P. Connes, T. Alexy, J. Detterich, M. Romana, M. D. Hardy-dessources et al., The role of blood rheology in sickle cell disease, Blood Rev, vol.30, pp.111-118, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01668334

P. Connes, C. Renoux, M. Romana, M. Abkarian, P. Joly et al., Blood rheological abnormalities in sickle cell anemia, Clin. Hemorheol. Microcirc, vol.68, pp.165-172, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881733

G. J. Kato, F. B. Piel, C. D. Reid, M. H. Gaston, K. Ohene-frempong et al., Sickle cell disease, Nat Rev Dis Primers, vol.4, p.18010, 2018.

S. Charache, M. L. Terrin, R. D. Moore, G. J. Dover, F. B. Barton et al., Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia, N. Engl. J. Med, vol.332, pp.1317-1322, 1995.

R. E. Ware, How I use hydroxyurea to treat young patients with sickle cell anemia, Blood, vol.115, pp.5300-5311, 2010.

C. Halsey and I. A. Roberts, The role of hydroxyurea in sickle cell disease, Br. J. Haematol, vol.120, pp.177-186, 2003.

N. S. Green and S. Barral, Emerging science of hydroxyurea therapy for pediatric sickle cell disease, Pediatr. Res, vol.75, pp.196-204, 2014.

M. T. Gladwin, J. H. Shelhamer, F. P. Ognibene, M. E. Pease-fye, J. S. Nichols et al., Nitric oxide donor properties of hydroxyurea in patients with sickle cell disease, Br. J. Haematol, vol.116, pp.436-444, 2002.

S. B. King, The nitric oxide producing reactions of hydroxyurea, Curr. Med. Chem, vol.10, pp.437-452, 2003.

R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, vol.288, pp.373-376, 1980.

M. W. Radomski, R. M. Palmer, and S. Moncada, Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium, Lancet, vol.2, pp.1057-1058, 1987.

P. Kubes, M. Suzuki, and D. N. Granger, Nitric oxide: an endogenous modulator of leukocyte adhesion, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.4651-4655, 1991.

M. Bor-kucukatay, R. B. Wenby, H. J. Meiselman, and O. K. Baskurt, Effects of nitric oxide on red blood cell deformability, Am. J. Physiol. Heart Circ. Physiol, vol.284, pp.1577-1584, 2003.

P. Kleinbongard, R. Schulz, T. Rassaf, T. Lauer, A. Dejam et al., Red blood cells express a functional endothelial nitric oxide synthase, Blood, vol.107, pp.2943-2951, 2006.

J. P. Nicolay, G. Liebig, O. M. Niemoeller, S. Koka, M. Ghashghaeinia et al., Inhibition of suicidal erythrocyte death by nitric oxide, Pflügers Archiv, vol.456, pp.293-305, 2008.

E. Lang and F. Lang, Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death, Semin. Cell Dev. Biol, vol.39, pp.35-42, 2015.

A. M. Belanger, C. Keggi, T. Kanias, M. T. Gladwin, and D. B. Kim-shapiro, Effects of nitric oxide and its congeners on sickle red blood cell deformability, vol.55, pp.2464-2472, 2015.

A. Mozar, P. Connes, B. Collins, M. D. Hardy-dessources, M. Romana et al., Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia, Clin. Hemorheol. Microcirc, vol.64, pp.47-53, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01669738

P. Kleinbongard, A. Dejam, T. Lauer, T. Rassaf, A. Schindler et al., Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals, Free Radic, Biol. Med, vol.35, pp.790-796, 2003.

M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis et al., RBC-NOSdependent S-nitrosylation of cytoskeletal proteins improves RBC deformability, PloS One, vol.8, p.56759, 2013.

M. M. Pelletier, P. Kleinbongard, L. Ringwood, R. Hito, C. J. Hunter et al., The measurement of blood and plasma nitrite by chemiluminescence: pitfalls and solutions, Free Radic, Biol. Med, vol.41, pp.541-548, 2006.

U. Hendgen-cotta, M. Grau, T. Rassaf, P. Gharini, M. Kelm et al., Reductive gas-phase chemiluminescence and flow injection analysis for measurement of the nitric oxide pool in biological matrices, Methods Enzymol, vol.441, pp.295-315, 2008.

R. Marley, M. Feelisch, S. Holt, and K. Moore, A chemiluminescense-based assay for Snitrosoalbumin and other plasma S-nitrosothiols, Free Radic. Res, vol.32, pp.1-9, 2000.

M. Grau, U. B. Hendgen-cotta, P. Brouzos, C. Drexhage, T. Rassaf et al., Recent methodological advances in the analysis of nitrite in the human circulation: nitrite as a biochemical parameter of the Larginine/NO pathway, J Chromatogr B Analyt Technol Biomed Life Sci, vol.851, pp.106-123, 2007.

F. Suhr, J. Brenig, R. Muller, H. Behrens, W. Bloch et al., Moderate exercise promotes human RBC-NOS activity, NO production and deformability through Akt kinase pathway, PloS One, vol.7, p.45982, 2012.

M. Grau, P. Friederichs, S. Krehan, C. Koliamitra, F. Suhr et al., Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage, Clin. Hemorheol. Microcirc, vol.60, pp.215-229, 2015.

M. Grau, A. Mozar, K. Charlot, Y. Lamarre, L. Weyel et al., High red blood cell nitric oxide synthase activation is not associated with improved vascular function and red blood cell deformability in sickle cell anaemia, Br. J. Haematol, vol.168, pp.728-736, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01881538

O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke et al., Expert panel for standardization of hemorheological, new guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcirc, vol.42, pp.75-97, 2009.

C. Renoux, N. Parrow, C. Faes, P. Joly, M. Hardeman et al., Importance of methodological standardization for the ektacytometric measures of red blood cell deformability in sickle cell anemia, Clin. Hemorheol. Microcirc, vol.62, pp.173-179, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01881664

K. Walpurgis, M. Kohler, A. Thomas, F. Wenzel, H. Geyer et al., Storage-induced changes of the cytosolic red blood cell proteome analyzed by 2D DIGE and high-resolution/high-accuracy MS, Proteomics, vol.12, pp.3263-3272, 2012.

M. Thevis, J. A. Loo, R. R. Loo, and W. Schanzer, Recommended criteria for the mass spectrometric identification of target peptides and proteins (< 8 kDa) in sports drug testing, Rapid Commun. Mass Spectrom, vol.21, pp.297-304, 2007.

M. Nahavandi, M. Q. Wyche, E. Perlin, F. Tavakkoli, and O. Castro, Nitric oxide metabolites in sickle cell anemia patients after oral administration of hydroxyurea, Hemoglobinopathy, vol.5, pp.335-339, 2000.

S. B. King, Nitric oxide production from hydroxyurea, Free Radic, Biol. Med, vol.37

E. Nader, Nitric Oxide, vol.81, pp.28-35, 2018.

C. P. Minniti, A. M. Gorbach, D. Xu, Y. Y. Hon, K. M. Delaney et al., Topical sodium nitrite for chronic leg ulcers in patients with sickle cell anaemia: a phase 1 dose-finding safety and tolerability trial, Lancet Haematol, vol.1, pp.95-103, 2014.

N. Conran, C. Oresco-santos, H. C. Acosta, A. Fattori, S. T. Saad et al., Increased soluble guanylate cyclase activity in the red blood cells of sickle cell patients, Br. J. Haematol, vol.124, pp.547-554, 2004.

M. Nahavandi, F. Tavakkoli, M. Q. Wyche, E. Perlin, W. P. Winter et al., Nitric oxide and cyclic GMP levels in sickle cell patients receiving hydroxyurea, Br. J. Haematol, vol.119, pp.855-857, 2002.

V. P. Cokic, R. D. Smith, B. B. Beleslin-cokic, J. M. Njoroge, J. L. Miller et al., Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase, J. Clin. Invest, vol.111, pp.231-239, 2003.

N. G. Hord, Y. Tang, and N. S. Bryan, Food sources of nitrates and nitrites: the physiologic context for potential health benefits, Am. J. Clin. Nutr, vol.90, pp.1-10, 2009.

N. Lemonne, Y. Lamarre, M. Romana, M. D. Hardy-dessources, F. Lionnet et al., Impaired blood rheology plays a role in the chronic disorders associated with sickle cell-hemoglobin C disease, Haematologica, vol.99, pp.74-75, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01881483

S. K. Ballas, G. J. Dover, and S. Charache, Effect of hydroxyurea on the rheological properties of sickle erythrocytes in vivo, Am. J. Hematol, vol.32, pp.104-111, 1989.

G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia, Clin. Hemorheol. Microcirc, vol.35, pp.291-295, 2006.

N. Lemonne, K. Charlot, X. Waltz, S. K. Ballas, Y. Lamarre et al., Hydroxyurea treatment does not increase blood viscosity and improves red blood cell rheology in sickle cell anemia, Haematologica, vol.100, pp.383-386, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01881548

N. Lemonne, B. Mockesch, K. Charlot, Y. Garnier, X. Waltz et al., Effects of hydroxyurea on blood rheology in sickle cell anemia: a two-years follow-up study, Clin. Hemorheol. Microcirc, vol.67, pp.141-148, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01881701

N. L. Parrow, H. Tu, J. Nichols, P. C. Violet, C. A. Pittman et al., Measurements of red cell deformability and hydration reflect HbF and HbA2 in blood from patients with sickle cell anemia, Blood Cells Mol. Dis, vol.65, pp.41-50, 2017.

Z. Huang, J. G. Louderback, S. B. King, S. K. Ballas, and D. B. Kim-shapiro, In vitro exposure to hydroxyurea reduces sickle red blood cell deformability, Am. J. Hematol, vol.67, pp.151-156, 2001.

D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall, and J. S. Stamler, Protein S-nitrosylation: purview and parameters, Nat. Rev. Mol. Cell Biol, vol.6, pp.150-166, 2005.

J. Sun, C. Steenbergen, and E. Murphy, S-nitrosylation: NO-related redox signaling to protect against oxidative stress, Antioxidants Redox Signal, vol.8, pp.1693-1705, 2006.

V. Barodka, J. G. Mohanty, A. K. Mustafa, L. Santhanam, A. Nyhan et al., Nitroprusside inhibits calciuminduced impairment of red blood cell deformability, Transfusion, vol.54, pp.434-444, 2014.

L. S. Diederich, R. Sansone, S. Keller, F. Barbarino, T. R. Sutton et al., On the effects of reactive oxygen species and nitric oxide on red blood cell deformability, Front. Physiol, vol.9, 2018.

E. J. Van-beers and R. Van-wijk, Oxidative stress in sickle cell disease; more than a DAMP squib, Clin. Hemorheol. Microcirc, vol.68, pp.239-250, 2018.

S. Voskou, M. Aslan, P. Fanis, M. Phylactides, and M. Kleanthous, Oxidative stress in beta-thalassaemia and sickle cell disease, Redox Biol, vol.6, pp.226-239, 2015.

A. I. Alayash, Oxidative pathways in the sickle cell and beyond, Blood Cells Mol. Dis, vol.70, pp.78-86, 2018.

R. Hierso, X. Waltz, P. Mora, M. Romana, N. Lemonne et al., Effects of oxidative stress on red blood cell rheology in sickle cell patients, Br. J. Haematol, vol.166, pp.601-606, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01881479

B. Kalyanaraman, V. Darley-usmar, K. J. Davies, P. A. Dennery, H. J. Forman et al., Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations, Free Radic, Biol. Med, vol.52, pp.1-6, 2012.

S. Torres-lde, D. G. Silva, E. Belini-junior, E. A. De-almeida, C. L. Lobo et al., The influence of hydroxyurea on oxidative stress in sickle cell anemia, Rev. Bras. Hematol. Hemoter, vol.34, pp.421-425, 2012.

A. George, S. Pushkaran, D. G. Konstantinidis, S. Koochaki, P. Malik et al., Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease, Blood, vol.121, pp.2099-2107, 2013.

S. Selemidis, G. J. Dusting, H. Peshavariya, B. K. Kemp-harper, and G. R. Drummond, Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells, Cardiovasc. Res, vol.75, pp.349-358, 2007.

C. A. Head, C. Brugnara, R. Martinez-ruiz, R. M. Kacmarek, K. R. Bridges et al., Low concentrations of nitric oxide increase oxygen affinity of sickle erythrocytes in vitro and in vivo, J. Clin. Invest, vol.100, pp.1193-1198, 1997.

X. Xu, V. L. Lockamy, K. Chen, Z. Huang, H. Shields et al., Effects of iron nitrosylation on sickle cell hemoglobin solubility, J. Biol. Chem, vol.277, pp.36787-36792, 2002.

M. T. Gladwin, A. N. Schechter, J. H. Shelhamer, L. K. Pannell, D. A. Conway et al., Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity, J. Clin. Invest, vol.104, pp.937-945, 1999.

T. Yasukawa, E. Tokunaga, H. Ota, H. Sugita, J. A. Martyn et al., S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance, J. Biol. Chem, vol.280, pp.7511-7518, 2005.

K. Ravi, L. A. Brennan, S. Levic, P. A. Ross, and S. M. Black, S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.2619-2624, 2004.