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Preface

GENERALIZED FUNCTIONS,
LINEAR AND NONLINEAR PROBLEMS, |

This volume is the first of two dedicated to the proceedingtheflnternational Con-
ference GF 2011 on Generalized Functions, Linear and NeaiRroblems, held from
Monday 18 to Friday 22 April 2011 on the Campus de Schoeldhertinique, French
West Indies. It was organized by the research laboratoryESHRIA of the Université
des Antilles et de la Guyane.

The development of mathematical research at the UnivesSRyench West In-
dies and Guyana (UAG), and repeated encouragement by go#ledrom many coun-
tries all over the world (Austria, Brazil, Japan, Korea, BasSerbia, UK, USA, ...)
led the group “Nonlinear Algebraic Analysis” of CEREGMIA BfAG to decide to
organize an international conference in Martinique. Thenévs part of a series of
international symposia on generalized functions and moewst differential problems.
Earlier instances have been organized in Guadeloupe (€&ra060), Novi Sad (Serbia,
2004), Bedlewo (Poland, 2007) and Vienna (Austria, 2009).

Like many other mathematicians we met or with whom we havecéffe col-
laborations, we work in the framework of generalized fumasi in a very large sense,
including distributions and hyperfunctions, in order tbvedinear and nonlinear prob-
lems. This involves a wide range of ideas, theories, methadgechniques that were
the subject of the conference.

The spectrum of relationships among the themes of the cemferwith other
mathematical fields has increased significantly. It inciydbet is not limited to, the the-
ory of distributions, hyperfunctions and algebras of gafieed functions, linear and
nonlinear differential problems, the concept of regujaaihd functoriality in connec-
tion with sheaf theory, local and microlocal analysis, psmlifferential and Fourier-
integral operators, applications to geometry and mathieaigihysics, and other re-
lated subjects.

The contributions collected in this volume represent itigasions in functional
analysis or PDE theory using several interesting appraaahd various methods and
techniques: approximation of singular parts, multi-saatalysis, ultradistributional
boundary values, cohomogical construction of speciah@sgaegularized semi-groups
for stochastic problems, specific classes of sequencesestiqus of convolution, and
weak asymptotic methods in systems of conservation laws.
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A. Antonevich and T. Romanchuk

SCHRODINGER OPERATOR OF THE FORM —Au+ adu+ bg—flu

Abstract. The paper is devoted to the study of the formal differentigiression of the form
Lu= —Au+adu+ bﬁu
aX]_

with generalized coefficients. Approximations of the silagyart by means of a family of
finite range operators are constructed and resolvent apenee of the approximations is
investigated.

1. Introduction

The stationary Schrédinger operator with singular posngiymbolically written as
(1) —Au+adu,

whered is the Diracd-function, anda is the so-called coupling constant, models scat-
tering on a particle located at the origin of coordinates.

The mathematical difficulties that appear during the ingasion of expression
(1) are related to the fact that the prodéctu in (1) is not defined in the classical
theory of distributions. Therefore, giving sense to theregpion (1) as a self-adjoint
operator in the spade?(R3) (which is usually necessary in quantum theory) requires
overcoming some obstacles.

A mathematical interpretation of the expression (1) wasgiby F. Berezin and
L. Faddeev in [4]. It looks as follows. L&t be the restriction of the Laplace operator
—A on the domain

D(L) = {ue H3(R®), u(0) =0},

whereH?(R?) is the Sobolev space. Thénis a symmetric, but non-self-adjoint op-
erator onL?(R3). All self-adjoint extensions (¥ of the operatoi. can be consid-
ered as possible perturbations of the Laplace operator tanpals, supported at zero.
These self-adjoint extensioh&) are naturally parameterized by a single real parame-
tera € (—o,+o0], the valuen = + corresponds to the Laplace operator, tie= +o

if the perturbation does not influence the operator.

The expression (1) by itself does not contain the infornmatie to what self-
adjoint extensiom.(*) corresponds to the concrete situation. In applicationeitpees-
sion (1) arises as a formal limit (@as— 0) of some family of operatolls.. For example
let

(2) Leu= —Au+gg(X)u,
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320 A. Antonevich and T. Romanchuk

where the potentials(x) is supported at-neighborhood of zero. Under the conditions

a(e) = [e(xdx 20,

[ 1 ldx < Ca(e)

we have
1
@q‘c’(x) )
and the family of potentialge can be symbolically written aa(€)d. Therefore the
family (2) can be considered as an approximation of the fbexaression (1).

The problem s to bring to light what self-adjoint extenstmmresponds to given
approximatiorLe. As a rule, in usual sense the limit bf does not exist and the resol-
vent convergence is considered here. Recall that one satfs:th> L(%) in resolvent
senseif

(3) lim(Le — A~ = (L@ — A1)~

e—0

Different approximations of (1) were investigated in marapers (see [1, 2, 6] and
references in [1]).

The main result looks as follows: #(e) = ag + aje + axe? + - - - , the limit (3)
exists and defines an operatéf); this limit is a non-trivial extensiono( # «) only in
the so-calledesonance casewhena(e) = aje+ are? + - -- and the numbeay belong
to a discrete seh from R, where/\ depends on the given approximation.

In more general cases the family of potenti@l€an be symbolically written as

() & =05+ bk<e>§—xi,

and then the family.¢ is an approximation of the formal expression

(5) Lu= —Au+a6u+gbk§76u
k

Expressions of the form (5) were investigated early in the-dimensional case
[5, 8, 7].

In the present paper we consider some approximations ofn(B)(R*) and
calculate the limits (3). A new effect is discoveretiong resonance casasise, when
the limit (3) does not exist and the family cannot be interpreted as an operator in
Lo(R3).
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2. Approximation using a family of finite rank operators

Let us consider the most simple approximation of the formptession

(6) Lu= —Au+a6u+b@u.
aXl

Letd1, 92 € D(R?) such thathy(x),d2(x) € R and [ ¢i(x)dx=1,i = 1,2. The family
of smooth functions

bt = 2o ()

gives an approximation @fas an element from the space of distributi@®&r?). The
family of linear functionals

Dice(t) = [ duely)uly)dy
gives an approximation @ as a linear functional, since for smoath
®pe(U)d1e — u(0)d=du,

the family of rank one operators
cbl,s(u)d)l.s

is an approximation of the operator of multiplication &ylet

_ 0b2e(x) 1092 /X
W)= e = G (5)

In order to have below a uniform expression, we will use thatan

_ 992(x) I
¢3_6—Xla ¢3,€_€3¢3(€)'
Then 1
ws = E¢37s~

The family of smooth functiongs gives an approximation afd/dx; as an element
from the space of distributior®’ (R?), the family of linear functionals

We(u) = [ wey)uly)dy

gives an approximation @d/0dx; as a linear functional.
For a smooth function, by definition
0% ou

_ 00 _ Nl ' /
a—xlu_ —a—Xl(O)6+ u(O)a—Xl = (8';u)0+ (5;u)d
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and the family of rank two operato¥g: (U)o (X) + P2 (U)Pe(X) is an approximation
of the operator of multiplication b§d/dx;.

Therefore the family of operators
(7) Le(u) = —Au+Teu,

where

Teu—a(e)re(x) [ U(y)912(y)dy
®
+016) 8220 [ W90 By ) [ ub2:) ]

is an approximation of the formal expression (6).

The problemis to find the limit of these approximations ingkase of resolvent
convergence.

For fixede > 0 the resolvenR(A, €) = (L — Al)~* can be constructed in explicit
form by using results from [3].

Let
a€) O 0
Alg) = ( 0 0 b(g) )

be a matrix, generated by the coefficieats) andb(g). The inverse matrix is
1

71 ag O
Ag=| 0 0 &
o L
B(e)

Let us introduce the fundamental solution

1

E(x) — — = gl

wherep? = —\, Rep > 0 and a vector function

E(e) = (Ex(e);E2(e);Ea(€)),  Ex(e) € L2(R®),

where
E1(g) = Ex*b1e, Ea(g) =Ex*b2e, E3(€) = Ey* Y.
Denote
(u,v) = /u(x)v(x)dx,
F(e) = (fu(e); f2(e); fa(e)), fu(e) €C,
where

fl(E) = <¢1.5,E)\ * f>7 fz(i) = <¢2,E,E)\ * f>, f3(8) = <l|J5,E)\ * f>
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THEOREM1. Lete > 0and suppose thata) € R, a(€) #0, b(g) € R, b(g) £0.
The resolvent R\, €) is determined foReA # 0 and can be given by the expression

-1

9) ROAE)f = f+Ey — < [AY(e) +B(e,\)] TF(e), E_(s)> ,

where

(026:E1(€))  (D26:E2(€)) (D26 Ea(€))
(We;E1(e))  (We;Ea(g))  (We;Ea(g))

Ifa(e) =0, b(e) € R, b(g) # 0, then

(<¢1,5;E1(8)> (b1 E2(€)) <¢1,s;|53(3)>>
(&)

1 = —

(10) ROAE)f = f+Ey — <[A—1(s) +B(e,\)] TF(e), E(s)> ,

where

(0 b ( (02eEa(e)) (026Es(e))
A@‘(b(e) 0 ) B“’”‘( (W Eale))  (bnEs(e)) )

F(8) = (f2(e); fa(e)),  E(e) = (E2(e); Es(e)).

3. Resolvent convergence of approximations

According to (9), the behavior of the resolvék({\, &) depends on the behavior of the
matricesA1, B(g,\), and on the behavior of the vectdEse) andF (&).

Let us denote
D(g,A) = A 1(e) + B(g,\)

and let
D (g, \) = (djj).

Then PP o
([AY(e) +B(N)] Fe).E(e)) = (D e NF(e). E(e))

) (
= [dha(g) fa(€) + di2(€) fa(€) + )
(

€

d3(e) f3(€)] Ea(e)
+[d21(€) f1(€) + d22(€) f2(€) + d23(e) fa(€)] Ex(e)
+[dz1(€) f1.(€) + da2(€) f2(€) + das(€) f3(€)] Es(€).

Let us consider the behavior of the vect&i() andF (¢) ase — O.

It follows from the properties of functiors ¢ that the limits

lim Eq(g) = liL‘%Ez(s) =E,

e—0

exist in the spack,(R3), and for anyf € L(R3) there exist the limits

lim fi(e) = lm} fa(g) = (f xEy)(0).

e—0
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In the distribution spacB’(R?) we have

But in the spacé(R?)

el = \// <éw(§)>2dx: </|lp(t)|2dt)% s

the norm||Ez(¢)|| is increasing as /e\/e andEz(€) do not have a limit in the space
Lo(R3).

Similarly, it can be that forf € Lo(R3) the valuefs(¢) increases and does not
have a limit, but alwayds(g) = o(1/e/€).

Therefore the finite limit of the resolvent (9) exists onlyhe elementsl;3(€),
d23(€), dz3(€), as well agdz1(€) f1(€) + da2(€) f2(€) 4 daz(€) f3(€)) are small, namely

(11)  daa(e) ~0(e?); dai(e)fa() + daale) fa(€) + daa(e) fa(g) ~ o(e?).

It follows that it is not enough to find the limit of the familyf anverse matrices
~L(g,N\), but it is also necessary to check subsequent terms (notluaigain term)
of the expansion of the matri®1(g,A), on which the behavior of expressions (11)

depends.

Let us consider the behavior dff ase — 0.
LEMMA 1. The functions
bij(e.A) = (d1e. Ex*bje)

are analytic functions of two variables p (A € C\R{, A = —p2, whereRep > 0,
p= (—A)%, a continuous branch of the functitﬁn)\)%), and admit an expansion

bij(e,A) = hij (e, —uz) =

™l
8

( ) (8u kM z E k+1MIJ)’

k=0

where

1
M = gy | (= 00ax

In particular, according to the properties of functioggx),
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THEOREM?Z2. Let
ae) =eay + % +e3ag+..., b(e) =ePbp+eP byt -,

where g # 0, by # 0.

I. Ifa; # —1/M§11), then the resolvents (9) converge to the resolvent of théakap
operator.

Il. Suppose that the resonance conditiqrm—l/MEl> holds.

e If p > 4, the resolvents (9) converge to the resolvent of the operftowhere
a=—ay(M{;")%
e If p=3the resolvents (9) converge to the resolvent of the ope#sttor

41

Ra(W)f =B\~ [(f «EA(0))] Ea

wherea = —ap(Mi;V)* ~ bs(M3; "M, + My M),
e If p < 2the limit of the family of resolvents (9) does not exist.

Proof. The matrixD(g,\) can be written in the form

1 1p (=1 1pg(=1) 1png(=

1pg(=1 1p(-1 1 1 (=
My, — My, — At Ws)‘L?fM)ZS +...
1pp(=1) 1 1pg(=1) 1pp(-1

1 1 1
— = —=b_3+ =b_
b(&) 83 3+82 2+ y
t 1 +do+
ae) € 1+a+t..

whereb_3 = g, a1 = £ In this case the expansion of the matiife, A) is

) —1) -1
e ML+
-1 1) -1
%Mél)—%ﬁ‘--- %Mé )_%4-___ glgb,3+glz(Mé3 b2+ |-
) -1 —)
gleé1>+--- gljvb73+€12(Mé2 )—i-bfz)—i-... gls‘Més)"‘---

For the inverse matrix, we have expression

1

_ #
~ detD(g,\) DY),

D~ 1(g,\)
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where
1 _
detD(eA) = — (b3’ (M +a1)
1 - - - — — _
E[(M(lzl)Méll>+Méll)M(131)—(M§11>+6L1)(M§31>+b2)) b s

(- gt ) (0.~ MY+ )M bl s+

an
di; di, dfs
D*eN)=| d, di, di; |,

# # #
d31 d32 d33

1 -
d?zz —gb_3M§_3l) +...,

1 (1
d’f3:8—4M(12 g+,

1 _
dgl: —§b73Méll> +,

1 -1 -1 ~Dpa(-1
d = = (MY (M5 +an) —My Mg )+

1 _
di, = _gb,gwgﬁ +a1)+...
1
d3#1: gMél )b_3+

1 B
dt, = —gb_g(Mﬁll> taq)+...,

1 -1 -1 —Dpg(-1
= (MG MY ey —MGIME )+

d3s =
33 €2

MY +a1)(b_s)? #0,

then
D 1(g,\) = 0, diz=O0(e®), da3=O(e®),

and the condition (11) fulfilled. It follows that the resohte (9) converge to the resol-
vent of the Laplace operator.
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The limit of the matrixD~1(g,\) can be non-zero, the resonance condition
(12) MY +a 1) (b 3)2=0,
is fulfilled. This condition is equivalent to
a =-1/M{; "
and the resonance is possible only if the coeffic&n} admits an expansion
a(e) = eay +€%ax +0(€?),

wherea; = —1/M§11>.
Under this condition

detD(g,\) = s_lﬁ [(ME”M:@_” + MéI”MEl)) bs— (‘ﬁ + a~°) (b*3)2} te

andD~1(g,\) is a matrix of the form

(13) g(--) e2(---) €2(--)
e2(-) () &)

So

41t 0

4T0—
Iir‘rz)D‘l(e,)\) = 0 0
= 0 O

where )
-1 -1 -1 -1 -1
a=-a (Mil )) —bs (Miz Mz + M M ))-
It follows from (13) that the condition (11) are fulfilled arlde limit of the family of

resolvents (9) is the resolvent of the operaibr

4t

Ru()f = F+Ey — 51— [(F+Er(0))]Ex.

If p# 3 the calculations are similar. O

We emphasize that a new effect arises here: it can be thatrite fmit of
the resolvents (9) does not exist. Let us demonstrate tféstéh detail for the case
a(e)=0.
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THEOREM3. Leta(e) =0and k(e) = ePbp+ePT by 1+ -+, where iy # 0.

e If p> 3, then the limit of the family (4) in resolvent sense is thelhepoperator.

e Ifp=2and
—3), (-1 2 2
MIMe" — (MG? +Re) (MG? +Re) £0,

then the limit of the family (4) in resolvent sense is the hagloperator.

¢ If p=2and resonance condition
—3)p4(~1 -2 -2
Mss M, - (Més )+R2) (Méz )+R2) =0
is fulfilled, then limit of the family of resolvents (6) doex exist.

Proof. If a(g) =0, then the matriD(g,A) is

Ipg(=1) _ u 1 1=
D(E) M2 — gt e TaMas”
R 1 15 p(=1) 1 (=)
B T zMs2 &Mgs™ +
Remark that

whereRp = 1/bp.
If p> 3, then the main term in the expansion of the maix{z,A) is the invert-

ible matrix
100 R
andD~1(g,\) — 0 aseP.
If p= 3, then the expansion of the matie,A) begins from the invertible

matrix
1 0 Rp
&\ Ry Mg"

and thuD~1(g,\) — 0 ase® whene — 0.

This means that ip > 3, then the conditions (11) are fulfilled and the limit of
the family (7) in the resolvent sense is the Laplace operator

If p= 2, then the matriD(g,\) can be written in the form

( IGY -k Eiz(M§31>+Rz)+%(M§31>+R1)+...)
1) :

- -1
3 (MGY+Re) + IR+ Img 4.
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—Dpg(-1 -1 -1
Mg ME" — (MGY +Re) (MGY +Re) £0,
thenD~1(g,\) — 0 whene — 0 ase® and the limit of the family (4) in resolvent sense
is the Laplace operator.
Set

—1)p 4 (-1 Hoo(-1 -1 -1
ds = M5, MY - EMEY - (MG +Re) (MG +Ry)

— (MY +Ry) (M7 +Re)
If the resonance condition
,3)

i — (s +Re) (M ) 0

is fulfilled andds # 0, the matrixD~1(g,\) can be written in the form

1 MY + ... —¢ (Mé;l> +R2) — 2Ry + ...
ds | —¢(M" +Re) —&Ri+ ... My, — e 4 4
and
Mg
DleN | @ O .
0 0

But in this case conditions, similar to the conditions (Et¥ not fulfilled. In particular
the expression from (11) includes the term of the form

Ce?f3(€)Es(e),
which for somef € L»(RR3) can satisfy
[€*f3(e)Ea(e)]|, — +eo.

So the finite limit of the family of resolvents (6) does notsxi O
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T. Aoki, N. Honda and Y. Umeta

ON THE FORM OF INSTANTON-TYPE SOLUTIONS FOR
EQUATIONS OF THE FIRST PAINLEVE HIERARCHY BY
MULTIPLE-SCALE ANALYSIS

Abstract. We construct, using multiple-scale analysis, a formal tsmhucontaining suffi-
ciently many free parameters for the first Painlevé hierai@)m, with a large parameter.
This note is a short summary of our forthcoming paper [3].

1. Introduction

Aoki, Kawai and Takei, in 1990's, investigated the traditibPainlevé equations with
a large parametet from a viewpoint of the exact WKB analysis and local struetaf
formal solutions near turning points. In the papers [4, 8 ®,12], they constructed
the formal solutions with 2-parameters caliedtanton-type solutionsnd established
the connection formula among these solutions.

Several Painlevé hierarchies have recently been foundiousareas of math-
ematics and it is also expected to establish the conneationula of instanton-type
solutions for these hierarchies with a large parameter. tikair purpose, we need to
construct instanton-type solutions with sufficiently mémee parameters so that Stokes
phenomena are correctly caught.

In this note, we consider the first Painlevé hierar(Rym, (m=1,2,...) with
a large parametet and construct its instanton-type solutions. For the secoarh-
ber (R )2 of the hierarchy, Y. Takei [13] had constructed instantgmetsolutions by
using singular perturbative reduction of a Hamiltoniantsgsto its Birkhoff normal
form. The first author [2] also constructed them by multiptede analysis. We follow
the latter method and construct instanton-type solutiongfgeneral membé&P )m.
Detailed construction will be given in our forthcoming aléi [3].

Acknowledgments. The authors would like to express their sincere gratitudertd.
Jean-André Marti, Prof. Maximilian Hasler and the GF201damizing committee for
giving the opportunity to the third author to take part in dwnference. The third
author is also grateful to all the people who helped her attiméerence.
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2. Instanton-type solutions and multiple-scale analysis

2.1. The first Painlevé hierarchy with a large parameter

Letw; (j =1,2,...) be the polynomial of variablag andv, (1 <k, | < j) defined by
the recurrence relation

1 j -1 1 -1
(1) wj =3 > Uikt Y UWjk— > > ViVj—k+Cj + Ojmt.
=1 =1 s

Herec;j is a constant andjm, stands for the Kronecker delta. Then the first Painlevé
hierarchy(P)m with a large parametey (m= 1,2,...) is the system of non-linear
equations

dy;
1Y%
HZZVJ, J:1;27 , M,
2) g
Vi .
7ld_tJ:2(uj+1+uluj+Wj)7 J:]-a 27"'ama

whereu; andv;j are unknown functions dfwith the additional conditioim,1 = 0.

Note that the first membém,); gives the traditional first Painlevé equatiBn
with a large parametey.

As the definition of the system is very complicated, we remftite system into
the simpler form with the generating functions defined by

UG::OOUG", ve::mvek, W) = 3wkt
o (6) k;k (6) k;k (6) k;k
C(O) 1= 3 (ok+Bumt)8 ™.

K=1
HereB denotes an independent variable. Then the sy$&rmhecomes

2Vo
d [ ue
4 1= = —v?
@ ” dt( Ve ) —(1+2ule)(1_u)+%

with the condition that the coefficients &+ of U andV are zero. Herd = Bimplies
thatA— Bis equal to zero module™?2,
2.2. 0-parameter solutions of (P)m

For the construction of instanton-type solutions, we fikgtstruct a special kind of
the solution of(P ), called a @parameter solution We rewrite the result [7] on the
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0-parameter solution dfR ), by using generating functions. Let us consider formal
series im 1 of the form

(5) G =S n G, vit)=3n k), j=1..,m
=0 o

and let us define the generating functions with respect ttetiting termsij o andvj o
of uj andvj by

8

(6) Go(8) == S Gj .08 and p(8) :zzvj,oei,
=1 =1

respectively. Then, putting) into (2), we find the following equations for the gener-
ating functions:

1+2C

7 Vo =0, (1+ 2U1109) = (1_ 00)2.

The equations can be easily solved and we have

- [ 1+2C
=1—-/—.
(8) to 1+ 201109

Note that theus ¢ in the right-hand side of8) is taken so that the coefficient 1 o of
6™ 1in (g is zero.
2.3. Instanton-type solutions of( P ),

Leta= —%, and we fix it in what follows. We first introduce several naias to define
instanton-type solutions.

Let ug jo andvy jq (k=1,2,..., ] =0,1,2,...) be unknown functions of the
variablet. We define

9 u:= Zbk

and denote by (u) (resp.of(v)) the coefficient 0B in u (resp.v).

Let © be the set of formal power series @fwithout constant terms, and let
Q: (08)2 —; ©? be the map defined by the relation

(10) Q( §3 ) 1=2< (1+ zal,otgl)ex—O?(X)e )

forx=S x;0l,y= S y0 co.
2

8

Uk ja (1) 85019, vi= Vi ja (1) 85019,
, 2.2,
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Then, by the change of unknown functiong#),
(11) U =lo+n°(1— do)u, V =Vo+n%(1—Go)v,

we obtain the system of unknown functiofus v) in the form

(52 (%) =n*((sutw )~e( %))
)2
+n®u <h+%> < \lj )e,

with

(13)  S(u,v):= %(—v, u)Q( \ng ) +309(u)ue and h:= %(Iog(l— (o).

As the form of the above system suggests, the @agays an important role
in the study of(P)m and its eigenvectoi(A) corresponding to an eigenvalden the

sense ofY(A(A)B) = AA(A)B has the special forr< A :((){\))/2 ) with

0 had >\2 —8i
(14) a\) := 1907 kgog()\)keHl’ g\ = %.

Since the coefficients &1 in U andV are zero, the coefficietil — Gg)a(A) of ™1
must be zero. Hence the eigenvaluef Q is a root of the algebraic equation

(15) AN =A™~ T Gog(h)™* =0,
k=1

whereli o is given by(5). Note that\(A, t) is an even function ak.

Letvii(t), ..., vim(t) be the roots of the algebraic equatiomoivhere we set
Vk = —V_g, and letQ be an open subset it. We always assume the following two
conditions from now on.

(A1) The rootsvi(t)’s (1 < |i| < m) are mutually distinct for eache Q.

(A2) The functionpivi(t) +--- + pmvm(t) does not vanish identically of2 for any
(p17 EERE) pm) € Zm\{o}
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Lett:= (14, ..., Tm) bemindependent variables, and let us define the rings

(16)

(@)= o) Hﬂaerl’ onfemonte n“e_m”,

whereM (Q) (resp.O(Q)) denotes the set of formal power serie®iwith coefficients

in multi-valued holomorphic functions with a finite numbérlanching points and
poles (resp. holomorphic functions) 6n We also denote byly (Q) (resp. 29 (Q))
the subset iy (Q) (resp. 49(Q)) consisting of a formal power series of order less
than or equal ta with respect tay. For¢(ty,...,Tm, t, 0, n) € 44(Q), we define the
morphismi by

t t
(17) l(¢):¢<n [visas o | vm(s>dst,e,n).
By replacing% in (12) with

d
+"'+|’]VmF,
m

we obtain the partial differential equation associatedh i) of the form

() (o2 ) or(2)
I RO
) ()

Here the operatd? is defined by

0
+nNva=—

d d
(18) — +NVi— %

ot o1y

d d
(20) P=x:—-0Q, Xt =Vi=— + - +Vnz—
o1y O

Then, for a solution(u, v) € 42(Q) := (4«(Q))? of the system (19), thé(u), 1(V))
becomes a formal solution of the system (12).

DEFINITION 1. We say that a formal solutiofU, V) on Q of the systent4)
is of instanton-type ifU, V) has the form(0o, Vo) +n® (1 — Go)(1(u), 1(v)) for which
(u,v) € 42(Q) is a solution of(19).

2.4. Existence of instanton-type solutions fo(P)m

Now we state our main theorem whose proof is given in [3].
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THEOREM1. LetQ be an open subset it} and we assume the conditiof#sl)
and(A2). Then we have instanton-type solutions of equatior{®0f, with free2m-
parameterB_m, ..., Bm) € C2M[[n~Y]. In particular, we can construct the solution
(u, V) in 43(Q) for (19) of the form

(21) ( y ) - fi(T, t;)AVK),

with
fi(t,t;n) = ; n“m( Y fepe(t)e? )
peZ™, [p|=]
where|p| := [p1|+ -+ |Pml.

We can give the more precise form fifappearing in the above theorem. The
leading termfy o and the subleading terrfip  of fy, for example, are described by the
following Lemmas 1 and 2.

LEMMA 1. We have
(22) fco=wxe™ (1< |kl <m),

wherewy, w_k (1 <k < m) are multi-valued holomorphic functions éhof the form
t

(w:[3<k0>exp</ ( Z(p(k i)B fexp( Z/hdt) hk> dt)

oo_k:Bwﬁexp</ ( Z(p(k B fexp( 2/ h; dt) hk> dt)

with free2m-parameter$[3(_°r)n, ey [351?)) € C?™. Hereg(k, j) are rational functions of
the variablesy’s and hx are holomorphic functions i with the conditions

(24) (p(k7 J) = (p(_k7 J) (1 <j< m)7 he =h_.

(23)

For the explicit forms ofp(k, j) andhy, see[3]. Furthermore the subleading
term of the solution is given by the following.

LEMMA 2. For any k(1 < k] <m), the { o is given by

2 | e

fa = | vy, (@t Vi@ ettt —vjo e )
1<[j[<m,
(25) 17k

2
- g ﬁh' Kj 0| +E&)Km7k+}yk X i
J:le I Vg 2 Vi
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Hereyy are holomorphic functions i@ with yx = y_x and h j are defined by

4 (k-vi)

1<1<m,
(26) b= —2 (£0,  hoi=3 —
kj = , e
N v 277

with the conventionjh == hy ;-
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ANALYTIC FUNCTIONS, CAUCHY KERNEL,
AND CAUCHY INTEGRAL IN TUBES

Abstract. Analytic functions in tubes in association with ultradistitional boundary values
are analyzed. Conditions are stated on the analytic fumesatisfying a certain norm growth
which force the functions to be in the Hardy sp&t& Properties of the Cauchy kernel and
Cauchy integral are obtained which extend results obtaprediously by the author and
collaborators.

1. Introduction

The definitions of regular con@ C R" and the corresponding dual co@é of C are
given in [2, Chapter 1] where the notation used in this papeiso contained. The
Cauchy and Poisson kernels corresponding to theTifbe R"+iC ¢ C" witht € R"
are defined by

K(z—t):/ exp(2mi(z—t,u))du, ze TC=R"4iC, teR",

and

_ [K@z=1)]?
- K(2y)

respectively; see [2, Chapter 1]. The sequemdgsp = 0,1,2,..., of positive integers
with conditions(M.1) through(M.3') and the subsequently defined spaces of functions
and ultradistributions of Beurling and Roumieu typ¥x,L%) and 2’ (x,L®), wherex
is either(Mp) of Beurling type o{Mp} of Roumieu type, are given in [2, Chapter 2].
For sequence®l, which satisfy the conditiongM.1) and (M.3'), the Cauchy kernel
K(z—t) € D(x,L5),1 < s< oo, [2, Theorem 4.1.1] as a function b R" for z¢ T¢
whereC is a regular cone ifR"; and the Poisson kern€l(zt) € D(x,L5),1 < s< oo,
[2, Theorem 4.1.2] as a function bk R" for z€ T€. ForU € D/(x,LS) the Cauchy
and Poisson integrals are definedéds ; z) = (U;,K(z—t)) andP(U;z) = (U;,Q(z 1)),
respectively, foz € TC andt € R" for appropriate values of see [2, Chapter 4].

In this paper we extend results in [2] concerning the nornwgiiaof C(U; 2),
U € D'(x,L9), to the values k s< 2. We obtain a new boundary value result for
C(U;z) and obtain a decomposition theoremttbe 2 (x.L%),1 < s< 2. Considering
functions analytic in the tub&C which are known to have ((Mp),L2) boundary
values, we impose conditions on the boundary value whiateftite analytic functions
to be in the Hardy spade?(T°).

Q(zt) z=x+iye T =R"+iC, teR",

339
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2. Cauchy kernel and integral

Let the sequenchkl,, satisfy(M.1) and(M.3'). ForU € 2/(,L%),1 <s< »,C(U;2)

is an analytic function iT¢ = R" +iC [2, Theorem 4.2.1]; and we have a pointwise
growth estimate o€(U; 2) ([1], [2, Theorem 4.2.2]). We have a norm growth estimate
[2, Theorem 4.2.3] o€(U; 2) for 2 < s < ; we extend this to & s< 2 by obtaining a
norm growth orC(U; z) for these cases. We recall the associated fundfiofp) given
in[2, p. 15].

THEOREM 1. Let C be a regular cone iiR" and let the sequence JVsatisfy
properties(M.1) and(M.3').
LetUe 2'((Mp),L%),1<s<2 Forl/r+1/s=1

(1) IC(U;2) || < Aly| "M T/ Jy| < 1.

If n =1, (1) holds for ye C = (0,) ory € C = (—,0) where A depends onr and s
and T > O s a fixed constant. If & 2, (1) holds for ye C in which case A depends
onyr,s,n, and C; and T> Ois a fixed constant which depends ony. ¥ 12, (1) also
holds for ye C' c C, for any compact subcon€ 6f C, in which case A depends on
C,C',r,s, and n; and T> Ois a fixed constant which depends on C

LetUe 2'({Mp},L%),1<s< 2 and1l/r+1/s=1. If n=1, (1) holds for
yeC=(0,0) orye C=(—»,0) where A depends on r and s and>TO is arbitrary.
If n > 2, (1) holds for ye C in which case A depends oirg,n, and C; and T> 0 is
arbitrary. If n> 2, (1) also holds for y= C' c C, for any compact subconé 6f C, in
which case A depends on@,r,s, and n; and T> Qs arbitrary.

Proof. Both cases fox = (Mp) or x = {Mp} when the dimension = 1 are proved by
analysis similar to that contained in the proof of [2, Theoi®4.2, pp. 126-128]. By
this proof we in fact have fan =1

[C(U;2)||Lr < AW (/)
fory e (0,0) ory € (—,0); but the constanh depends ow in this case. By restricting

ly] <1, (2.1)is obtained in both cases whéris independent of.
We now prove (1) for dimension> 2. Using [2, Theorems 2.3.1 and 2.3.2]

[ee]

(2) C(U;2) = (Ui, K(z—1)) = g (—1)lUF(xy)
|a]=0

where
Fa(y) = [ Ta(DIK(z—t)c
RN

and thefy € L",1/r +1/s= 1, satisfy the properties in [2, Theorems 2.3.1 and 2.3.2].
We note the estimate [3, (3.22)] ®f'K(z—t) which holds forz= x+iy € R"+iC.
In [3, (3.22)] thed > 0 depends oly € C; whereas thid depends o€’ C C if y is
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restricted to compact subcong&sc C. From this estimate [3, (3.22)] and restricting
ly] <1 we have a constafls, depending o®, such that

ID{K(z—1)| < S(C*)F(H)T[_n_‘“‘|a|‘“‘Q§+‘°“|y|—n—\0‘\(5+ X—t[2) "

and recall the other constants in this estimate from [32)3.2Jsing this estimate with
vl <1,

IFa(%,y)| < SCHF (myre ™ol QE 19y =1l (x,y)

where
Fabxy) = [ Ma®](3-+[x—1?) "ot

from which
[Fax,y)| < SCT (M= eljalelQs™*jy n-lelg
x (/an )" (5+ |x—t|2)1/2’/4dt) B
follows using Hélder's inequality. Now using Fubini’s themn

* —N— 1 // —N—
IFa(Y)llr < SCF (e ™19 o Qs Qg ¢ Iy ™1 o

Using this estimate we return to (2) and obtain

ICU:lr < > IFa(xY)Lr
la|=0
< SCHMMT" Qe Y™ S 1ol ®(Qs/ ) Fa
|a|=0
From the proof of Stirling’s formula
lall®l <eap,  jal=1,2,3,...,

and we have the convention that/|®/ = 1 if |a| = 0. Using these facts, the norm
properties offy from [2, Theorems 2.3.1 and 2.3.2] and proceeding as in [Z3[4
and (4.60)] the growth (1) follows whefe = 2eQs/krt for somek > 0 if x = (Mp)
Beurling and for alk > 0 if *x = {Mp} Roumieu. Throughout the analysis the constant
Qs depends og € Cif yis not restricted to compact subco®®s” C. If ye C' C C, the
constanQg, and hence the constamisandT, is not dependent opbut is dependent
on the compact subcoi@ c C. The proof of Theorem 1 is complete. |

In addition to completing th&" norm growth properties for the considered
Cauchy integral for alf, 1 < s < o, Theorem 1 shows that the Cauchy inte@@Jl; z)
studied there is an example of the type of analytic functi@h worm growth that we
study in section 3 below in this paper.
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We make a comment concerning the relation between Theorem PaTheo-
rem5.4.2,p. 126]. Foye C

[y M (T/) < Q" (Ta/Iy)

where the constant Q does not depend/dar T; > T. The estimate obtained in the
proof of [2, Theorem 5.4.2] is entirely correct, and therastie obtained in Theorem 1
is a different one which is more precise.

A The Fourier transform of B! function@will be symbolized by¥ [@(t); X] or by
o(x) with F ~1[g(t);X] denoting the inverse Fourier transform. We have proved

lim (K(x+iy—1),0(X)) = F lc- (u)@u);t], @€ D(x,R"),
y—0,yeC

in D(x,L%),2 < s< o, [2, Theorems 4.2.5 and 4.2.6]; heteis a regular coneC*
is the dual cone, ani¢:(t) is the characteristic function &*. This result is used to
obtain a boundary value result and a decomposition theovebh & 2 (x,L5),2 < s<
o, [2, Corollary 4.2.1 and Theorem 4.2.7]. We extend the abow# property and
subsequent results to< s < 2 for the cases th& = (0,») or C = (—,0) in R or
C =C,isan-rant cone irR" where

Cu={yeR":yy;>0,j=1,...n}, pe{-11}, j=I,..,n

THEOREM2. Let G, be any n-rant cone ifR", and let t; be the characteristic

function of the dual cone C=C,.. Letg D(x,R") where the sequence\atisfies
the propertiesM.1), (M.2), and(M.3'). We have

0.0~ i

in D(x,L%),1<s< 2.

Proof. Since then-rant coneC,,, its dual coneC; = C,, and the corresponding Cauchy
kernel function are products of one-dimensional half lines the one-dimensional

Cauchy kernel function, it is sufficient to prove the resnlbne dimension. We give

an outline of the proof for the case tf@t= (0,«). Forg e D(x,R") we know

F DX 0(); u] = u® 7 [@(x); u].

As noted in [2, p. 14], conditioiM.2) on the sequencil, implies the existence of
constant® andH larger than 1 such that

Mpiq < AHPYIMMq.

Using these facts and integration by parts techniques weegtee following for the
coneC = (0,0) with 1 < s< 2:

(K(x+iy —1),0(x)) € D(,L%), teR' yeC
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/fp(u)e‘ZT‘i‘“due D(x,L5), teR:
0

‘ DY ((K(x+iy —t),@(x)) —/wap(u)e*mt”du) , < Nh"Mq,

a=0,1,2,...,foreveryh> 0, (Mp) Beurling, or for soméa > 0, {Mp} Roumieu, with
N > 0 independent of > 0 anda; and

lim IID?(<K(X+iy—t),<p(X)>—/ Q(u)e”™du)||s =0,
y—0, ye(0,0) 0

a=0,1,2,..., which proves the result. O

As noted above Theorem 2 extends [2, Theorems 4.2.5 and t2t& cases
1 < s< 2 for half line cone€ = (0,%) andC = (—«,0) and for n-rant cone§ = C,,.

The following result extends [2, Corollary 4.2.1] to theead < s< 2 for the
n-rant cone€ = C, considered in Theorem 2.

THEOREM3. LetU e D' (x,L%),1<s< 2, and@pe D(x,R"). Let the sequence
M, satisfy(M.1), (M.2), and (M.3'). We have

lim (C(U;x+iy),0(X)) = <U,/Rn|Cﬁ(u)¢(u)e‘2m<hu>du>.

y—0, yeCy

Proof. Using the change of order of integration formula [2, Theoreth4], Theorem
2, and the continuity df) € 2/ (x,L5) we have

lim (U iy). 000) = lim (UL (KOcHY - ),000)

= <U,/Rn Icﬁ(u)(})(u)e‘zm<t’”>du>.
[l

Now we may obtain a decomposition resultfbe D' (x,L5),1 < s< 2, similar
to that which we have obtained for2s < « in [2, Theorem 4.2.7]. For eadh, we
form

fu(z) = <U’/c* exp(2ru'<z—t,u>)du>, ze T,

and note that there aré' A-tuplesp. As in the proof of [2, Theorem 4.2.7] we use
Theorem 3 here and obtain

V0= Uy [ et dy =3 Im _(fu0criy).o0)
/Gl

m y—0,yeCy

forU € D'(%,L%),1 < s< 2, andp € D(*,R"). This extends [2, Theorem 4.2.7] to
1 <s< 2forn-rant cone€ = C,,.
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3. Analytic functions

Let B denote a proper open subseflf, and letd(y) denote the distance frogne B
to the complement d8 in R". In [2, Chapter 5] we have considered analytic functions
in tubesT® = R" - iB satisfying

(3) [ (x+iy)[|ur < K(L+ (d(y)) ™M T/ yeB,

whereK > 0,T > 0,m > 0, andqg > 0 are all independent ofc B andM*(p) is the
associated function of the sequemégdefined in [2, p. 15].

ForB = C, aregular cone ifR", we have shown in [2, section 5.2] that analytic
functionsf(z),z € TC, which satisfy (3) fom=0 orq= 0 and 1< r < 2, obtain a
boundary valudJ € @’((Mp),Ll) asy — 0,y € C, [2, Theorem 5.2.1]. A converse
result is proved in [2, Theorem 5.2.2]. In this converse Itega can now easily prove
as an additional conclusion that

f(z2) = (U, K(z—t)), zeTC,

using the proof of [2, Theorem 5.2.2]; that is, in [2, TheorBr@.2] we can add as
a conclusion that the analytic functidiiz) constructed there can be recovered as the
Cauchy integral of its boundary value.

Additionally we note that the result[2, Theorem 5.3.1], &edce the results [2,
Theorems 5.3.2 and 5.3.3], can be stated and proved undewttesgeneral hypothesis
that the se€C is any open connected subseffSfwhich is contained in or is any of the
2" n-rantsC, in R". The only sacrifice in the conclusion is that the support ef th
constructed functiog(t) can not be determined under this more general hypothesis.

Let us recall the Hardi" functions in tube3 © = R"+iC, for C being a regular
cone, which have been studied extensively by Stein and \\fgis&n analytic function
f(2),z€ T, is in the Hardy spacll’ = H"(T),r > 0, if

[f(x+iy)llr <A, yeC,

where the constat > 0 is independent of € C. In [4] we showed that if an analytic
functionf(z),z€ TC, has a distributional boundary valueshwhichis aL", 1 <r < oo,
function, the analytic function must be H". Results of this type have applications in
guantum field theory.

The Hardy spaced" are subspaces of the analytic function fnwhich satisfy
(3) form=0 org= 0, which are the analytic functions we considered in [2,iead.2]
with respect to the existence of boundary value®iq(M;),L"). Thus for the values of
r that we have considered in [2, section 58]) € H" will have an ultradistributional
boundary value. We now obtain a result, like those in [4], iak we show for = 2
that any analytic functioi(z),z € T€, which satisfies (3) witin= 0 org = 0 and with
r = 2 and whose boundary value 4 ((Mp), L?), which exists by [2, Corollary 5.2.3],
is a bounded.? function in 2’ (M), L?) must be &H? function.
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THEOREM4. Let f(z) be analytic in F, C being a regular cone, and satisfy
(4) | f(x+iy)|[ 2 < KM T/ yec.

Let the?’((Mp),L?) boundary value of (z) be a bounded function& 2/ ((Mp),L?).
We have {z) ¢ H?(T) and

f(z) = Rnh(t)K(z—t)dt: Rnh(t)Q(z;t)dt, ze TS,

Proof. From [2, Corollary 5.2.3] and its proof we have

(5) f(z) = Rnh(t)K(z—t)dt: Rng(t)ezmmdt, ze T,

where supfg) C C* almost everywhere arfo= # ~1[g] with this inverse Fourier trans-
form being an element i’ (Mp),L?) [2, (2.52), p. 27]. Now letv=u+iv € T be
arbitrary but fixed and consid&(z+w)f(z),z< T, where

K(z+w) = /c exp(2ri (z+w, uy)du.

Using [4, Lemma 3.2] we have thKi(z+ w) is analytic inz€ T¢ and
IK(z+w)| <My <o, zeTC,

whereM, > 0 is a constant that depends only wa- Im(w). ThusK(z+w)f(2) is
analytic inz e T€ and satisfies

K (X4 iy 4 w) f (x+iy)]| 2 < KM T/M - yec,

with My being independent afc T€. We haveK (x+iy +w) f (x+iy) — K(x4w)h(x)
in 2/((Mp).L?) asy — 0,y € C; andK (x+w)h(x) € 2/((Mp),L?) sinceK (x+w) is
bounded ir € R". By the proof of [2, Corollary 5.2.3] applied #(z+w)f (z),z€ TS,
we have

(6) K(z+w)f(z) = . K(t+w)h(t)K(z—t)dt,ze TC,

for any fixedw € TC. Now corresponding ta= x+iy € T¢ choosev = —x+iy € T¢
and obtain
K(t+w)K(z—t) = |K(z—1)[?

and
K(z+w) = K(2iy).

With this choice ofw = —x+ iy € TC, (6) becomes

7) f(2) = Rnh(t)Q(z;t)dt, zeTC,
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whereQ(zt) is the Poisson kernel fare TC andt € R". From (7) and the proof of [4,
Lemma 3.5] we have

[ f(x+iy)lliz <[[hlj 2 <o, yeC;

andf(z) € H?(TC). O
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A COHOMOLOGY VANISHING THEOREM AND LAPLACE
HYPERFUNCTIONS WITH HOLOMORPHIC PARAMETERS

Abstract. From 1987 onwards, the theory of Laplace hyperfunctionsbesn developed
by H. Komatsu. Laplace hyperfunctions are represented Esa of holomorphic functions
of exponential type. The aim of this paper is to give the ving theorem of cohomology
groups on a pseudoconvex open subset for holomorphic &msctiith exponential growth at
infinity. As an application of the theorem, we construct theaf of Laplace hyperfunctions
and that with holomorphic parameters, and we also studyagmoperties of these sheaves.
This is a short summary of our paper [1].

1. Introduction

The theory of Laplace hyperfunctions has been developed Byphiatsu (in [3]-[8]) to
give a rigid framework of operational calculus for functsomithout growth conditions
at infinity.

Let us briefly recall the definition of Laplace hyperfunconith support in
[a, 0] (a€RU{+o0}) and that of their Laplace transforms (see [3]-[8]). Détbe
the radial compactificatioff LI St of the complex plane whose topology is defined in
the usual way (see the next section). &P be the sheaf of holomorphic functions of
exponential type, that is, ¥ is an open set i?, thenOZ (V) denotes the space of
all holomorphic function$ (z) onV NC such that for any compact gétin V there are
positive constantsl andC for which we have

IF(z)1 <cd?,  zeknC.

exp
[a, ]

Then the spac®
guotient space

of Laplace hyperfunctions with support[i@ o] is defined as the
oZ*(D?
(1) gexp — C (exp\ [a, 00])
[a, 0] O(c (]D)Z)

Let f(x) be a hyperfunction with support ifa, co] with its defining functionF (z) €
OZP(D?\ [a,0]). Then the Laplace transforfi(A) of f(x) is defined by the integral

fr) = /C e MF (2)dz

where the pati€ of integration is composed of a ray fradfoo (-T/2<a<0)toa
pointc < aand a ray front to €Poo (0 < B < 11/2).

As we have seen, the Laplace hyperfunctions are defined imalgdections of
holomorphic functions of exponential type. Therefore iais important problem to

347
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localize the notion of Laplace hyperfunctions and to cardtthe sheaf of Laplace
hyperfunctions whose global sections with supporfaireo] give ones introduced by
H. Komatsu. In this paper, we construct the sheaf of Laplagpetiunctions and that
with holomorphic parameters by establishing the vanishirggprem of cohomology
groups on a pseudoconvex open subset for holomorphic amgtivith exponential
growth at infinity. The vanishing theorem established heteonly plays an important
role in the construction of the sheaf of Laplace hyperfuortibut also has independent
interest as Example 2 shows. For the details and the probédheorems in this paper,
see N. Honda and K. Umeta [1]

Acknowledgement. To conclude the introduction, the authors would like to esgr
their sincere gratitude to Professor Hikosaburo Komatsihe valuable lectures and
advice in Hokkaido University.

2. The vanishing theorem for holomorphic functions of expoential type

We need to introduce several notions before stating oushémy theorem. Let € N,
let m be a non-negative integer and %" be theradial compactificatiorof C", that
is, the se?" is the disjoint union ofC" and the real (@ — 1)-dimensional unit sphere
SZn—l C RZn.

LetX := C™™ andX be the partial radial compactificatid@?” x C™ of C"™,
We denote by, the closed subsét\ X in X, and we denote by

pr:X=D"xC™ =D (resp.pz:X =D xC"— CM

the canonical projection to the first (resp. second) spacdamily of fundamental
neighborhoods ofzy, wp) € X C X consists of

2 Be(z0,Wo) :={(zw) € X; |z— 2| < &, [Ww—Wwp| < €}

for € > 0, and that ofzy, wo) € X consists of a product of an open cone and an open
ball

1
(3) G (I, wp) = ({ze C" |z >, é € F}u F) x {we C™ |w—wp| < F}’

wherer > 0 andl" runs through open neighborhoodszgin S"—1.
We denote byOx the sheaf of holomorphic functions oh

DEFINITION 1. LetQ be an open subset i. The se0g®(Q) of holomorphic
functions of exponential type @b consists of holomorphic functiongzZw) on QN X
which satisfy, for any compact set Kan

(4) fzw)| <Cke™?, (zw) eKNX),

with some positive constantg @nd Hc. We denote by ® the associated sheaf ot
of the presheaf OF *(Q)}q.
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Let A be a subset itXX. We define the set clg$A) C X, as follows. A point
(z, W) € X« belongs to clal(A) if and only if there exist point$(z, W) Yken in ANX
that satisfy
|Zcsa

||

(2, W) — (z,w) in X and

-1 (k— 00).

Set
NL(A) == X \ closs (X \ A).

DEFINITION 2. LetU be an open subset ¥. We say that U is regular ab if
NL(U) =U NX, is satisfied.

ExampPLE 1. We give some examples of open subsets which are reguar at

e LetU be the open sés,(I",0) UU, whereU is a bounded open subsetinand
the coneG;, (I, 0) is defined by (3) withr > 0 andl" an open subset 6" 1.
ThenU is regular ateo. In particular,D? andD?\ [a,+oo] (a € [~00,00)) are
regular ato.

e For the setJ :=D?\ {1,2,3,4,...,+0c0} we haveNi(U) = S'\ {+o0}, and
hencel is regular ato. HoweverU :=D?\ {1,2,4,8,16,...,+00} is not regu-
lar because o} (U) = S.

For a subsef\ in X, we denote by di$p,A) the distance between a poipand
A e,

dist(p, A) :=inf [p—q|.
geA
For convenience, set digt A) = +oo if Ais empty. We also define, for= (z w) € X,

distyn(q, A) := dist(q, AN p, 1 (p2(a))) = (Z,ier>f€A|z— Z.

Let Q be an open subset . We set

1 distyan(p, X\ Q)

w(p) =min{ 5. TERELDY (- w ex),

()
. 1
Qg = {p: (zw) € QN X;dist(p, X\ Q) > €, |w| < E}’ (e>0).
Now we give the main theorem.
THEOREM1. Assume the following two conditions:
1. QN X s pseudoconvexin X arilis regular atco.

2. AtapointinQnNX sufficiently close to z oo the functiony(z,w) is continuous
and uniformly continuous with respect to the variables \at fg, for anye > 0,
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there existd; > 0 and R > 0 for which (z, w) is continuous on the open set
Q¢ R = Qe N{|7 > R} and satisfies

Wz w)—P(zW)| <k, (Zzw), (zW) € Qe ., [W—W| < ).

Then we have

(6) HYQ, 0g®) =0,  (k#£0).

As condition 2. in the theorem is automatically satisfieddg@roduct of open
sets, we have the following corollary.

COROLLARY 1. LetU (resp. W) be an open subset in®" (resp.C"). IfU NC"
and W are pseudoconvex @' and C™ respectively and if U is regular ab in D?",
then(6) holds forQ :=U xW.

Note that, in the later section, we will see thami¥ 1, the vanishing theorem
still holds for an open subset of product type without theufadty condition atoo.
However, ifn is greater than one, one cannot expect the vanishing theamngmore
without the regularity condition ab as the following example shows.

EXAMPLE 2. Assumen= 2 andm=0,i.e..X = (C(Zz1 ) andX = D%, Set

U ={(@1,2) € X arga)| < 3. [z <21},
Q:=(U)°\ {p=} C X,

where p denotes the pointl,0,0,0) in S* ¢ D*. The open subse®@NX =U is
pseudoconvex iX, while Q is not regular ato. Then we havéi(Q, 0F®) # 0.

3. Laplace hyperfunctions with holomorphic parameters

By Theorem 1, we can construct cohomologically the srﬁé’f of Laplace hyperfunc-
tions and the shea Oy"® of Laplace hyperfunctions with holomorphic parameters.

LetN =R x C™(m > 0), and letN = R x C™ be the closure oN insideX =
D? x C™. Then we have the following theorem.

THEOREM 2. The closed sell is purelyl-codimensional with respect to the
sheafod® i.e.,

AKOF") =0, (K#1).

Here ¢ O5™®) is the k-th derived sheaf @ ® with support inN.

As a particular case, we have the following corollary.
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COROLLARY 2. R is purely 1-codimensional with respect to the shegf,
that is,

AKOEP) =0 (k#£1).

DEFINITION 3. The sheafBOJ® of Laplace hyperfunctions of one variable
with holomorphic parameters is defined by

BORPi= 05 2 o
N

whereZg denotes the constant sheaf Nrhaving stalkZ andwyg denotes the orienta-
tion sheaf#}(Zg) onN.

The global sections of the sheB&DF® can be written in terms of cohomology
groups by Theorem 2. For an open€et R and a pseudoconvex open subiet C™,
by taking a complex neighborhodtiof Q in D?, we have

OV \Q) xT)
OFP(V xT)

BOSP(Q ) = Mg (V X T, 05%) =

Note that the above representation does not depend on aeabfdite complex neigh-
borhooav.

DEFINITION 4. We define the shedf of Laplace hyperfunctions of one vari-
able onR by

57— SO © 0
R

whereZg denotes the constant sheafl&rhaving stalkzZ and wy denotes the orienta-
tion sheaf2}(Zy ) onR.

The restriction of 8" to R is isomorphic to the shea# of ordinary hyper-
functions because @ *|c = Oc. By Corollary 2 we have

= Oz (D?\ [, o))
r - R eX — C 9
[a, ]( ) Q}R p) OEXP(DZ)
Hence the secB[‘;Xfo] defined by H. Komatsu coincides with, .., (R, 35 in our frame-
work.

4. Several properties ofBOg®

We can also show the vanishing theorem on an open subset ghich necessarily
exp

regular ato if n= 1. This fact is deeply related to the flabbinessBal ™.
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THEOREM 3. Let U be an open subset iB?, and W a pseudoconvex open
subset inC™. Then we have

HXU xW, 0f®) =0,  (k#0).

The setd\, N andX are the same as those in the previous section. Now we state

the theorems for the flabbiness and the unique continuatigepty of BOy"™".

THEOREMA4. LetQ; andQ, be open subsets i with Q1 C Q,, and let W be
a pseudoconvex open subse€ifi. Then the restriction

BOYP(Q2 x W) — BOJP(Q1 x W)
is surjective.

COROLLARY 3 ([3]). The sheafB[EXp of Laplace hyperfunctions is flabby.

The following theorem shows that the shedy® has a unique continuation
property with respect to holomorphic parameters.

THEOREMS. LetW and W be non-empty connected open subse@rwith
Wi C W5 andQ an open subset iR. Then the restriction

BORP(Q x Wo) — BOJP(Q x W)

is injective.
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ABSTRACT STOCHASTIC PROBLEMS
IN SPACES OF DISTRIBUTIONS

Abstract. The Cauchy problem for the equatiof{t) = Au(t) + BW(t), t > 0, with white
noiseW andA being the generator of regularized semigroups is studiefiffierent spaces
of distributions. Solutions of the problem in spaces ofribstions with respect to time
variable, random variable and both time and random vasadnle studied.

1. Introduction

The Cauchy problem for operator-differential equationthwihite noise as an inho-
mogeneity often arises as a model of different evolutiorcpsses subject to random
perturbations. The basic one among them is the Cauchy prnoble

(1) X'(t) = AX(t) + BW(t), te€[0,1), 1<, X(0)=,

whereA is the generator of &-semigroup. Because of irregularity of the white noise
W it is usually reduced to an integral equation with the “ptive” of W, i.e. with some
Wiener process (e.g. [14, 12]).

Our work is devoted to generalized solutions of the stoah&stuchy problem
(1) with A not necessarily being the generator @gsemigroup, but being the gener-
ator of a regularized, namely integrated semigrdup {V(t), t € [0,T)} in a Hilbert
spaceH. We supposéW(t),t > 0} to be anH-valued white noise which we define in
our work rigorously in different spaces of distributioBss £(H,H).

The fact that the operatdy is generating only an integrated semigroup means
that the solution operatots(t), t € [0,1), of the corresponding homogeneous Cauchy
problem are not bounded. Therefore one has to introduce segudarized familyv
instead of{U(t)} or consider the solution operators of problem (1) in certzmiaces
of distributions. At the same time due to irregularity, parkarly to discontinuity of
the white noise (it is informally defined as a process wittejmehdent identically dis-
tributed random values with infinite variation) one has tuge the Cauchy problem to
the above-mentioned integral equation with a Wiener pioadich is defined axiomat-
ically as the infinite dimensional generalization of Brommimotion, or to consider the
problem (1) in certain spaces of distributions. The chof@roper space of distribu-
tions depends on the conditions imposedfoand initial value( on one hand and on
the properties of the noiS& on the other hand.

*This work was supported by the Programme of the Ministry ofi¢adion and Science of Russian
Federation 1.1016.2011 and RFFI 10-01-96083
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In the next section (section 2) we give necessary definitfoors the theory
of regularized semigroups, Hilbert space-valued (abgtk&Ener processes, abstract
Schwartz distributions and stochastic distributions.

In section 3 we consider the problem (1) in spaces of Hilh@ate valued dis-
tributions with respect to one variable. If it is the time igdlet (subsection 3.1) we
obtain existence of a unique solution #8generating an-times integrated semigroup,
butW must be &-white noiseWq, whereQ is a nuclear operator iH. If we consider
the problem in the space of distributions with respect tortrelom variableo (sub-
section 3.2), we obtain the result for the equation with thgudar white noise@ = 1),
but A must be the generator of&-semigroup. In section 4 we introduce the space
of distributions with respect to bothandw and obtain the result fok generating an
n-times integrated semigroup aid being the singular white noise.

The beginning of research in this direction was made in [14,10]. In[13, 15]
different approaches to defining of distributiong Endw were studied.

2. Definitions: regularized semigroups, abstract Wiener pocesses and abstract
distributions

2.1. Regularized semigroups

Let A be a closed linear operator afft), t > 0, be bounded linear operators in a
Banach spackh!.

DEFINITION 1. A strongly continuous family V= {V (t), t € [0,T)}, T < oo, of
bounded operators in H is called an R-regularized semigmitp the generator A if

V(DAL = AV()], T € domA, V(t)Z:A/()tV(S)ZdS+R(t)Z, {cH.

The semigroup V is called exponentially boundefMft)|| < Me™, t > 0, for some
M >0, w e R, and local ifT < .

If R(t) = (t"/n!)1, thenV is also am-times integrated semigrouff domA=H
andR(t) = Ris invertible, bounded and densely defined, theis anR-semigrouplf
R =1, then arR-semigroup is &y-semigroup

Note that arR-semigroup in [3] is defined as a strongly continuous famfly o
bounded operators satisfying tResemigroup property

V(t+sR=V(t)V(s), st,s+te]0,T),V(0)=R

with the infinitesimal generator

Gf:=(A—LYf, A>w, domG={f eH: RferanLy}, LAf::/o MV (1) fdt.
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It is called there &-semigroup. We prefer the terniR“semigroup” that reflects its
regularizing property and makes it differ froGy-semigroups, wher€ comes from
“continuity”.

As to integrated semigroups, they are also defined via quoreing “semi-
group property” in [2] with the infinitesimal generator, bué will use the equivalent
general Definition 1. We refer to [9, 8] for examples of inttgid, convolutionR-
semigroups and their generators, including importanediffitial operators.

2.2. Wiener processes

Let (Q, F,P) be a probability spacé] be a Hilbert space ar@d be a linear symmetric
positive trace class operator with a system of eigenve¢®}s forming a basis oH,
such thaQg = o?g;, 37,02 < co.

DEFINITION 2. A stochastic processy= {Wu(t), t > 0} with values inH is
called a Q-Wiener process, if

(W1) Wg(0)=0a.s.;
(W2) Wq has independent increments;

(W3) the increments W(t) —Wgo(s) are normally distributed with mean zero
and covariance operator equal {o— s)Q;

(W4) the trajectories of \ are continuous a.s.

Thus definedQ-Wiener process is a generalization of Brownian motions|t i
well known that Brownian motioqf(t),t > 0}, wheref(t) = B(w,t), w € Q, is de-
fined via conditions (W1)—(W4) in the cad&= R andQ = 1. A finite-dimensional
Brownian motion has forny [ ; Bi(t)e, where{a} is an orthonormal basis iR" and
Bi are independent Brownian motions. When passing to infiniteedsions, to avoid
divergency inH, one has to consider a regularized sum

0

Wo(t) == -zioiBi (e, t>0, Wot) € Lo(Q;H),

which happens to be dfi-valuedQ-Wiener process.
The formal seriesy ;> ; Bi(t)e =: W(t) is called acylindrical Wiener process

2.3. Spaces of abstract distributions. White noise in spaseof abstract distribu-
tions

For any Banach spackg by 2/(X) we denote the space of all-valued distributions
over the space of test functiah. In contrary to theR-valued Schwartz distributions
they are calledibstract distributions By D} (.X) we denote the subspace of distribu-
tions having supports ifd, «).
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Let H now be a Hilbert space anly be anH-valuedQ-Wiener process. Since
Wg has continuous in> 0 trajectories for almost alb € Q, defineQ-white noiseWq
(with trajectories) inDj(H) as generalized derivative @ set to be zero dt< 0, i.e.
by the following equality:

@ (Weq,8) = —/OOOWQ(t)e’(t)dt:/Ome(t)dV\(g(t), 0cD.

The first integral in (2) is understood as Bochner integralrof,(Q; H)-valued func-
tion, the second one — as an abstract Ito integral with respebe Wiener process.
The equality of the integrals follows from the Ito formula.

We will further use convolution of distributions defined afidws (see. [4]).
DEFINITION 3. Let X, 9 and Z be Banach spaces, such that there exists a

continuous bilinear operatiofu,v) — uv e Z defined onX x . For any Ge Dy(X)
and F € D}(9) the convolution G F € D)(Z) is defined by the equality

(G+F.8) = ((g= )™ g) = (—1)“+m/ (g% H)(1)B™ ™M) dt, Be D,
0
where g R — X, f : R — 9 are continuous functions such that
(6.6)= (-1" [ gme”dt, (F.8) = (-1™ [ 1©emnd,
0 0

(g* F)(t) := fo9(t —9)f(s)ds.

Note that in the particular case whénis a regular distribution, i.e{(G,0) =
Jo G(t)6(t)dt, the equality(GxF,0) :/ G(t)(F(-),6(t +-))dt holds.
0

2.4. Spaces of abstract stochastic distributions. Singulavhite noise

The theory of stochastic distributions uses the white npisbability space. It is the
triple (', B(S'),1), where B(S’) is the Borelo-field of 5’ (the Schwartz space of
tempered distributions)y is the centered Gaussian or white noise measur®(Qt)
satisfying the equality

where| - |o is the norm ofL2(R). Existence of such measure is stated by the Bochner—
Minlos theorem (see, e.g. [6]).

The construction of spaces abstract stochastic distributionf§] is analo-
gous to the construction of the Gelfand trigfeC L>(R) C §'. Its central element
is the spacéL?) of all functions ofw € $’ which are square integrable with respect

12
to the measurg.  Hermite functionsy(x) = 12 (k—1)!) 2e Zhe1(x) (where
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he(x) = (—1)ke§E (d/dx)"e‘éE , are Hermite polynomials) are the eigenfunctions of
the differential operatad = —é‘—tzz +12+1 with D& = (2k)&k, k € N, and form an or-
thonormal basis df>(R). Stochastic Hermite polynomialte (w) := [k ha, ((, &k)).
we S, wherea € T (the set of all finite multi-indices) form an orthogonal lsef
(L?) with
(g, hB)(,_z) =aldyg, al = |_| oy!.
k

They are the eigenfunctions of the second quantizatioreﬂ)oﬂ'r(ﬁ). We have

[ (D)ha = [ (2k)%ha =: (2N)%hq .
k

The space of test functions) is a countably-Hilbert spadgs) = () (Sp) with

peN
the projective limit topology, where

(SP) = {q) = Z q)o(hg S (LZ) : z q!|¢a|2(2N)2po( < 00}

acT acT

with the norm| - | 5, generated by the scalar product

(0, W)p = (FDB)P,F(D)PW)12) = alpaliy (2N)?*.

a7l

Its adjoint spacd.S)’ is called the space of stochastic (Hida) distributions dan
variables). We havés) = Upen(S-p) with the inductive limit topology, wherés_p)

is the adjoint of(Sp). The spac€S_p) can be identified with the space of all for-
mal expansion® = 5 4 Pghq, satisfyingy qeq a!|Pq|2(2N)72P* < 0o, with scalar
product

(@, W) _p=(T(D)PP,M (D) PW)12) = § aldWPq(2N) 2.

aeT

Denote the corresponding norm py_,. We have:

(@D,0) = z aldydg for &= Z Dohg € (S), ¢= Z daha € (S).

a7l aeT aeT

Thus we have the following Gelfand triplés) ¢ (L?) c (S)’.

Define (S)'(H), the space ofl-valued generalized random variables o(&y
as the space of linear continuous operatbrg.s) — H with the topology of uniform
convergence on bounded subseté%f Denote the action ap € (5)'(H) on¢ € (5)
by ®[$]. The structure of S)'(H) is due to the next proposition (see the proofin [7]).

PROPOSITIONL. Any® < (S)'(H) can be extended to a bounded operator from
(Sp) to H for some pe N.
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The spac€§) is a nuclear countably Hilbert space since for gng N the
embeddindp p1: (Spr1) — (Sp) is a Hilbert—Schmidt operator. From this fact and
proposition 1 one deduces

COROLLARY 1. Any® € ($)'(H) is a Hilbert-Schmidt operator froris,) to
H for some pe N.

For any® e (5)'(H) denote by®; the linear functional defined o€ (5) by
(®j,0) := (P[¢],ej). Let p be such thatb is Hilbert—Schmidt from($p) to H. Then
all®;,j €N, belong to the corresponding spéce p), thus we have

o = Z q)(l.jh(la z 0(!|cbor.j|2(2N)72pm < ®.
a7l a7l

For the Hilbert-Schmidt norm b : ($,) — H we obtain:

2 2

(o)

hq
2 <¢" (a!>%<2N>m>

aeT =1

Nq

Q| ——
(al)} (2N

|@lsp= 3

aeT

= 5 alfdq[A(2N) 2P
aeT,jeN

Denote by(S_p)(H) the space of all Hilbert-Schmidt operators acting f@iy) to H.
It is a separable Hilbert space with an orthogonal basisistimg of operatoréiy ® €j,
a €7, jeN,defined by

(ha @ €))¢ := (ha,0) 2,8, ¢ € (Sp).

It follows from corollary 1 that(S)'(H) = | J (S-p)(H) and any® € (5)'(H) has the
peN
decomposition

jeN aeT,|eN aeT

where®; = (®[],€)) € (S_p) for somep € N, @y = 5 oy Do j€j € H. For the norm
I-12p:= Il - [I3s p we have
O p= 3 Bp= T a2 = Y a2 # <o

JEN aeT,jeN aeT

We evidently have
(S—Pl)(H) - (S—Pz)(H) for p1 < p2,

and
”cDH*pl 2> ”cDH*pz forall ® e (5*p1)(H)-
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To define singular white noise in these spaces first define aeseg of indepen-
dent Brownian motiongB;(t)}. Letn: N x N — N be a bijection with the property
n=n(i,j) >ij. As it was done in [11, 5], we use the Fourier coefficients ef de-
composition of Brownian motiofi(t) in (L2)(R):

B(t,0) = (0, 1gq) = <w, i/otai(s)dszi> _ -i/otEi(S)dShEi :

whereg; := (0,0,...,1,0,...). DefiningB;(t) = 54 fo &i(s)dshe,, . we obtain the
i :
next decomposition for the Wiener proc&¥ét),t > O:

00

W= 3 B0 = 5 [ Edshe,, ©e) = 5 [ E(sdsh, oen)

=1 i,JeEN

Its derivative with respect tbis called singulaii-valued white noise. It has the fol-
lowing decomposition:

W(t) = Z Ei(t)(hsn(i,j) ®ej) = z Wgn(i,j)(t)hgn(i,j)’ Wsn(i,j)(t) =Z&i(t)e.
i,JeEN i,JEN

t 2
By the well known estimate%/ Ei(s)ds{ — 0O(i~2) and [ (t)| = O(i~Y/4) of the
0

Hermite functions, we obtain

t 2
W(t)[%, = EiSdS‘ 2n(i,j)) °<cC i7/2j72 £ o
wilta= 3 | [ @) < 5 i)
W2 = ¥ 1&®P(2n(6,) *<C Y i <.
i.JeN i,JEN

ThusW(t) € (5-1)(H) C (S)'(H) andW(t) € (5-1)(H) C () (H) for all t > 0.
Convergence in the spa¢é)’(H) is characterized by the next proposition [7].

PROPOSITION2. Let®, =7, @&”)ha , P =75y Pohg € (S)(H). The following
assertions are equivalent:
(i) ®p— Din (S) (H);

(ii) all elements of the sequend®,} and ® belong to(5_p)(H) for some pe N

It follows from this propositions that differentiation witrespect ta of an
(S)'(H)-valued function®d(t) is equivalent to its differentiation as of a function with

values in(S_p)(H) for somep € Np. Itis easy to see tha(%W(t) =W(t) forallt e R.

We will call an (S)'(H)-valued function®(t) integrable oria;b] C R if it is Bochner
integrable as a$_p)(H)-valued function for some.
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3. Solutions of stochastic Cauchy problem generalized withespect to one of the
variables

3.1. Generalized solutions with respect to

Let A be a closed linear operator acting fréinto [domA] (the domain ofA endowed
with the graph-norm)B € L(H;H), { € H and letWq be anH-valuedQ-white noise,
defined by (2).

We define the@eneralized solutionf the Cauchy problem (1) withV = Wq to
be a distributiorX € Dj(L2(Q; [domA])) satisfying the equation

(3) PxX =8®{+BWq,?!

whereP: =8 @1 - 8@ Ac Dj(L([domA],H))

A distribution G € Dy(L(H,[domA])) is called theconvolution inversdor
Pe QS(L([domA],H)) if GxP=0® |[d0mA] , PxG=0RIly.

By the properties of the convolution inverse it is provedihthat the general-
ized random process defined by

4) (X,8) = (GZ,8) + (GxBWq,8), 8¢ D,

is the unique solution of (3) in the spad#(L>(Q,[domA])). As a consequence we
obtain the next result.

THEOREM 1. Suppose that A is the generator of an n-times integrated-semi
group V= {V(t), t > 0}. The Cauchy problem (1) witly = Wq has a unique solution
X € Dy(L2(Q; [domA])) given by the formula

t

(X,8) = (=1)" {/em)(t)v(t)Zdt—/9<”+l>(t)dt/v(t —9BWG(s)ds | .
0 0

0

This follows from the fact that the convolution inver&ein this case is the
generalized derivative &f of ordern; therefore, by (4) and (2) we obtain the result.

3.2. Generalized solutions with respect to

To consider the Cauchy problem (1) in the sp&s# (H) we define the action of a
linear closed operatdk: H — H and linear bounded operatBr. H — H in the next
way.

For any® = 5, ®ghg € (S)'(H) defineB® := §,BPyhy. ThusB evidently
becomes a linear continuous mappind §f (H) into ()’ (H).

IForuc 7', h€ H by u® h we denote the distribution from (H) defined by the equalitju®h,8) :=
(u,8)h.
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Define (domA) to be the set of altb = T, ®ghq € (§)'(H) such thatdby €
domAforalla € 7 andy 4 ||Adq |2 (2N) ~2P9 < oo for somep. For any® = 5, Pghq €
(domA) defineAd = 5, ADghq.

The following theorem is proved in [1].

THEOREM 2. Let A be the generator of ag&emigroup{U(t), t > 0} in a
Hilbert space H. Then for ang< (domA) C (S)'(H) the Cauchy problem (1) with the
singular white nois&V has the unique solution

X(t) = U(t)Z+/OtU (t—s)BW(s)dse (§)'(H),t > 0.

The solution is constructed as the sedds) = 5, Xy (t)hg ,t > 0, where

_ JU@)Ze, + [gU(t—35)BW, (s)ds, o =g,
X“(t)_{ua)za, 0 a e

are the solutions of the well-posed Cauchy problems

xsln (t) = AXen (t) + BV\Vﬁn (t) ) X€n (0) = ZEn )
Xg(t) = AXa(t), Xu(0) =Tq fora #en.

4. Generalized solutions with respect té and w

We see from the results of the previous section that in omlsolve the Cauchy prob-
lem (1) with weaker conditions imposed én namely withA generating am-times
integrated semigroup, one has to consider it in the sg@¢e»(Q;H)) of distributions

in variablet. At the same time this forces one to tak&avhite noiseWq with a
nuclear operato® asW. In order to introduce the white noise wi =1 into the
equation one has to state the problem (1) in the sfa¢€H) of distributions with
respect to the random varialdg but under this approach one has to impose more re-
strictive conditions oM, namely it must be the generator ofCg-semigroup. This
suggests the idea of combining the two approaches and esimgidhe problem (1) in

a suitable space of distributions in batandcw.

Recall that the singular white noi§#(t) belongs to the Hilbert spadg_ 1) (H)
C (S)'(H) of all Hilbert—Schmidt operators acting frofs; ) to H for eacht € R. Con-
sider the spacé}((S-1)(H)) of abstrac{.5_1)(H)-valued distributions with supports
in [0;00) over the spac® of test functions. Denote BY the distribution defined by

<W,e>=/0°°W(t)e(t)dt, BeD.

It is easy to see thaf(t) is a continuougS_1)(H)-valued function oft, therefore
W e Dy((S-1)(H)).
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In section 3.2 we defined the action®f L(H,H) as a linear continuous map-
ping of ()’ (H) into (5)'(H). Denote by the same symbol its restriction( £ 1) (H).
Itis easy to see that it is a linear bounded operator ftsm ) (H) to (S_1)(H).

Now we define the action &kin (5_1)(H). By (domA)_; we denote the set of
all @ =y, dqhg € (5-1)(H) such that

®q € domA forall a e T and Y | AD | (2N) 2% < o,
a

For any® = 5, ®yhg € (domA)_; defineAd := 5, APyhy. SinceA is linear and
closed as an operator id, this definesA as a closed linear operator {_1)(H).
Denote by{(domA)_4] the spacédomA)_; with the graph norm. With such definéd
we can consider the operafer= & @ | — d® A as a distribution belonging to the space

7h(L([(domA)-a]; (S-2)(H))).
We will call X € Dy([(domA)_4]) a solution of problem (1) witd € (5-1)(H)
if it satisfies the equatioR* X = d® { +BW.

As a straightforward generalization of Theorem 1 to the aafsé&S_1)(H)-
valued functions we obtain the following result.

THEOREM 3. Let A be the generator of an n-times integrated semigroup V
{V(t),t > 0}. Thenforany € (5-1)(H) the Cauchy problem (1) has a unique solution
X € Dj([(domA)_1]) given by the formula

0 o0 t
(X,8) = (—1)“Ue<“>(t)V(t)zdt+/e<“>(t)dt/V(t—s)BW(s)ds .
0 0 0

where the integrals are understood as the Bochner integria{s_1)(H)-valued func-
tions.
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S. Mincheva-Kaminhska

EQUIVALENCE OF SEQUENTIAL DEFINITIONS
OF THE CONVOLUTION OF DISTRIBUTIONS

Abstract. The equivalence of various sequential definitions of thevelution of distribu-
tions is proved. The list of known equivalent definitionsxsemded by adding definitions in
terms of upper unit-sequences.

1. Introduction

The convolution of distributions (tempered distributipms closely connected with
the spaceﬂ)ﬁ1 of integrable distributions, the dual of the spaBg General defini-
tions of the convolution inD’ (in §’), given in different ways in terms of integra-
bility of certain distributions by various authors (C. Ch#ey [1], L. Schwartz [10],
R. Shiraishi [11]), appeared to be equivalent (see [11])telthe list of equivalent
definitions was gradually extended, for example by addingpua sequential defini-
tions (see V.S. Vladimirov [12, pp. 102—105], P. Dierolf¥digt [2], A. Kamifski [4]).
Sequential approaches are interesting, because theyleatltral generalizations con-
nected with suitable restrictions of the considered clse$sequences (see [4]; for an-
other type of generalizations see [13]). A similar situatcmncerns ultradistributions
and tempered ultradistributions: various equivalent d@fims of the convolution, in-
cluding sequential ones, are related to integrability afate ultradistributions (see
[9, 5, 6]).

In sequential definitions of convolvable and integrableritigtions and ultra-
distributions, an essential role is played by specific easd sequences (calleohit-
sequencgf smooth functions of bounded support approximating thestant func-
tion 1. In this paper (see also [7]), we study another typspiied by papers of B.
Fisher, see e.g. [3]) of approximation of the function 1 bgdfic classes of sequences
(calledupper unit-sequencgef smooth functions with supports bounded only from
below. In the next section, we give definitions of the clag3exf unit-sequences and
I" of upper unit-sequences as well as the claBkasdl’, narrower tharil andr.

Using these classes, we give in section 4 several sequedefiaitions of the
convolution in®’ and prove Theorem 3, the main result of the paper, that aherht
are equivalent to the classical definitions mentioned above

In the proof of Theorem 3 we apply the results and methods fidm?2, 4, 8]
(see section 3) as well as Lemma 1 proved in [7]. Note that ateopart of Theorem 3
for tempered distributions is also true.

367
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2. Preliminaries

The sets of all positive integers, non-negative integexalsrare denoted by, N,

R and their Cartesian powers for a fixede N by N9, N4, RY, respectively. Ele-
ments ofRY and Ng are denoted by Latin and their coordinates by the correspond
ing Greek letters. Our multi-dimensional notation is mpstlandard. In particular,
for x=(§41,...,&d),y=(N1,...,Nd) € RY anda € R, the symbolsx <y, x < a and

o < x mean that the respective inequalitig@s< n;, & < a anda < &; hold for all

i =1,...,d. A similar notation concerns strict inequalities. Fo& (ay,...,aq) € RY

we set[a,®) := [01,®) X ... x [dg,®). If @y = (An1,...,0nq) € RI for ne N, we
write ap — —oo (ap — ) asn — o, whenevem,j — — (dpj — ©) asn — o for
everyi = 1,...,d. Moreover, leta* := a*1+-+d for a € R andk = (K,...,Kq) € N

We will consider, beside the usual support, sdppalso theunitary support
s'(¢) := {xe RY: ¢(x) = 1}, of a functionp onRY.

To mark that a sét ¢ RY is compact we will writek — RY. We use the standard
notation:L*, ¢, ‘E, Bo, B, Dx (K C RY), D, 7, P/, for known spaces of functions
and distributions ofRY and (f,¢) for the value off € 2’ ond € D, or we use the
more precise notatior:™(RY),..., D(RY), 2'(RY), D/, (RY) and (f,$)q to indicate
the dimensiord. Fork € No, K = RY and a smooth (i.eC*) function ¢ on RY, we
define

G (¢) 1= maxmax|dV (x)|,  a(9) == max o]l

0<i<k xeK 0<i<k

where|| - || denotes the supremum norm; evidentlyk (¢) < ak(¢).

Recall that the set$y; B; and Dk (K = RY) consist of all smooth functionis
such thatd M (x)| — 0 as|x| — oo for i € Ng; qk(¢) < o for k € No; and supgh C K,
respectively. Moreover, we hae= C* and?D = Uy -rda Dk in the sense of equalities
of sets. The sets under consideration are endowed with fodaigies defined by the
respective families of seminorm&, and B by the family{qx: k € No}; E by the
family {ogkk : k € No,K = RY}; and Dk by the family{gxk : k € No} (for K = RY).
The spaceD is endowed with the inductive limit topology of the spadas. Clearly,

1) k(D) < 20k()ak(W), 0.y € B, ke No.

DEFINITION 1. By unit-sequence we mean a sequence of functigrs D,
convergenttd in £, such thasug,cy || o o< o fork e Ng, i.e.

(2) SUPOK(Th) =: M < o, ke Nd.

neN

By special unit-sequence we mean such a unit-sequigmgethat for every bounded
K c RY there is an g € N such thatr,(x) = 1 for x e K, n> ny.
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DEFINITION 2. A set EC RY is called bounded from below if E [a, ) for
some a= RY. By upper unit-sequence we mean a sequéngk of smooth functions,
with supports bounded from below, convergent ia Z (i.e., there are a € RY with
an —>d—oo so thatsuppry C [an, ®) for n € N) such thasup,.y || ri |l < o0 for every
ke NGg, i.e.

(3) supgk(rn) =: Ng <o, ke NJ.

neN

By special upper unit-sequence we mean an upper unit-seqyen} such that if
E c RY is bounded from below, then there is aneN so that $(r,) D E forn>ng
(i.e. there are a,b, € RY, a, < by, (n € N), with @ — —oo, and an index n so that
[@n,%0) D supprn O st(rp) D [bn, ) for n > ny).

The classes of allnit-sequencespecial unit-sequencaspper unit-sequences
andspecial upper unit-sequencetfunctions defined oY will be denoted, respec-
tively, by I, M, I andl” or by Mgy, Mg, g andl'y to mark the dimension drd.

For arbitrary{m,} € M, {rn} €T, Y € B andk € Ng, we have

(4) supok(Th) < 2Myai(W); Supa(r) < 2*Niai(W).

neN neN

Given a clas®)y of sequences of functions consider the property:

(x) ClassY satisfies the implication{pn},{on} € ¥ = {tn} € &, where
the sequence is definedty_1 := pn andto, :=0n forne N,

Clearly, the above defined classes, I andT™ satisfy condition(x).

DEeFINITION 3. A distribution f is called extendible for a functiap € B if
{(f, M)} is a Cauchy sequence for evem,} € M. The mapping§: DU (Y) —C
(where() denotes the singleton set), uniquely defined for such alalisimn by

(%) (fy, ) = lim (f, ), weDUW),
—00
for an arbitrary {T,} € 1, is called the extension of f for the functign

If fis extendible for ap € B, then the limit in (5) does not depend on the choice
of the sequencém,} from N, because the cla$$ satisfies (). Consequently, the left
side of (5) is well defined fotw = . Moreover,(fy, ¢) = limj_«(f,M¢) = (f,¢) for
all ¢ € D and{m,} € M, due to the continuity of on D, i.e. fy|p = f.

DEFINITION 4. A distribution f is called extendible for a sequengg} € I'
if is extendible for ali,. The mapping ¥: D° — C, where?D® := DU{rn: n€ N},
uniquely defined for such a distribution by formula (5) fore D°, i.e. (f°,ry) :=
limj_e(f, ) for n € N, is called the extension of f for the sequefice}.
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DEFINITION 5. A distribution f is called extendible to the spadef it is ex-
tendible for everyp € B. The mapping : B — C, uniquely defined for such a distri-
bution by means of formula (5) for evatye B and{m,} € I, i.e. by

(6) (f.g):=lim(f.mw),  wes,

is called the extension of f to the spaBe

3. Integrable distributions

Integrable distributions, elements of the topologicalldBgaof B, were described by
P. Dierolf and J. Voigt in [2] by several equivalent conditso To formulate below the
extension of their result, proved in [7] and used in the pafdfheorem 3 in section 4,
we apply for4 C B andK C R the notation:2X := {¢ € 4: suppp NK = 0}.

THEOREML1. Let f € ', The following conditions are equivalent:

(a1) there are an le Ng and a C> 0 such that

() [(f.e)<Ca(9), ¢eD;

(A1) f is extendible taB and its extensiorf given on3 by (6) is an element
of B, i.e. there are an E Np and a C> 0 such that

(8) (fw)<Ca), wes

(a2) there exists such ard Ng that for everye > O there is a KT RY such that

9 [(f.0) <eai(9), ¢eD

(A2) fisextendible taB and its extensiorf given on3 by (6) is an element of
B with the property: there exists such ag INg that for everye > 0 there is a K& RY
for which the inequality holds:

(10) (fw) <eqy), weBs

(a3) there are an k Np, aC> 0and a K= RY so that (7) holds for alp € DK;

(Ag) f is extendible taB and its extensiorf given onB by (6) is an element
of B’ with the property: there are and¢ No, a C> 0 and a KC RY so that (8) holds
for all ¢ € BX;

(b) {(f,mn)} is a Cauchy sequence for eveg} € I;
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(B) f is extendible for every sequenfe,} € I and {(f°,rn)} is a Cauchy
sequence, where® is the extension of f for the sequercg};

(b) {(f,™)} is a Cauchy sequence for evem,} € TT;

(B) f is extendible for every sequene} € T and {(f°,rn)} is a Cauchy
sequence, where® is the extension of f for the sequercg}.

If any of the above conditions holds, then

(11) (f,1) = lim (f, 1) = lim (f°,ry),

n—o0 n—o0

forall {my} e Mand{rn} €T.

4. Convolution of distributions

Let f,g e 2'(RY). If the following condition introduced by C. Chevalley in]{1
©) (f+0)(§+Ww) € LY(RY) forall ¢, p € D(RY),

is assumed, there is a uniqﬁg g € 7/, the Chevalley convolution of, g such that
(159)+0.0)a = fra(F+9)X)(@*W)(dx . we DRY).
L. Schwartz considered in [10] the condition:
(S (f®9)¢” € D, (R*) for all ¢ € D(RY),
whered” (x,y) := ¢ (x+y) for x,y € RY, and R. Shiraishi in [11] the conditions:

(S1)

f(§x9) € D/, (RY) for all ¢ € D(RY);
() (fx

(G
fxd)ge D/, (RY) for all ¢ € D(RY),
where the symbalh for a givenh € 2/(R%) means the distribution oR® defined by
(h, ) := (h, ) and(x) := Y(—x) for all p € D(RY) andx € RY.

Assuming(S), (S1), (&), they defined the convolutiorfst g, f ¥ g, f ¥ o

(20,000 == ((f20)9>, 1ag)aa, ¢ € D(RY);
(1 29,0)0 = (F(§+0), Lo, b € DRY);
(FF9,0)0 == ((@+)9, La)a, 6 € D(RY),

respectively, wheregdland g are the constant functions equal to 1RhandR%.
R. Shiraishi proved in [11] the following theorem:
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THEOREM?2. Let f,g e 2'(RY). Conditions(C), (S), (S1) and(S;) are equiv-
alent. If any of the conditions holds, then<cg =f fg =f 2 g="f ? g.

Due to Theorem 2, we may use foyg € 2'(RY) the common notation
(12) frg=fSg=fig—frg—"2g,

whenever one of conditior(€), (9), (S1) and(S) is satisfied.
V.S. Vladimirov gave in [12] forf,g € 2/(RY) the following sequential defini-
tion of the convolution, denoted here lﬁy\;ﬁ/ g

(13) (f%9,0)a = lim (f©9,T00")20, b € DRY),

whenever the limit in (13) exists for aflm,} € Mg or, in other words, whenever

V) {(fegmd ) ylee  forall {m} e My andp € D(RY),

where¢ denotes the class of all numerical Cauchy sequences. Zlearldition(V)
implies that the limit in (13) does not depend fm,} € Myg.

P. Dierolf and J. Voigt proved in [2] fof,g € 2/ (RY) that Vladimirov’s condi-

tion (V) and its extension in the following form:

V) {{(f®gmd*)y}ce  forall {m} Ny andd € D(RY)

are equivalent to condition€), (S), (S1), () and the convolutiorf M g defined for
any {m,} from the classe§l,q andMyy by common formula (13), coincides with the
convolutionf x g given by (12).

A. Kaminski considered in [4], in connection with J. Mikaski’s irregular op-
erations, the following conditions fdr,g € 2/(RY):

(K)  {((f)*(Tng),¢)a} €€ forall {m},{Th} € Mg andd € D(RY);
(K1) {{(mf)*g,d)q} €€ forall {m,} € Ny and$ € D(RY);
(K2)  {(f* (), d)gt € € for all {T,} € Ng andd € D(RY)

as well as their variantK), (K1), (Kz2), in which the clas§lq is replaced byly. He
defined the convolutions s g, f < g andf ¥ g by the following formulas:

(F %0, 0)a = lim (M)« (Tog),0)a, (T}, {7} € Mo, 6 € D(RY);
(59, 0)g = lim (m)+g.0)s,  {T} Mg, 6 € D(RY);

(% 9,0)g 1= lim (F+(mg),0)a,  {T} €My, 0 € D(RY)



Sequential definitions of the convolution of distributions 373

under conditiongK), (K1), (Kz), respectively, and by the above formulas restricted
to the clasd14 under conditiongK), (K;), (K2), respectively. It was shown in [4],
due to the results from [11] and [2], that conditiai), (K1), (K2), (K), (K1), (K2)

are equivalent to condition) and(V) (and to those mentioned previously) and the
corresponding convolutions coincide.

Consider now forf,g € 2'(RY), in connection with the class€sandl” of upper
unit-sequences and special upper unit-sequences, tbeiiod conditions:

() {(f®grmd2)g}ec  forall {rh} € Mg andd € D(RY);
(F)  {{(rnf)*(Fa@),0)q} €€ forall {rn},{fn} € M4 andp € D(RY)

together with their variant$=y ) and(F ), in which the classeS,g andr 4 are replaced
by I'>q andl 4, respectively. Define the convolutiorhS*FV gandf F»'f g by the formulas
£ = lim (f A r D(RY);
< * g7¢>2d _nl_r;rl)< ®g7rn¢ >2da {rn}e 2d, ¢E ( ),
Fi . ~ ~
<f * ga ¢>d = rl1l—r;rlo <(rnf) * (rng)v¢>dv {rn}a{rn} € rda ¢ S @(Rd)a

under conditiongF,) and(Fx), respectively, and by the same formulas but restricted
to the classeByy andl g, under conditiongFy ) and(Fx ), respectively.

The following theorem is true:

THEOREM 3. Let f,g € D/(RY). Each of the conditiongV), (V), (K), (K),
(K1), (K1), (K2), (K2), (Rv), (Fv), (F«) and(Fk) is equivalent to any of the conditions
listed in Theorem 2. If any of the conditions is satisfiednthe

(14) frg=fyg—fhg=ftg=f Pg=f~g=f%g.
In the proof of Theorem 3, the following lemma plays an impattrole:
LEMMA 1. Let he 2/(R%). Assume that
supph C K2 :={(x,y) e R®: x+ye K}
for some KC RY and there is a scalan such that
(15) lim(h, M@ ra)2d = O

for all {ri},{r2} € Tq. Then for arbitrary special unit-sequencés’},{r¢} € My
there exists an increasing sequercg} of positive integers such that

(16) JL@(h,T%n®Tlﬁn>2d =a.

The proof of Lemma 1 is not trivial and requires an inductiongtruction. Its
full presentation is beyond the scope of this article. Wewshocomplete proof of
Lemma 1 with all its nuances in a separate publication (spe [7
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Proof of Theorem 3We present the proof of all implications necessary to catethe
formulated equivalence.

(9= (R); (9= (V). Fix¢ec DRY),denoteh:= (f ®g)¢p*> and assume condi-
tion (S), which means that € 7, (R%). By Theorem 1, it follows that

Am<h;rn>2d = Am<h7m>2d = (h, 124) 24

for {Th} € Myg and{rn} € I'2q, i.e. (R/) and(V) hold. Alsof'_:»\fg = f\ig =f fg.
(R) = (Fv); ()= (Fk); (V)= (V); (Ki)= (Kj)(i=1,2). Theimplications
are obvious, because of the inclusi®ns I" andlT c M between the considered classes
of (upper) unit-sequences.

(Fv) = (Fx); (Fv)= (Fk); (V)= (K); (V)= (K). Clearly, the equalities
(A7) ((raf)*(r79).0)a = (raf) @ (79),0")2a = ( © Q)9 rn@ )20

hold for alln € N and{ri},{r2} € 4. Similarly, the equalities

(18)  ((mf)*(189).0)a = (Thf) © (159),0")20 = ((f © 99", TH O T) g

hold for alln € N and for all{t¢}, {T¢} € M.

If {ri} and{r3} are arbitrary sequences ity (respectively, in4), then the
sequencegrt ®r2} is in g (respectively, inM,q). Hence, by (17), conditioR, )
(respectively(fv)) implies condition(Fx) (respectively(F)). Moreover, f '-:\k/ g=

f * g. Similarly, if {T:} and{1} are inMq (respectively, iMy), then the sequence
{mt ® 1@} is in My (respectively, iM,4) and, due to (18), condmo(\/) (respectively,

(V)) implies condition(K) (respectively(K)). Moreover,f *g —fh g.

(Fk) = (K).  Fix ¢ € D(RY) and denotéh := (f @ g)o. Assume that condition
(fK) holds, i.e. there is a numbarsuch that (15) holds for aliri}, {rz} €Tg. Fix

{m}, {18} € My and let{T}} and {73} be arbitrary subsequences{ofn} and{1g¢}.
By Lemma 1, there exist subsequen¢®s } and{Tt } of {Ti,} and{TR}, respectively,
such that (16) holds. Then

(19) lim(h, L@ 8)2g =

n—>oo

for our arbitrarily fixed sequenceSt}, {T2} € My, i.e. condition(K) is satisfied.
Moreover,f i g=f K g (for the classe§ andm).

(K)=(K) (i=1,2); (K)=(Ki) (i=1,2). Fix¢ e DRY) andleth:=(f29)o".
Assume that conditio(K) (respectively(K)) is satisfied, i.e. equality (19) is true for

somea and for all{r¢t} and {m2} in My (respectively, inMq). For arbitrarily fixed
sequence$t} and{r2} in My (respectively, iM1y), the assumption implies

(20) im (@ T2 = o
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with the double limit on the left side. If not, there would stxangg > 0 and increasing
sequenceépn}, {dn} of indices such thath, e, © 15 )24 —a| > g0 forn € N. But the

sequence$n})n} and{nﬁn} are also iy (respectively, iMly), so the last inequality
contradicts our assumption concerning (19) and proves (20)

Sinced” (T4 ® 14) and¢” (19 ® T&,) are inD(R??) for n,me N, we have

lim (h @G 2d = (f 0,07 (M ®1a))2a = (M) %9, ¢)a, NEN

Mmoo

and
lim (0T @ 8)aa = (F©0,0° (La@ ))aa = (F+ (1F9).0)0,  MEN.
Hence, by (20),

lim (TR f) 9,0)a = lim lim (h, TG & 600 = & = lim (f x (15,9), §)a-

n—oo

The implications and the equalitiés g = f < g= f ¥ g are proved.
(Ki)=(S) (i=1,2). ForallneN, we have

(05 %9,0)a = (F(§+0),)a and (f«(8g,¢)a = ((f+$)g, ),
so conditiongK;) and(K3) imply (S1) and(S,), respectively, by Theorem 1.

Since, by Theorem 2, conditionS), (S;) and(S;) are equivalent, the proof of
the equivalence of all conditions and of all equalities id)(& thus completed. O
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G. A. Omel'yanov

ABOUT THE STABILITY PROBLEM FOR STRICTLY
HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

Abstract. We consider jump-type initial data for a strictly hyperlsofjuasilinear system
of conservation laws in one space dimension. Suppose thahitial jump is associated
formally with a shock wave. Our aim is the consideration dfisient stability conditions
for this problem in the case of arbitrary jump amplitude.

1. Introduction

We consider a strictly hyperbolic system of conservatiovsla

du of
(1) a_ij+ aE(U)

u=(ug,...,Un), f =(f1,..., fn) € C*, supplemented with jump-type initial data

=0, t>0,xeRY

u-, x<B0,
(2) u‘tO:{ Uy, x> 0.

We assume that the states andu, are connected by the Hugoniot locus (see over-
leaf) so that the problem (1), (2) has formally the shock wsnletion. Our aim is to
investigate the stability criterion for shocks with arbity amplitudesi— — u.,..

Let us recall that solutions to the Cauchy problem for quaeslr hyperbolic
equations are not unique in ti¥ sense (see, e.g. [1, 2, 13]). The standard example
is the Hopf (Burgers) equation associated with the initetladof the form of a jump
function with a positive amplitude,

du ou? 1
EJFW_O’ t>0, xeR",

u\ _f u-, x<0,

t=0"" ] u,, x>0, u_<uy,

when both the family of shock waves with an arbitrary numiiesf jumps and the
centered rarefaction are the weak solutions.

For the scalar conservation law with a flux functibfu) it is known that only
one of the possible weak solutions is stable and it shouldnbenéropy solution. In
particular, the shock wave is stable if and only if the Oleigicondition,

f)— f(u) _ fu)—fu) _ f(u)—f(u
u—-u. U —u. T up—u

3)
is verified for everyu betweeru, andu_ [1, 2, 13].

377
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The same problem for systems remains unsolved up to now igetheral state-
ment and only the case of weak shocks (that is for sufficiesmigll shock amplitudes)
has been studied in detail so far.[1, 2].

Theoretically, there is a possibility to investigate gtyichyperbolic systems
passing to a parabolic regularization. In the frameworkhdf approach we obtain the
uniqueness of the prelimiting solution automatically [, Blowever, it is not clear
how to identify the resulting solution profile with the sfeinitial data. In particular,
the shock wave stability criterion remains unknown.

We guess that progress in this problem can be achieved antieshe frame-
work of the weak asymptotics method, see [3]-[12] and refege therein. The main
idea here is to satisfy the equation with a remainder whiamiall in the weak sense.
The advantage is such that we should investigate some OBEsdhof PDEs. This
approach allows to recognize the principal structure osthlation and to calculate the
main characteristics of the limiting solution. For the catshock waves it means the
uniform-in-time description of the interaction procestasweak solutions of hyper-
bolic problems.

2. Assumptions and definitions

As it has been noted in Introduction, we do not consider trarRinn problem but
investigate the stability of shock-wave solutions. Thus,agsume that:

A. The statesi_ andu, are joined by the Hugoniot locus in the sense that there
is aC2-curveu = u(§) in the state space ar@f-functions = s(§) such that
u(0)=u_, u(&n)=uy, and for any € [0,&n] the Rankine—Hugoniot condition
(4) S(&) (u(&) —u-) = f(u(&)) — f(u-)

is satisfied.
In what follows, we will use the alternative form of the cotialn (4). Let
1
(5) H(u_,u) :/ Df (u- + (u—u_)w)dw,
0

then (4) is equivalent to the following:

(6) (81— (u-,u())) (u-—u(®)) =0.

Obviously, the last equality means that the shock spesidould be the eigenvalue
A(u_,u) of the matrix# (u_,u),

(7) S(&) =A(u-.u(®)),

whereasi_ — u(&) can be interpreted as the corresponding eigenvector.
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To present our next assumption let us define a sequfnég}, i =0,...,N,
&0 =0,& < &i11such thau(&;) belongs to the Hugoniot locus for &land

(8) lu(&ir1) —u&)| < 1.
B. Assume that the Liu E-condition

9) A(u(®),u(Eir1)) <A(u(&),u(Eir1)) <A(u(Ei),u(®))

is verified for any sequencgu(&;i)} under condition (8), any=0,...,.N—1
and allg € (&,&+1)-

In fact, this assumption is very restrictive, in particulaimplies the convexity
condition in the scalar case.

Now let us regularize the problem (1), (2). To this aim we aeplfirstly the
initial jump by a chain of equally spaced elementary jumps

ud, X < Aq,

U(l), A < X< Dy,
(10) uA‘t:O = .. cee
ud g, DAno1 <X <A,
uwy, x> Ay,

wherel? = u(&j), i =0,...,N andA; < Ay--- < Ay are small parameters. In view of
the condition (9) the solution of any Cauchy problem

oup, 0 f(up
Ouy (Up;)

=0, t>0 R
at ax y 2B XERS

0 .
uA_‘ _ ui(fl’ X< A,
1t=0 uy, x> N,

will be a stable shock wave.

Next, fixing the parameterd;, we pass to the parabolic regularization of the
problem (1), (2) with smoothed initial data (10):

dupe  Of(upe) . sazuA,s

11 = t>0 R!
(11) at ax »e o XER
(12) Unel,_o = UR(X),

wheree < |Aj| is a small parametens ,(x) € ¢*(R}) for € = const> 0, and
uQ . (X) = Uali—o ase — 0 in 2’ sense.

To describe the problem (11), (12) solution uniformly in ¢éinve use the weak
asymptotics method [5].
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DEFINITION 1. Let Uye = Upg(t, X) be a function belonging to™ ([0, T] x R})
for eache = const> 0 and let ¢, f(uae) belong toC([0,T]; 2/ (Rf)) for all € €
[0,const. We say that Me(t,X) is a weak asymptotimod Ogy (€) solution of equation
(11) if the relation

(13) %/::UA,S'UJdX— /ﬁif(uA’s)-%dx: O(g)

holds uniformly in tc (0, T] for any test vector functiow = (x) € D(R}).

Here and below ab denotes the inner product of vectors a, b, and the estimate
O(g¥) is understood in the’([0, T]) sense; O(e¥)| < Crek fort € [0, T].

DEFINITION 2. A function dt,x,€) is said to be of the ordeO,y (£¥) if the
relation

0w = [ alt.xe)- widx=0(e)

holds uniformly in tc (0, T] for any test functionp = Y(x) € D(RL).

Obviously, the jump (2) generates the stable shock waveditoauty if
(14) Une(t,X) = U+ (uy —u_)H(x—st) in D/(RL) for t>0

ase,Aj —0,i=1,...,N.

It has been proved for the scalar equations that the weaksyins with the
property (14) exists if and only if the Oleinik E-conditiof)(is verified (see [6], [11],
and [12] for convex, concave-convex, and arbitrary flux fioxcrespectively). This
approach has been used also to describe uniformly in timetleaction processes in
gas dynamics [8, 9, 10]. Now we will construct the weak asytiptsolution for the
system (1).

3. Asymptotic construction

We need to construct the weak asymptotics for some timeviaiti, Ta] with Ta as big
as the time instant of the last elementary solution intésactObviously, we should
know how to construct the stable solution for any elemenitasraction of the waves
with arbitrary amplitudes without application of any adlalital conditions. At the same
time it is clear that it is enough to describe only one elemgrinteraction. So we will
consider the equation (11) supplemented with the initiadition

Un(%,0) = u(&a) + (u(§) — u(€a>>‘*’(x_sxq)
(15) + (u(Ep) - “(a)‘*’(x_sXB)'

Heregq < & < &g,

(16) Xa < Xg,
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andw(z/¢) is a Heaviside function regularization, such th#f)) € C*, w(n) tends to
its limiting values with an exponential rate, and

17) w(n)+w(-n)=1.

Letus denot«i)g B(t) the trajectories of the non-interacting shock waves gener-
ated by the initial condition (15), namely,

(18) 09(t) = A(U(Ea), U(E))t+Xa,  G(t) = A(U(Ep),U(E))t +Xg.
Next we define the “fast time”

(19) = PU o) = 03— 030

to measure the distance between the trajectdigs) anddg(t). For the first stage of
interactions, whelq = &1, & = &, and&g = &1, So, the condition (8) is verified,
we use the Liu E-condition (9) and obtain that the trajeetri= 2 (t) andx = q)g(t)

intersect at one poir{i*,t*). For the next stages, when (8) may be violated, we obtain
the trajectories intersection applying the sharpenedamisf the conditiorB:

B’. Let

(20) A(u(§),u(&p)) < A(u(Ea),u(&p)) < A(u(&a),u(8))
forany&q, &g such that 0< &y < &g < &y and for allg € (&q,&p).

In view of the choice (16)p(0) = xg —Xq > 0 andt|i~o — « ase — 0 if
Xg — Xo & gl=%, k > 0. Thus, outside of a small neighborhood of the pdiitt*),
we have that — « before the time instant of interaction and» —o after the inter-
action.

Let us write the asymptotic ansatz in the self-similar form:

U x1) = Ua) + Aol 222

1) +AB(T)00(X_T¢B) + B(T)w’(x_—ex*).

Herew (z) = 0w(2)/0z, the phasedq g = 4 p(T,t) are smooth functions such that
(22) dap(T1) = 0g 5(1) + P(D)dg 5(1),

where

(23) 0ap(0) »0ast e, dgp() > as T -,

andg? s are constants. NeX, (1), B(1) are smooth functions such that

(24) Aa(T) = U(€) —U(&a), Ag(T) = Uu(Ep)—u(§) as T— o,
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(25) Agp(t) — A_u,;z as 1T— —oo,

(26) B(1) >0 as T—w, B(T)—B as 1— —om,

WhereA:w andB are some constants. We assume thad(t,t), Ay p(1), andB(t) tend
to the limiting values as — +o with an exponential rate.

To continue our construction we should calculate the weglargions for the
functionsua ¢(x,t) and f (Upg(x,t)).

LEMMA 1. For the function u¢(x,t) of the form (21) the following relations
hold:

Upe(X,t) = U(&a) +Aa(T)H (X— da) + Ag(T)H (X — dp)
(27) +€B(T)3(X— X*) + Ogy (€2),

f(uae(x,t)) = f(U(Ea)) + Ha (U(Ea), 0,T) Aa(DH (X — dar)
(28) + H3(u(&a), 0, 1) Ag(T)H (X — bp) + Ony (€),
where the matrices{, g are the convolutions
#6(uE),0,7) = [ DI (ulEa) + Auton) +Ageon — 0) ) (),
(29)
7(ulEa).0.1) = [ DF (u(Ea) + Ageln) + Ascon +0) ) (m)c

with the properties

lim g (u(a),0,T) = H (U(€a), U(Ea) +Aa),

0—+00
(30) SJim_ A (U(&a),0,7) = H (U(Ea) + A, U(Ea) +Aa + Ag),
Jim Ho(U(€a),0,T) = H (U(€a) + Ap, U(&a) + Aa + Ap),
(31) oim_ s (u(€a),0,7) = H (u(€), U(Ea) + Ag),
and

Ha (U(a),0,T) = H3(u(&q),0,T)
(32) — [ D (uEa) + (A -+ Aghom) ) o ().

Here # (u(&q),u(§)) is the matrix defined in (5) and = o(T,t,€) characterizes the
distance between the trajectorigg and g, namely

¢[3_¢0(.

(33) o= .
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Proof. To prove the first assertion of the lemma it is enough to naefthr any test-
functiony(x) € D(RY)

(W2 8).000) = (Ho- 0).960) + [ o )weoax

€ —o0 €

In view of (17) we have:

¢ _
[ o uman- [ (1-a(* T Juoex
— e [ ) (0l +e) - 0io — en))x= O

—00

Furthermore,

Cle
To prove (28) let us write firstly:

(f(uselx). )

—s/ W (MW(X* +en)dn = ed(x*) + O(e?).

Il
/
—
—~
c
>
m
—~
X
—
~—
SN—
€<
N—
_|_
X

where

Oae(x,t) = Une(x,t) - B(r)w’(x_ - ) )

and

R = ‘/Z (F(upetx 1)) — f (Gnelx, t))) W()dx

(34) < sC/ IB(1) - W(x* +en)|w(n)dn < ec.
Furthermore,

(f<uAs<x 0)0) = [ f(ancx0) - B
(35) U(Ea) / WX dx+/ D (@ a”AaS(X D ox)dx

where@(x) = [ (X' )dx
Calculating the derivativé( ¢ /0 x and changing the variabtg= (X — ¢4 g) /¢,
we transform the right-hand side of the equality (35) to tikiving form:

@) f(ua) [ widx+
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+/ Df Eu)+Aqoo n)+ Agw(n — 0) '(n) - @(¢a +&n)dn
+ [ D1 (uEa) + Agean) + Aew(n + ) ) (1) - @0+ en)c
Now applying the Taylor formula and taking into account theritity
ol0ap)= | B O)dx= (H(X— b ). W)

we obtain the representation (28) for the flux-function.

To calculate the limiting values (30), (31) of the convabumi #, g it is enough
to use the stabilization properties of the functiofm). Equality (32) is obvious. O

Substituting the expressions (27) and (28) into the leftehside of (13), we
derive the relation for obtaining the parameters of the gagitit solution (21):

O (A (M (x— a) + A(DH (x— )} + /B (0)3(x—x)

(37) +{_ d(;bta (T)+%(u(£u),o,T)Aq(r)}5(x_¢G)
{3 % )+ H (u(Ea), 0. ) Ag(1) | 3(x — bp) = O (©).

We now apply the following almost obvious statement [10]:

LEMMA 2. Let S= S(1) be a function from the Schwartz space and let a func-
tion @« = @ (1,€) € C* have the representation

(38) O = X"+ EXK,
where X = constandxx = X«(T,€) is a slowly increasing function. Then
(39) SOH(X— @) = ST {H(X—X*) +eXkd(X — X*) } + Oy (€2).

According to (24), (25)A0( 8T ) belong to the Schwartz space. Furthermore,
one can rewrite the functmn@ ) as follows:

da(t) = A(u(Ea),u®)) (t—t") +x*,  dg(t) = A(u(Ep), u(¥)) (t —t7) +x"
Moreover, in view of the representations (19), (22)
(40) P p(T,t) = X"+ EXa,p;
where

o A(U(Eqp),u(®)) 1
#1) XG'B_T</\(U(EB),U( £) - A(u(a).u <>)+¢“’B>
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since

= {A(u(E). ) A(u(Ea)u®) }

So that the relation (37) can be transformed to the folloviarg:
O A 1)+ A1) Hx— )+ Xy (1) Kpp (1) + B (1) }3lx =)
R AT @u),o,r)Aq(r)}é(x—%)
@2) -+ { = S ng(r) 4 24y (u(ka). 0.1) Ag(0) 80— bp) = O ().

Setting equal to zero the terms of (42) of the vallyg (1) and taking into account
the assumption (24) we obtain the identity

(43) +AB =u EB —U(&q).

Thus, setting equal to zero the coefficients of &rieinctions in the relation (42), we
obtain the equations:

Ao,

(44) J 2 g = Hap(U(Ea), 0,1) Aap (1),
dB ,

(45) E:crAu(T).

Therefore, (44) imply tha g(T) should be associated with the "eigenvector” of the
matrix g g(u(8q),0(T),T), whereasdd, g/dt should be the corresponding eigen-
value, which we denote b, g(u(§a),0,T), that is

(46) Nap(UEa),0,T)Aqp = Hyp(U(€a),0,T) A p(T).
These equations and (43) form the system to defij@ Thus we should suppose:

A’. Let the system (43), (46) be solvable with respect to thedirdg g with the

property (24) for any(&q), u(€g), 0< &q < &g < &, for all & € (€q,&p), and
uniformly ino > 0.

REMARK 1. The equations (44) describe uniformly in time the pas$ega
the Rankine—Hugoniot conditions for the stafe$q),u(€)), (u(&),u(&g)) to some
new states (in fact, to the stafe(q),u(gg))). At the same time, in view of (24), (30),

Hy (U(Eq),0(1),T) — H (U(Ea),u(§)),
(47) H (U(€a),0(1),T) = H (U(Z),u(&p)),
Aq > U&)—Uu(a), Ag—u(&p)—Uu(§) as T— .

SinceA’ implies the validity of assumptioA, one can treaf’ as a sharpened version
of A.
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Furthermore, the system (43), (46) contains-2 scalar equations fomXcalar
functions. So fon = 2 the assumptioA’ implies some natural conditions for the flux
function, whereas fon > 3 (43), (46) is an overdetermined system. This is a little
similar to the problem of the existence of Riemann invaggnin — 1) equations fon
unknowns).

Under the assumptio’ we obtain:

da
dt

=NAa(U(&q),0,1), dog =Ng(u(€a),0,1).

(48) at

Before the interactionm(— +) the firsta priori assumptions (23) imply
(49) 0T as T— .
This, thea priori assumptions (24), and the property (30) imply that
Ha (U(a),0(1),T) = H (U(Ea),U(E)),
(50) H (U(€a),0(1),T) — H (U(€),u(&p)) as T— +oo.
Respectively,
Aa(U(Ea),0(1),T) = A(U(&a),u(g)),
(51) Ng(U(€a),0(T),T) = A(UE),u(Ep)) as T— .

Therefore, the limiting relations (23) and (24) verify thencordance of the equations
(48) with our definition (22) o a(t)-

To find the limiting behavior ob g(T,t) after the interactiont(— —) let us
reduce the system (48) to a scalar equation. In view of (83), (

d¢p—¢a) ,do

dt dt’

Hence, by subtracting one equation in (48) from the other btaio the equation

do 1 def
(52) i E{AB(“(EG)aGaT) —Nq (u(Eq),o,r)} = F(o,1),
which is completed by the condition (49).

LEMMA 3. The values = 0 is the unique critical point for the problem (52),
(49). Moreoverg — 0 with an exponential rate as— —co.

Proof. First of all we note that

(53) Flowo =1, whereas F|s—0=0,
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since

(54) Hap(U(Ea),0,7)g_o = H (U(€a), U(Ep)).

Let us prove that = 0 is the first zero-point off . We will use the identity
(55)  Ha(U(8a).0,T)Aa(T) + H5(u(&a),0,T) Ag(T) = f(u(&p)) — T (u(Ea)),
which follows directly from the definition (29) and the prope(43). Thus,
(56)  Aa(U(&a),0,7)Aa(T) +Ag(U(€a), 0,T)Ag(T) = f (u(&p)) — f(U(Ea))-
Therefore, from (43) and (56) we derive the next identity

(Ap(u(Ea),0.T) = Aa(U(Ea). 0.7) ) Ag(1)
(57) = {AulEa) uEp)) — Na (UlEa), 0,7) }(ulEp) — U(Ew)).
So the suppositiodAg — Ag } [o—g,>0 = O implies that
(58) A(u(&a),u(&p)) = Na (u(&a).00,T),
which is impossible since

U(&a) +Aad(n) +Agw(n — 0)
(59) = U(&a) + (u(&p) — u(&a) — K(o,N)Ag)0d(n),

where 0< k1(0) < k(o,n) < kKz(0) < 1 for g > 0. Next using (59) and the similar
equality

| D (u(Ea) + Ageatn) + Aao(n + ) ) (m)cin
60 = [ f(uEs) - (ulEp) ~ ulEa) —x(0.1)Ad)(n) ) (n)dn,
and applying the assumptid@i, we observe that

/\(I (U(EG)707 T) - A(“(EG)? U(EB)) + Oa
(61) Np(U(a),0,T) = A(u(&a),u(€p)) —0 as o —0.

Therefored ¥ /do|g=0 > 0 and the limit value = 0 can be achieved only far— —oo.

It remains to prove that = 0 is the stationary point for the equation (52). Let
us note firstly that in accordance with (43)

0
ﬁ%,ﬁ(u(ad)’ 1) |z=O =0
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Thus, differentiating (46) with respect towe obtain the relation

{9 Napluta).21) VA

z=0

0
= {%,B(U(Eg),Z,T) —AQ.B(U(E(]),Z,T)E}EAG,B(T) -0
z=0

ast — —oo. Therefore,

d—f = 6_7 —+0 as 1— —oo.

dt lo=0 0T lo=0
Obviously, the derivativelX F /dt¥|s_o for eachk contains either the terms
d'o/dt'[s=0, | <k, or derivatives 0B\, . That is whyo — 0 ast — —. O

To complete the investigation of equations (48) we shout/@rtthea priori
assumptions (23). We write firstly:

doop 9005 ., d .,
gt~ at T Par(ap)

This and the equations (18), (48) imply that

80 = = (Rap(u(E).01) - AfuEap) ).

Sincea(t) is known now, we conclude that
1 T
bap() = /_ ) (Aap(u(Ea),0.T) ~ A(uEap) (@) ).
Accordingly (50), (61)

¢gp—0 as T,
1
Ohp o (A(UE),U(E)) ~A(U(Eap).U(E) @S T oo
Therefore, forr — —co

¢u,B — A(“(Eu,B)a U(E)) (t—t)
+ (AuEa), u(Ep)) — A(U(Eap). U(E)) ) 1) = A(ulE), u(Ep)) (1)

We now note that according to the definition (29) the stadiion rates of the
matrix Hy g and of the functiorw coincide. The same is true fég g andAy . Next
coming back to the equation (45) and completing it by the @@B|;_,. — 0, we
verify the assumption (26) and obtain the funct®mvith the exponential rate of the
stabilization.

Consequently, we conclude that the neighboring shock wangge and this

process implies the shock wave with the amplitude- u, formation. This completes
the proof of our main result:
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THEOREM 1. Let the assumption&’ and B’ be satisfied. Then there exists a
weak asymptotimod Oy (€) solution of the problem (11), (12) with property (14).

4. Examples

ExamMPLE 1. We consider firstly the system of isentropic elasticity

Ju odv

3t ox

ov ag(u)
(62) ot ox o

which is strictly hyperbolic under the conditigi(u) > 0.

The non-zero elements of the matrik(u_,u) (see (5)u= (u,v)) are equal to
—land

h(u_,0) = _/Olg/(u_ + (U—u_)w)dw= %

Thus, the eigenvalues(u_, u) of the matrix# (u_, u) have the form

(63) A0, 0) = + %.

Therefore, the Hugoniot locus consists of two branches:
(64) v—v_o = AT, 0)(u—u.).

Obviously, to satisfy the assumptiénit is enough to defing according to (64) for all
statesu ,v_.

Next the Liu E-condition (9) implies formally the inequadi, which are known
as the Wendroff E-condition:

9(Uir1) —g(u) o 9(Uira) —9(u) o 9(ui+a) —9(W) _ g(uiva) —g(U)

Ut1—U U1 —Ui U1 —U U1 — U

where the first inequality applies for 1-shocks=£ A ™), the second inequality applies
for 2-shocks A\ = A™), andu is situated between andu;,;. However, the complete
form of the assumptioB eliminates the possibility of the existence of inflectiorirts.
So,g(u) can be either a convex or a concave function. Obviously, $seraption
andB’ are equivalent in this case.

Furthermore, it is clear that the unique varying coefficiefitthe matrix
Hy (U(€q),0,T) has the form

hop(UEa),0.) = | (g p)d(n)dn,
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where the notation

Ua = U(&a) +aaw(N) +apw(N —0), Ug=U(&x) +agw(Nn) +aqw(n +0)

has been used. Obviously,

Ngl@E).01) = £/ [ gt gy
and
(65) Aup= (aC(,BabC(,B)) bu,B = _A;B (J(Ecx),c,r)aq’g-

Therefore, the assumptioh’ can be transformed to the solvability condition for the
equations:

(66) ag +ag = Ug — Ug,
V0 (Ua)ag + /9 (ug)ag = F(Vg — Va)-

ExXAMPLE 2. A slightly more complicated example arises from the syste

ou_9aiv) _,

ot ox

v 0go(u)
67 ot ox 0

under the conditioy; (v)g,(u) > 0.
Eigenvalued\(u_, ) of the matrix# (u_,u) have the form now

() (u—u)

Therefore, the Hugoniot locus consists of two branchegwagai

(68) A =+ ¢ (019~ v0)) (g2 — g2(u))

V—V_ = —Ag2(U_,0)(u—u_).

However, the assumptiohis not trivial now but requires the solvability of the retati

\/(v—v_) (92(u) — g2(u-)) Vv

(u=u2) (gr(v) —o1(v-)) u—u_
betweeru andv.
Furthermore, the Liu E-conditio takes the form now

iV@ﬂw—mmﬂnwxw—me»

(V—Vi+1) (U—Uisa)
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3

- (91(vi) —91(Vit1)) (92(ui) — g2(Uit1))
- (Vi — Viz) (Ui — Uita)
wherev andu are situated between, vi.1 andu;, U1 respectively. Obviously, the
conditionB does not imply the automatic validity & .
Furthermore, we find the eigenvalues of the matritgg (U(¢q),0,T):

Nas(@Ea).0.0) = 2 [ 644 g)6hltag s
where

Ug = U(&a) +aqw(n) +agw(n —0), Ug=U(&a)+apw(n)+aaw(n +0),
Vo = V(&a) +bawd(N) +bgw(n — 0), Vg =V(&a) + bgwo(n) + bawo(n + 0),

and we denotéy, g = (ay g, by g). Therefore, to verify the assumpti@x we should
investigate the complete system (43), (46)Aqr Ag.
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V. M. Shelkovich

PROPAGATION OF DELTA-SHOCKS IN
ONE SYSTEM OF CONSERVATION LAWS

Abstract. We study the propagation éfshock wave in a new type of system of conservation
laws. The particular cases of this system are the systemniifiear chromatography and the
system for isotachophoresis.

1. Introduction

Even in the case of smooth initial data, in general, therstexd smooth and global in
time solutions of this system. This fact leads to the netes$iintroducing a notion
of L”-generalized solutiofweak solution) of the Cauchy problem in the sense of the
integral identities. Moreover, there are “nonclassic#liations where, in contrast to
Lax’s and Glimm'’s classical results, the Cauchy problemefgystem of conservation
laws either does not possess a wedk-¢olution or possesses it for some particular
initial data. In order to solve the Cauchy problem in these “nonclassgiflations,

it is necessary to seek solutions in the forndefhocks Roughly speaking, &-shock

is a solution whose componententain Dirac delta functions Problems related to
o-shocks have been intensively studied recently (see [4], $12] and the references
therein).

In numerous paper$;shocks were studied for the zero-pressure gas dynamics
(see the above references). This system was used to dedwitoemation of large-
scale structures of the universtor modeling theformation and evolution of traffic
jams for modeling media which can be consideredhaging no pressuréfor example,
dusty gases, two-phase flows with solid particles or drsplé-Shocks arise in the
model of non-classical shallow water flows [6], in the modaji@nular gases [7], in
the system ohonlinear chromatographfi 1].

In [14], a new type of systems of conservation laws (adngtbirshocks)
1) (Uit + (uj fj(laUs + -+ Haln)), =0, Xx€R, t>0,

was studied, wherg (-) is a smooth functiory; is a constantj = 1,2,...,n. This class
includes somdemple type systeffi5, 1]. In particular, the system obnlinear chro-
matography fj(v) = 1+ 1% Mj = £1, wherea; is Henry’s constantj = 1,2,....n
(see [11]); the system fasotachophoresif2, (1.1.2),(1.1.3)]{p; )t +! (E%)X =0,
j=0,1,2,...,n, 32 ,ps=0, wherepj is the charge density of anions of tfth type
(j =1,2,...,n), po is the corresponding value for cations, are the electrophoretic
mobilities of the corresponding ion$ £ 0,1,2,...,n); o <0< Wy < -+ < Wp; | =
constant is the current.

393
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In [14], we introduced integral identities, which give thefidition of &-shocks
for system (1), and derived the corresponding Rankine—Hiog@onditions. It was
proved that “area” transport processes between the moingglar one-dimensional
o-shock wave front and the region outside the front are gomditie balance relations
describing these processes were derived.

In this paper we describe the process of propagati@rsifock wave in system
(1), i.e., we construct &shock wave type solution of the Cauchy problem (1), (12).
First, by Theorem 2 weak asymptotic solutioof the problem is constructed. Next,
in Theorem 3, we construct@&shock wave type solution of this problem as the weak
limit (17) of theweak asymptotic solution

2. 0-Shocks and the Rankine—Hugoniot conditions

Suppose that = {y; :i € |} is a set of curves lying in the first quadrafk,t) : x >
0, t € [0,0)} of R? containing smooth arcg = {(xt) : S(x,t) = 0} of classC?,
(S)x#0, i€l, andl is a finite set. Lety be a subset of such that the arcg for
k € lp start from points of thec-axis and letr o = {XE 1k € lp} be the set of initial
points of the arcgy, k € lg. Itis clear that-G = ‘%‘ is thevelocity of the moving point
Mt = {x€ R:S(xt) =0} in the directiony = 2.

For system (1), we will use th®shock type initial data

(2) w=(u),...,u), where ud(x)=a%(x)+ed3(Io),

and0? € L”(R;R). Also, €25(T) s &, 3(x — %), € is a constant with € lo,
k€|o ' '
andj=12....n.

DEFINITION 1 ([14]). Adistributionu(x,t) = (uz(X,t),...,Un(X,t)) and a set of
curvesl', where

3 Uj(X,t) :GJ (x,t)+ej(x,t)6(r),

Gj € L (R x (0,00);R), &j(x,1)3(I) &'

j=1,2,...,n,such that

S €j:i(x,t)d(yi), €ji € C(yi) withi €1, and
iel

4) Hjej(xt) =0,

M-

J

is called ad-shock wave type solutiaf the Cauchy problem (1), (2) if
L [0+ £+ -+ o)) dxdt+ [ @(x,0)dx

(5)
N odp(x,t) dl
+%/weJ;I(X7t) 3t /—1+G2

+ Z i d(.00=0, j=12....n
kelg
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hold for all$ € D(R x [0,)), where,, - dlis the line integral ovey;, and

) :@_(s»@)‘
v ot (S)x ox S (xt)=0

6
(6) 5t
is thed-derivativewith respect to time [8, 5.2.(15)].

In the paper [14], the motivation of the above definition wagg. One of the
reasons is the following: in order to define the tefffyus + - - - + paun) in the sense
of Schwartzian distributions, we need to assume that celd#f) holds. Another reason
is given in the papers [4, 5, 13].

Here thed-derivative (6) coincides with the Lagrangian derivat%% equal to
(2 4 us%) ‘w , where
(S)t
(S)X w’

is the velocity of &-shock ony;, i € I; the delta functio®(y;) on the curvey; is defined
in[8,5.3.] as

dl
®) (39, 90x0) = [ 9000 =
If M ={yi:icl}, wherey = {(xt):x=aq(t)}, @4(t)cClicl, and(-) = %(-), then

%M=¢Mmm0+mm%mam%:@&%gg.

(7) u5(x,t)\w =Gv=—

Vo € D(R x [0, )).

9)

THEOREM 1 (([14])). Let us assume th& C Ry x (0,) is a region cut by
a smooth curvé = {(x,t) : §(x,t) = 0} into the left- and right-hand part®. Let
u= (ui,...,un), and letl" be ad-shock wave type solution of systéh) such that
uj(x,t) = Uj(x,t) +ej(x,1)d(I") are smooth i), and have one-sided limit§+. onT,
j =1,...,n. Then theRankine—Hugoniot conditions for tleshock

6ej (Xat) _ . f. j =
(10) e ([“J fj (Halz+ -+ Hnln)]r — [UJL‘%) IS
B Z?:l Hj [uj fj(Meug+--+Hnun)] F—
Us(x,t) = ) oo A= hen

hold alongl", where @(x,t) is the velocity(7) of a 6-shock,[g(u)] d:efg(u_) —g(uy)is

the jump in a function @) across the discontinuity curde

If T ={(xt):x=t)}, @t) € CL(0,+o), then in view of (9), relations (10)
take the form

&(t) = ([uj fj(Hatst -+ Hntin)] = [U]000)) |, gy
(11) , 371 K [uj fj(Hata++Hatn)] :
(p(t) - ZTzluj[uj] X:(p(t)’ J —1,...,”.
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The right-hand side of relation (10) (or (11)) is called Rankine—Hugoniot
deficitinuj, j=1,...,n.

In order to describe the propagation of a singular wave f(potint) starting
from the initial positionxg = 0, we need to solve the Cauchy problem for system (1)
with the initial data
(12) W= (u,....u0), W) =u? )+ [U)H(—x) + edd(—x)
whereH (x) is the Heaviside functioru] = u?_ —u?, is the jump of the function{(x)
across the discontinuity poing = 0; u?(x) = u?_(x) if x < 0, andu?(x) = u?, (x) if
x>0; u?, (x) are given smooth functions{ are given constant§,= 1,2,...,n.

We will seek ad-shock wave type solution of the Cauchy problem (1), (12) in
the form of a vector-distribution = (uy, ..., un), where

(13) Uj(%,t) = Uj4 (X,t) + [Uj (1) H (=X + @(t)) + €j(X,t)d(—x+ @(t)),

and the vector-function.. and functionsgj, @(t) are to be foundfuj] = u;— —uj,
ji=12,....n.

We use thevercompression condition
(14) Aj(up) <@t) <Aj(u), j=1.2,....n,

as the admissibility condition fd-shock waves. Herkj(u), j = 1,...,nare eigenval-
ues of the characteristic matrix of system (@(},) is the velocity of propagation of the
d-shock,uj; are the respective left- and right-hand valuesipbn the discontinuity
curvex = @(t). It means that all characteristics, which are outgoing @nléffit- and
right-hand sides of the discontinuity, meet on the discuuity curve.

3. Weak asymptotic solutions

To deal with strongly singular solutions to systems of covesgon laws in [3], [4],

[5], the weak asymptotics metheehs developed (see also [13, 5]). It is based on the
construction of aveak asymptotic solutioto the problem, which is used to construct
a strongly singular solution to the problem.

Leta € R. Denote byO4 (€%), € — +0 a collection of distributiongg(-,t) €
D'(R"), t € [0,T], € > 0 such that{fg(-,t), P(-)) = O(e), € — +0, for anyy(x) €
D(R), where the function{f¢(-,t), W(-)) is continuous irt, and the estimat®(&®)
is uniformwith respect tat in [0,T]. The notationos(¢*), € — +0 is understood
correspondingly.

DEFINITION 2. Let a vector-functiong (x,t) = (uze(X,t),...,Une(X,t)) which
is smooth ag > 0, t € [0, T] be such thatije(x,t) = Uje(X,t) + Aje(X,t), where the
weak limit lime_,0Gje € L®(R x (0,T);R) and the weak limit line_,0Aje can include
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delta-functions. The vector-functieg(x,t) is called aveak asymptotic solutioof the
Cauchy problem (1), (2) if we have

(15) glmélpjujg eL”(Rx (0,T);R),

and

(16) (ujs)t + (ujg fi(Male+---+ Hnﬁns))x = op(l), j=12...n,
U:(x,0) = u(x)+0m(1), e— +0,

hold, where the first estimate is uniformtie [0, T].

In Definition 2 the condition lima,0 3 |_; Hjuje € L (R x (0,T);R) is in com-
pliance with condition (4). In view of this condition, we t@auus + - - - + pnln =
W0y + - -+ + wqln. And the regularization of the latter distribution coinegdwith the
function yyUe + - - - + Unlne.  This definition admits passing to the limit in the weak
sense as — +0. A viscosity solutiortan be considered as a particular casewéak
asymptotic solutioo the problem, and the termy, (1) on the right-hand side of the
first relation in (16) can be interpreted as small viscosity.

Within the framework of theveak asymptotics methpae find ad-shock wave
type solution of the Cauchy problem (1), (2) as the weak limit

a7 u(xt) = siTOuS(X’t)’

whereug is aweak asymptotic soluticio the problem (16).

In compliance with [4, 5, 13], eweak asymptotic soluticsf the Cauchy problem
(1), (12) is constructed in the form of a smooth ansatz

Uje(X,t) = Uje(x,t) + Rj(x,t,€), €>0,

where the functioije is a regularization of the distributiar (see (13)) with respectto

singularitiesH (—x+ @(t)), 8(—x+ @(t)); and thecorrections R(x,t,€) are the desired

functions which are assumed to admit the estimates:

OR;j(x,t,€)
ot

Thus, according to our technique, we seek a weak asymptatitian of the
Cauchy problems (1), (12) in the form

(18) Rj(x,t,€) = 0gr (1), =op(1), €—=+40, j=12,...,n.

(19) qu(th) = Uj+(X,t)+[Uj(X,t)]Hj(—X—F(P(t),E)
+ej(1)d; (—x+@t),e) +Rj(x,t,e), j=1,2,...,n,
where
X/€
(20) Jj(x,€) = :—eLweJ()g() Hj(x.€) =woj()g() =[m wj(n)dn

are regularizations of th&-function and the Heaviside functidd (&), respectively;
wej, wj are mollifiers with the standard propertigs: 1,2,...,n.
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4. Propagation ofd-shock wave

4.1. Construction of a weak asymptotic solution.

In order to construct weak asymptotic solutioof the Cauchy problem (1), (12) in the
form (19), we choose corrections in the form

(21) RJ(X’LS):Rj(t)%Q’j/(%‘P(t))’

whereR;(t) is a continuous functiora*3§2’j’(x/s) is a regularization of the distribu-
tion 8"(x), Qj(n) is a mollifier, j = 1,2,...,n. It is clear that estimates (18) hold.
Reformulating the following lemma [4, Lemma 2.2], [5, Lemd®, we obtain:

LEMMA 1. If fj(u) is a smooth function, je(x,t) is given by(19), (20), (21),
Ve(x,t) = 311 WiTje(x,t) = 3T 1 (Uj (6, 1) + [uj (%, 1) JHj (—x+ (1), €)), then

Uje(%,t) fj (Ve(X,t)) = ujs (%) fj (Vi (%, 1)) + [uj (. t) fj (V(x 1)) |H(—x+ @(t))

(22) +{ej (Daj (1) + Rj(t)c; (t)}é(—x+ @(t)) + O (), €—+0,

where \(x,t) = 3 7_q 10 (%) = 3 ]_q by (Uj+ 06 1) + [Uj (6 DIH (=x+ @(t))),

ayt)= [ f,-(iuj (- (o )+ Uy (6 (L camy(n)) ) vy,
i=
v=/6(3n Z et () + Ui () (2 - woy(n)) )| @f(mydn.

THEOREM2. Let(14)hold fort= 0. Then there exist B 0 and a zero neigh-
borhood KC R such that for(x,t) € K x [0,T), the Cauchy problerfl), (12) has a
weak asymptotic solution (19)21) if and only if

(e + (Uje fj(Malas + -+ palnz ) ), = 0, x> £q(t),
- 2o My fj (Haua )]

(23) o) = I x=q(t)’
&) = ([ujfj(pus+ -+ patn)] — [uj]@(t)) |, _ o)’

t .
(24 R0 = 240 (0 - (1), i=1..n
where g(t), cj(t) are defined in Lemma The initial data for systen23), (24) are

defined fron(12), andg(0) = 0, Rj(0) = &5, ((p(O) aj(0)).
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Proof. Itis clear that (19), (21) implies that in the weak sense wesha
o a n n
fm, 3 Wit = 3 b (uj (6 ) + [U (% DJH (—x+ @(1))) + B(—x+ (1)) 3 piei ()

i.e., the first condition in (15) is satisfied if and only if (ddlds.
Substituting ansatz (19) and weak asymptotic (22) intoesydtl), and taking

into account the estimates (18), we obtain with accuracyoups (€) the following
relations

(uje) + (Uje Fj(Halie + - + Hline) ) = (Uj ) + (U4 Fj(Hatins + -+ Baling ) )
4 (), ([0 T (au + -+ patn)]), H (—x+ (1))
+{ [U1600) + &) = [0 j (Meta -+ o) pS(—x+ (1))
@5 +{eilt) - ei()aj(t) - ¢ OR; (1) |3 (~x+ &) + O (¢,

wherea,(t), cj(t) are defined in Lemma 1. Setting the right-hand side of (25akqu
to zero, we obtain the necessary and sufficient conditionthéofirst equality in (16):
first, third equations in (23), and (24). Here we choose thédifiecs wo;j(E), Q;(£)
such that;j(t) # 0. Since (4) is satisfied, the second equation in (23) impkiasthe
second equation in (23) holds.

Let us prove that system (23), (24) has a solution. Condide€auchy problem
(@)e+ (O fj (b + -+ Mlin)), =0, j = 1,2,...,n, G(x,0) = 0°(x), wheret®(x) =
u? (x) for x > 0 andd®(x) = u® (x) for x < 0. Following the scheme from [10, Ch.4.2],
we extend the vector-functiar (x) (u° (x) = u? (x) + [u°(x)]) to the sek < 0 (x > 0)
in a bounded? fashion and continue to denote the extended vector-fumetigu® (x).
Letus(x,t) = (U1x,...,Unt) beC! solutions of the Cauchy problem

(uj)t + (UJ fj(ulul+ "'+|JnUn))X: 07 J = 1727"'7n7 ui(xao) = u(:)l:(x)a

which exist for small enough time intervf), T;] and are determined by integration
along the characteristics. The vector-functiongx,t) determine a two-sheeted cover-
ing of the plangx;t). Next, we define the discontinuity curxe= @(t) as a solution of
the problem

_ STk (Ui (6 t) i (Maus (6, t) + -+ Halin(X,1)) ]

) Y1k [uj(x )] x=o(t)

. ¢0)=0.

Obviously, there exists a unique functigft) for sufficiently short time$0, T,]. Now,
for T = min(Ty, T2) we define a unique solution

_ Cfur(xt), x> @),
u(x,t)_{ ui(x,t), X < Q).
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of the Cauchy probler(tj); + (G; fj (01 + - +Hln)), =0,j =1,2,...,n,0(x,0) =
U0(x) fort € [0, T). This solution definesaniquesolutionu. (x,t), @(t) of the first two
equations in system (23). Now substitutimg(x,t), ¢(t) into the third equation in (23),
we definee;(t) andu;(x,t) = Uj(x,t) + €;(t)d(—x+ @(t)). Thus we have constructed
theuniquesolution of system (23), thereby we definedx,t), e;j(t), ¢(t) uniquely

It is clear that for any set. (x,t), €(t), @(t), t € [0,T), there exist functions
Rj(t), which are defined by equation (24).

It remains to note that since the initial data);_o andg(0) are such that inequal-
ity (14) holds fort = 0, then there exist§* > 0 such that, for G t < T*, inequality
(14) holds. Hence the values. on the curvex = @(t), 0<t < T*, are determined.
Theorem 2 is thus proved. O

4.2. Construction of ad-shock type solution.

Using the weak asymptotic solution of the Cauchy problem({®) constructed by
Theorem 2 we obtain &shock wave type solution of this problem.

THEOREM3. Let(14)hold fort= 0. Then there exist B 0 and a zero neigh-
borhood KC R such that for(x,t) € K x [0,T), the Cauchy problerf), (12) has a
unique solution(13), which satisfies the integral identiti€s), wherel" = {(x,t) : x =
@(t),t € [0, T)}, the distributions y. (x,t), and the functiong(t), ej(t) are defined by
the system of equations

(U +  (Ujs fj(HaUie + -+ Palnz ) ), = 0, x> (),

(26) e(t) = ([ujfj(pus+ -+ pnun)] — [ujo(t))],_ o)’
. _ ZTzluj [uj fj (MaUg+-4Hnun)] _
ot) = Y1 Hjluj] x=o(t)’ j=1...n

with the initial data defined fror(iL2), ¢(0) =0

Proof. Substituting relation (24) into the asymptotic formula),22e obtain
Uje(X,t) fj (Ve(X,t)) = ujs (%) fj (Vi (%,1)) + [uj(x,t) fj (V(x,t)) [H(—x+ @(t))
(27) + € (t)@(t)3(—x+@(t)) + Ogy(g), &— 40,

where

Ve(xt) = 3T g by (Uj+ (%, 1) + [uj ( OHj (=X + @(t), €)),

vxt) = 3N (U (60 + [uj (6 DIH (x4 (1))
By Theorem 2uje), + (Uje fj (Ma01e + - - + Malne) ), = 0oy (1), wherej = 1,2,...,n
Multiplying both sides of these relations by a test functipa D(R x [0, T)), taking
into account thatlje, fj(Hlie + - - - + Maling) are smooth, and integrating by parts their
left-hand sides, we obtain

(Uje, Br(x,1)) + <uJs (i )¢xxt>+<ujg(x,0),¢(x,0)>:0(1).
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Substituting (19), (21), and (27) into the latter relatigpsssing to the limit as — +0
in each of the functionals, and taking into account (8), wiob

<GJ' , Ot (th)> + <GJ' fi(laly +-- -+ Unan)vq)x(xvt»

+(B(—x+@(t)), € (1) e (x.1)) + (B(—x+@(1)), & () At)dx(x,1))
+@MX®¢W0D+<(X+WWLQ@WWOD

_/‘/w b+ (el + - +m%¢xmmw/}

_ dl
+ e (O (@001 + A ) —=resss

j=1,2,....n. Thus, taking into account (9), one can see that distribst{d3) satisfy
the integral identities (5).

According to the proof of Theorem 2, system (26), which daiees the com-
ponentsuj+ (x,t), @(t), ej(t) of ad-shock wave type solution (12), hasiaiquesolu-
tion. Thus the Cauchy problem (1), (12) hagsraquesolution. O

+€)9(0,0)=0
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