ(xλ))λ ∈ I. We use this in

uλ(xλ)− vλ(yλ) = uλ(xλ)− uλ(yλ) + [uλ(yλ)− vλ(yλ)]

to see that the last part is an element of I. As to the first part, we use

uλ(xλ)− uλ(yλ) =
∫ yλ

xλ

graduλ(ξ) · dξ

=
∫ 1

0

graduλ(xλ + s(yλ − xλ)) · (yλ − xλ) ds .

(Since we have xλ − yλ → 0 following BΛ, all segments connecting xλ and yλ

eventually lie in uλ’s domain Ω.) Thus

|uλ(xλ)− uλ(yλ)| ≤ ‖yλ − xλ‖
∫ 1

0

‖ graduλ(xλ + s(yλ − xλ))‖ds ,

and using that (‖yλ − xλ‖)λ ∈ I and (pK,α(uλ))λ ∈ A (for |α| = 1 and some
compact K containing the segments [xλ, yλ], which exists since both x and y

are in Ω̃c), we finally get uλ(xλ) − vλ(yλ) ∈ I, i.e., the required independence
of respective representatives.

The following Lemma, which generalizes Theorem 1.2.3 in [9], will be used
to prove Theorem 4.6:
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Lemma 4.4 ((Characterization of the ideal by 0-order estimate)). Assume
that I = IA (cf. Example 3) and for every x ∈ A and a ∈ A∗, there is b ∈ A∗

such that b x = o(a). Then we have H(I,E,P) = H(A,E,P) ∩ H(I,E,P0), where
P0 = {pK,0; K b Ω}, pK,0 = ‖·‖L∞(K) . In other words, for u ∈ H(A,E,P) we
have u ∈ H(I,E,P) iff for every K b Ω, (‖uλ‖L∞(K))λ

∈ I.

Remark 4.5. The second assumption is satisfied whenever every x ∈ A are
dominated by some y ∈ A∗, thus in particular in algebras generated (as in
Example 4) by a set B0 having an element going to 0 or to infinity.

Proof. We only have to show the inclusion ⊃. Consider u = (uλ) ∈ H(A,E,P)

such that pK,0(u) ∈ I for all K b Ω. It is enough to show that for any partial
derivative ∂i, we still have pK,0(∂iu) ∈ I for all K b Ω. Then, since ∂iu is
still in H(A,E,P), the result holds for any derivative by immediate recurrence.
Let K b Ω and a ∈ A∗ be given. We will show that pK,0(∂iu) = o(a). As
usual, we let L = K + Bδ/2(0), where δ = min(dist(K, ∂Ω), 1). We know that
∂2

i u ∈ H(A,E,P), thus, by assumption, there exists h ∈ A∗ : pL,0(h∂2
i u) = o(a),

and we can assume that |hλ| < δ/2 for all λ ∈ Λ. By Taylor’s theorem, ∂iu(x) =
h−1 (u(x + h ei) − u(x)) − 1

2h∂2
i u(x + h̃ ei) , with h̃λ ∈ [0, hλ]. From this we

get, as required,

pK,0(∂iu) ≤ |h−1|︸ ︷︷ ︸
∈A

2 pL,0(û)︸ ︷︷ ︸
∈I

+ 1
2 |h| pL,0(∂2

i û)︸ ︷︷ ︸
=o(a)

= o(a).

Theorem 4.6. Under the assumptions of Lemma 4.4, if u ∈ AC(E ,P), then

u = 0 ∈ AC(E ,P) ⇐⇒ ∀x̃ ∈ Ωc : u(x̃) = 0 ∈ C .

Proof. The implication “⇒” is a consequence of Theorem 4.3. Let us show “⇐”
by contraposition: Assume u 6= 0. This means that for some K b Ω and some
representative (uλ) ∈ u, (pK,0(uλ))λ /∈ I (using the preceding Lemma 4.4).
Now, if we let xλ ∈ K such that uλ(xλ) = ‖uλ‖L∞(K), then x̃ ∈ Ωc and
u(x̃) 6= 0.

The requirement of compactly supported points can be dropped if we con-
fine ourselves to tempered generalized functions defined in (4), in analogy to
Proposition 1.2.45 in [9].

Theorem 4.7. For u ∈ Gτ,C(Ω) and x̃ ∈ Ω̃, u(x̃) is a well-defined element of
C.
Proof. Let u resp. x be representatives of u resp. x̃. We have that r ∈ N
such that aλ = supξ∈Ω(1 + |ξ|)−r|uλ(ξ)| defines an element a = (aλ)λ of A, and
b = (‖xλ‖)λ is also in A. Replacing ξ by xλ, we get |uλ(xλ)| ≤ (1 + bλ)raλ, and
since A is a solid ring, we also have (uλ(xλ))λ ∈ A. As in the previous proof,
|uλ(xλ) − uλ(yλ)| ∈ I if y is another representative of x̃ and thus x − y ∈ I,
and in the same way |uλ(xλ)− vλ(xλ)| ∈ I for any other representative v of u,
achieving the proof.
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The following Lemma generalizes Theorem 1.2.25 in [9, p.27]:

Lemma 4.8 ((Characterization of Mτ,I by 0-order estimates.)).
Under the assumptions of Lemma 4.4, and the additional hypothesis that Ω is
an n–dimensional box, we have Mτ,I = Mτ,A ∩Mτ∗,I , where

Mτ∗,I =
{

f ∈ (C∞(Ω))Λ | ∃p ∈ N :
(
supx∈Ω|(1 + ‖x‖)−pfλ(x)|)

λ∈Λ
∈ I

}
.

Proof. For u ∈ Mτ,A ∩Mτ∗,I , we will show that q−p,0(∂iu) = o(a) for some
p ∈ N and all a ∈ A∗. Let p ∈ N such that q−p,0(u) ∈ I and q−p,0(∂2

i u) ∈ A,
and let a ∈ A∗ be given. Using the assumption, there is h ∈ A∗ such that
h q−p,0(∂2

i u) = o(a) (and we can assume that hλ → 0). Again, by Taylor’s
theorem, ∂iu(x) = h−1 (u(x+h ei)−u(x))− 1

2h∂2
i u(x+ h̃ ei) , with h̃λ ∈ [0, hλ].

(Since Ω is a box, for each ei the sign of hλ can be chosen such that the segments
[x, x+h ei] lie in Ω.) In the expression of q−p,0 we use ‖x‖ ≥ ‖x + hλ ei‖−‖hλ‖
and (1 + ‖x + h ei‖ − ‖h‖)−p = (1 + ‖x + h ei‖)−p(1 + O(h)) to get

q−p,0(∂iu) ≤ |h−1|︸ ︷︷ ︸
∈A

q−p,0(u) (2 + O(h))︸ ︷︷ ︸
∈I

+ 1
2 |h| q−p,0(∂2

i û)(1 + O(h))︸ ︷︷ ︸
=o(a)

= o(a).

Theorem 4.9. Under the hypothesis of Lemma 4.8 and assuming that BΛ is
cofinal to a countable filter base, u ∈ Gτ,C(Ω) is zero iff u(x̃) = 0 ∈ C for all
x̃ ∈ Ω̃.

Remark 4.10. As in [9, Thm. 1.2.50], the above holds for any moderate open
set Ω.

Proof. The sense (⇒) is a consequence of Theorem 4.7, e.g., by taking as rep-
resentative of u the sequence identically equal to zero. Now consider (⇐), by
contraposition. Assume that u ∈ Gτ,C \ {o}, i.e., (uλ)λ ∈ Mτ,A \Mτ∗,I (using
Lemma 4.8). By definition and assumptions made on A, IA, this means that

∀α ∈ Nd ∃p ∈ N ∃a ∈ A ∀Λ′ ∈ BΛ ∃λ ∈ Λ′ : sup
x∈Ω

|(1 + ‖x‖)−p ∂αuλ(x)| ≤ aλ

(∗)
(where a ∈ A can be taken invertible, a ∈ A∗, without loss of generality), and

∀q ∈ N, ∃j ∈ A \ I, ∀Λ′ ∈ BΛ, ∃λ ∈ Λ′ : sup
x∈Ω

|(1 + ‖x‖)−q uλ(x)| ≥ jλ , (∗∗)
j ∈ A∗, w.l.o.g., according to the assumption. Now take α = 0 and p ∈ N,
a ∈ A as in (∗), and j ∈ A∗ such that (∗∗) holds with q = p + 1. Then,
(1 + ‖x‖)−p−1 |uλ(x)| ≤ (1 + ‖x‖)−1 aλ < jλ whenever ‖x‖ ≥ aλ j−1

λ , λ ∈ Λ0.
Thus, in view of (∗∗),
∀Λ′ ⊂ Λ0, ∃λ ∈ Λ′ : sup

‖x‖≤aλj−1
λ

|uλ(x)| ≥ sup
‖x‖≤aλj−1

λ

(1 + ‖x‖)−p−1 |uλ(x)| ≥ jλ .

Thus there is a sequence (Λk)k which can be taken cofinal to BΛ, (λk)k with
λk ∈ Λk, and (xk)k ∈ ΩN such that ‖xk‖ ≤ aλk

j−1
λk

and |uλk
(xk)| ≥ 1

2jλk
. If we

let xλ = xk for λ ∈ Λk\Λk+1, then (‖xλ‖)λ ∈ A, thus x̃ ∈ Ω̃, and (uλ(xλ))λ /∈ I,
i.e., u(x̃) 6= 0 ∈ C, which achieves the proof of the “if” part of Theorem.
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We can establish the pointvalue characterizations in AC(OM ,Pτ ), already
known for the simplified Colombeau case (H. Vernaeve, personal communica-
tion), using

Definition 4.11. A generalized point x̃ ∈ Ω̃ is of slow scale (c.f. [15]), iff

(7) ∃a ∈ A∗ ∀n ∈ N |xλ|n = O(aλ) .

The detailed theorems and proofs will be given in a forthcoming paper.

Acknowledgements. We thank the referee for his careful analysis and detailed
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