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FUNCTIONAL CALCULUS IN THE ALGEBRA OF
GENERALIZED HYPERFUNCTIONS ON THE CIRCLE
AND APPLICATIONS

VINCENT VALMORIN

ABSTRACT. This paper deals with a functional calculus in the al-
gebra H(T) of generalized hyperfunctions on the circle. This is
done introducing an inductive family of complete ultrametric sub-
algebras. Power series expansions of classical functions such as the
exponential, logarithm or power ones are considered. As an appli-
cation, a nonlinear Cauchy problem involving fractional powers of
generalized hyperfunctions is studied. '

1. INTRODUCTION

This paper aims to provide the algebra H(T) of generalized periodic hy-
perfunctions with a functional calculus based on elementary functions
but with high nonlinearities. This becomes essential when dealing with
nonlinear differential or functional equations. The algebra H(T) was

introduced in [18] and its ultrametric topology in [17]. Earlier a first
version was given in [10] involving real 27-periodic smooth functions.
Later on, using the framework of sequence spaces, see [5, 0, 7], the au-

thor and his collaborators have given a general topological description
of various algebras of generalized functions including H(T). This des-
crition involves projective and inductive limits of locally convex spaces.
It is well-known that contrary to projective limits inductive limits have
a bad inheritance of completeness. Moreover it has never been proved
that H(T) was a complete space or not. Then to overcome such a situ-
ation, we introduce an inductive family (#"(T)),~; of complete ultra-
metric differential algebras in such a way that H(T) = ind lim, ,, H"(T)
in a set theoritical sense. Therefore it is shown that the induced induc-
tive limit topology on H(T) is finer that its original one. Recall that
the initial ultrametric topology of H(T) is given by w(f, g) = v(f — g)
where v is the so-called indicator introduced in [17]. We point out that
v(A) = 1 for all nonzero complex number . It follows that (H(T),w) is
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2 VINCENT VALMORIN

not a classical topological algebra over the field C of complex numbers
since the multiplication by a nonzero complex number is not contin-
uous. Nevertheless v induces a complete ultrametric structure on the
associated algebra C of generalized complex numbers over which H(T)
is a classical topological algebra but it should be noticed that C is not
a field nor a domain. In the same way the topology of each algebra
H"(T) is defined by an indicator v,.. Endowed with the ultrametric w,
such that w(f,g) = v.(f —g), H"(T) is a complete algebras.

For the basic theory of Colombeau generalized functions, we refer to
[3, 4,9, 10, 13, 11]. Topological results on generalized functions can be
found in [7, 13]. For the theory of periodic hyperfunctions we refer to
[1,2, 11, 12]. We notice that a product of hyperfunctions on the circle is
defined in [3] in a more classical setting. This is done using conditions
on Fourier coefficients. In the setting of Colombeau algebras, the first
work on product of hyperfunctions has been done in [15].

The paper is organized as follows. Section 2 presents some preliminaries
on the algebra H(T) which are useful for the sequel. References for this
section are mainly [12, 17, 18]. In Section 3 we define and study the
algebras H"(T),r > 1. They are proved to be complete and the same
is done for the algebra C of generalized numbers endowed with the
ultrametric w. In Section 4 we give necessary of sufficient conditions
for the existence of log(h), exp(h) or h*, s € R where h € H(T). Section
4 is concerned with the resolution of a nonlinear Cauchy problem in
H(T) where the introduced functional calculus is used.

2. PRELIMINARIES

2.1. The algebra of generalized hyperfunctions on the circle.
For this section we refer mainly to [12, 17, 18]. For r > 1 let

C,={2z€C,1/r <|z| <r}and|f|, = sup |f(2)]
2eCly

for every bounded continuous function f defined in C,. We denote
by O, the Banach space of bounded holomorphic functions in C, en-
dowed with the norm |- |,.. Then, the topological space of real analytic
functions on the unit circle T is

A(T) = ind lim,_,; O,.

If X(T) is the set of sequences of functions (f,), with f, € A(T), we
denote by X.(T) the subset of X'(T) whose elements (f,), satisfy:

da>0,IneN,Ir > 1, f, € O, | fol- <a", n>n.
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We denote by N.(T) the subset of X, (T) constituted of elements (f,),,
satisfying:

Vbe (0,1),IneN,Ir > 1, f, € O, | [l <", n>n.

Clearly X,(T) is an algebra for usual termwise operations and N (T)
is an ideal of X, (T).

Proposition 2.1. [, Proposition 3.1] If (f,), € X(T), then:
(i) (fn), € Xe(T) if and only if

Ja > 0,dn e N,Ir > 1, |fn(k)| <ar M on>nkelZ.
(ii) (fn),, € Ne(T) if and only if
Vbe (0,1),3neN,3r > 1, |fo(k)| <br ™, n>n kel
The algebra of generalized hyperfunctions on T is the factor algebra
H(T) = Xe(T)/N(T)
The class of (f,,), in H(T) will be denoted by cl(f,).

Embedding of B(T) and A(T) in H(T). The space B(T) of periodic
hyperfunctions is the topological dual of A(T). For n € N we set

on(2) = Z 2~

|k|<n

Then we have ¢, * ¢, = ¢, and lim, ., @, = § in B(T) where §
is the periodic Dirac distribution. If H € B(T), then (H = ¢,)(z) =
2lkl<n H(k)z* and lim,,_, H * ¢, = H in B(T). Moreover, the maps
i:B(T) — X.(T) defined by i(H) = (H * ¢,), and i : A(T) — X.(T)
defined by io(f) = (fn), with f, = f, satisfy the following:

(i) i and ip are linear embeddings;

(ii) ip is a morphism of algebras.
We denote by dy be the differential operator defined for f € O,, by

o d
69f=zzd];

where z € C,.. It follows that for every k € Z,
(0f) (k) = ik f (k).

Henceforth, H(T) is endowed with two structures of differential algebra
defined by
b _q

daf.
v _. (é) and &y f — cl(dpf,)
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where f € H(T) and (f,), is any representative of f. Passing to the
quotient spaces we get a linear embedding i and an injective morphism
of algebras ig such that i| 4y &~ ip. For any H € B(T) one has

i) = L () and $@0H) = é (0)).

2.2. The algebra of generalized numbers of exponential type.
Let C. be the algebra of complex valued sequences (z,),>1 such that:

Jda>0,IneN* Vne E,, |z,] <a".

Elements of C. are said to be of exponential growth. In the same way,
we define Z, as the set of elements (z,), € C. for which

Vbe (0,1), Ine N*, Vne E,, |z,| <b".

The elements of Z, are said to be of exponential decrease. It may be
seen that C. is a subalgebra of C and that Z, is an ideal of C..

Definition 2.1. The algebra of complex generalized numbers of expo-
nential type, is the quotient algebra C = C./Z..

The complex number 2 is identified with a generalized number cl(z,)
where z, = z for all n. We denote by T the subalgebra of C constituted
of elements z with a representative in TV .

Definition 2.2. [18, Definition 3.3] Let f € H(T) and z € T. The
value f(z) of [ at z is the generalized number f(z) = cl (f.(z,)) where
f=c(f,) and z = cl(z,) with (z,), € TV,

2.2.1. Fourier coefficients of a generalized hyperfunction.

Definition 2.3. The Fourier coefficent of rank k € 7Z of the generalized
hyperfunction f is the generalized number

= (g nt )

where (fn)n 18 an arbitrary representative of f.

The Fourier coefficients do not depend on the chosen representative
and we have the following:

Proposition 2.2. [18, Proposition 3.8 | If f € H(T), then:
(i) There exists F € H(T) such that dF = f if and only if f(0) = 0.

dF A
(ii) There exists F' € H(T) such that e fif and only if f(—1) = 0.
z
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2.3. Invertibility. We denote by C* the subset of invertible elements
in C. It follows from [18, Threorem 3.9], that z € C* if and only if z
admits a representative (z,), such that

dbe (0,1),In e N*¥n > n,|z,| ="

Let H*(T) denote the subset of invertible elements of H(T). From [18,
Theorem 3.10], we know that f € H*(T) if and only if it admits a
representative (f,,), for which there is r > 1 such that f, € O, and:

dbe (0,1),In e N*,¥n > n, incf |fn(2)] = 0"
zelyp

This means that the generalized number cl(inf ec, | f,.(2)|) is invertible.
Moreover this condition does not depend on the chosen representative.

2.4. The topological structure of H(T).
Definition 2.4. [17, Definition 3.1] The indicator of f € H(T) is

() = tig (tmsup 11, )
r—1 n—+00
where (f,), is an arbitrary representative of f.

It is shown (c.f. [17, Proposition 3.6] that v(f) is also given by

N 1/n
v(f) =lim {lim sup [sup(rk|fn(k)|)] } . (2)

r=1 | nstwo | kez
Then we have:

Proposition 2.3. [17, Proposition 3.1] Let f,g € H(T) and A € C*.
Then the following holds.

(i) v(f) =0 and v(f) =04f f=0;
(i) v(Af) = v(f);
(iti) v(fg) < v(f)v(g);

iv) (f),v(9);
) A1~ g)

)
(iv) v(f + g) < sup(v

v) [v(f) —v(g)] <
(vi) v(f7) = ()" if f e HX(T).
Setting

W(f,g) :V(f_g)7 f,gEH(T)7

we define a translation invariant ultrametric distance on H(T). More-
over addition and multiplication are continuous mappings from H(T)?
to H(T) where H(T)? is endowed with the ultrametric distance D de-

fined by
D[(f,9), (u,v)] = sup(w(f, u),w(g,v)).
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The inverse fonction is a continuous operator of H*(T) (see [17, Propo-
sition 3.4 and Corollary 3.2]). We end this section by the following
result.

Proposition 2.4. [17, Corollary 3.5] The following holds:

(i) If f € i(B(T)) and f # 0, then v(f) = 1.
(ii) The mapping v is surjective from H(T) to R,.

3. COMPLETENESS OF BASIC SUBALGEBRAS

3.1. Completeness of the ultrametric space C. The subalgebra
C of H(T) is endowed with the restriction of v and then with the
restriction of the metric w.

Theorem 3.1. The ultrametric space (C,w) is complete. Then it is a
closed subspace of H(T).

Proof. Let (Ay,)m be a Cauchy sequence in C; we denote by (A, )n &
representative of \,,. Then we have:

Ve > 0,3mo € N*,Vp,q € N*, p > ¢ > mo, lim inf )., - Agn|™ < /2.
Hence, for each (p,q) as above there exists n > 0 such that |A\,, —

Agn]/™ < €. Tt follows that we can define two sequences (my) and ()
of positive integers both strictly increasing and such that:

ES ES 1
Vk e N* Vne N* n =, [Anin — Amgn| < Sk (3)

We define the sequence (p,)m in C by
Hin = )‘mk,n it n > Nk and Hin = 0ifn < k-

Since the sequence (ng) is increasing, we have pgi1, = 0 if n < 7.
Then it follows that

* * 1
VkeN ,Vn e N s |uk+17n — uk7n| < Tkn (4)
Hence, we have

+00 +00 1 k 1
kzl |Mk+1,n HEn Z (271) om _ 1

k=1

It follows that for each n € N*, the sequence (yy,)r converges to ¢,

where
—+ 00

Cn = Hin + Z Hik+1,n — Hkn-
k=1
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This shows that ((,) is a moderate element, and then we set { = cl((,).
Using (4), we have for every p € N*:

p—1 p=l s\ kI 1\t 1
|,uk+p7n—,uk,n| < Z |,Uk;+j+1,n_llk+j,n| < Z (2,1> < (2n> on _ 1"

J=0 J=0

Letting p — +00, we get that

1\ 1
|Gn = Hen| < (2n) o _ 1’

from which it follows that

1 k
il ot < (3)

n——+0o0 2

This means that v(u, — () < (%)k showing that (ug), converges to ¢

in (C,w). But since pg,, = Am,n for n = ng, it follows that p, = A,
which implies that (A,,), converges to ¢ and concludes the proof. []

3.2. The ultrametric algebras H"(T). For every r > 1 we set

XI(T) = {(fu)n € X(T), I € N,V > 1, f,, € O, limsup | f,||V™ < +o0}
n—+aoo

and we define
H(T) = {f € H(T),3(fu)n € XI(T), cl(fn) = f}.
Therefore, if R, = [0, +o0), we get a well defined mapping
vt H'(T) - Ry
by setting
vp(f) = inflimsup |l (fu)n € X(T),cl(fa) = f}. (3)
Then, v, satisfies to the following.

Proposition 3.2. Let f,g € H'(T) and A € C*. Then we have:

(i) v (A) = v(N);

(ii ; ve(Af) = v (f);

(iv)
)
)

(vi

(iil) v(f) <ve(f);
v(f) =0 if and only if f =0;
v) v(fg) < ve(f)ve(9);

vi(f + g) < max(v,(f), vr(9))-
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Proof. Assume that cl(),) and cl(u,) are two representatives of .
Then, we have (A, — n)n € N and consequently for every b € (0, 1)
there is n € N such that |\, — p,| < b" for n > 1. Therefore

Ml (46791 < 4
Un < limsup,,,, o |ita]™ Tt follows that

= limsup,,_, , o |#4n|"/™ Which shows that

v (A) = lim sup [\, """ = v(3)

and then limsup,,_,, . [\l
lim sup,,_, ;o | An| "

and proves (i). The proof of (ii) can be done following those of [17,
Proposition 3.1], (see Proposition 2.3). To prove (iii), let a > v,.(f).
Then, there exists a representative (f,), of f in X7(T) such that
Hmsup, o [ fo /™ < . Since | fu]¥™ < | ful /™ for p < 7, it follows
that v(f) = lim,;(limsup,,_, anH;/") < a. Thus, v(f) < v,.(f).
We see that (iv) follows from (iii). Now take § > v(g) and choose
a representative (g,), of g such that limsup,, , . |lg.|*" < 8. Since
B0 5UD, oo | i [V < T 51D,y | 7  Hinstup, . g1 it
follows that v,.(fg) < af proving (v). Using the above notation, there
exists n € N such that | f,, < a”and ||g,|, < 8" for n > n. It follows
that
[+ gl < (0 + g7,

Assuming tha a > [ we get

n\ 1/n
(oz"—i—ﬁ”)l/":a(l—i—(B)) — asn — +ow

Q

which proves (vi). The proof of the proposition is then complete.

[

Clearly H"(T) is a subalgebra of H(T) and H"(T) < H*(T) ifr > s> 1
since v, = v5. Moreover we have H(T) = u,-1H"(T). We introduce
the ultrametric distances w, on H"(T) and D, on H"(T)? as follows:

w(f,9) = vn(f = g) and D,((f,u), (9,v)) = max(w.(f, 9), w,(u, v)).

It is easily seen that addition and multiplication are continuous maps
from H"(T)? to H"(T), and the inverse map is a continuous operator
on H"(T)* the group of invertible elements in H"(T). Moreover, if r >
s > 1 the embeddings us, : H'(T) — H'(T) and w, : H'(T) — H(T)
are continuous. It follows that

H(T) = ind lim, ,,H"(T),

can be endowed with the inductive limit topology of the spaces H"(T)
which will be denoted by 7. Then we have:
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Proposition 3.3. The inductive limit topology defined by the ultramet-
ric spaces H'(T) on H(T) is finer that the one induced by v.

Proof. Let V be an open set in H(T) for the topology defined by v
and take f € V. Then, there exists an open ball centered at f such that
B(f,a) c V. If r > 1 is such that f € H"(T), the corresponding open
ball B,.(f, «) for the topology induced by v, satisfies B,.(f,a) € B(f, a)
since v < v,.. It follows that B,.(f,a) € V nH"(T) which proves that
V A H"(T) is an open set in ‘H" for the topology induced by v,.. Hence
V' is an open set for the topology 7T, which concludes the proof. []

For any bounded function g on T, we set

lg]

o, = sup [g(2)|.
zeT
Then, the following holds:

Proposition 3.4. Let f € H(T). If (fn)n and (gn)n are two represen-
tatives of f, then

lim sup an||¥qr = lim sup ||gnH¥T§T
n—-+0o0 n—-+aoo

Proof. Since (f, — gn)n € Ne(T), then for every b € (0,1) there are
r > 1 and n € N such that f,,g, € O, and ||f,, — gn|, < V" if n > 7.
Thus we have: Vb e (0,1),3r > 1,9n e N,Vn >,

1fn = gnl
It folows that || fullewr < |90

w1 < 0", n>mn.

w,r + 0" for n > n and then

lim sup an||iér% < max(lim sup HgnH(lx{?}ﬂ'a b).
n—+0 n—+0

- If limsup,,, ;o Hgn||¥7§r = 0, then limsup,,_, ||fn||<1x<’} < b for every
be (0,1) which implies that lim sup,,_, . | fu| 2% = 0.
- If limsup,,_,, HgnHZ% > 0, taking b < limsup,_, anHg?} gives

ISP, 4o | foleh < HOUSUD,_ 4o [ Gnll

We have proved that in any case we have

lim sup | f |5 < lim sup [ g |5
n—+00 n—-+00

The converse inequality can be shown to be true in the same way. []

This allows us to define
vi(f) = limsup | £, |20 (6)
n——+0o0

where (f,,), is any representative of f. It is easy to see that properties
(i), (iii) and (vi) of Proposition 3.2 are satisfied for r = 1 and 14 < v.
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Theorem 3.5. For every r > 1 and for every f € H'(T) we have:

(i) ve(f) < max(vr(f'), 11(f));
(i) (") < v/ (H)v(f).

Proof. For z € C, set 2/ = z/|z|. If (f,)n is a representative of f, we
have

ZORS RACIEAC

[fn(D)] < |z = 2 £l + [ fnlloor-
Since |z — 2/| < max(r — 1,1 —1/r) = r — 1, it follows that

()] < (r = DSl + 1 fnllor

and then

Finally we obtain
limsup | fu /" < max(limsup | f7[/", lim sup | £, ]07)
n——+00 n—+00 n—+00
from which (i) follows.
Now let @ € T and choose s > 0 such D(a,s) < C, where D(a,s) =
{z € C,|z—al| < s}. Recall that the remainder after the term of degree

m in the Taylor expansion of f,, about a is
R (Z) _ ("7’ B a)m-ﬁ-l J fn(é)dé
- 2ir Jr, (£ = 2)(§ —a)mt!
where I'y = {€ € C, |{ — a| = s}. It follows that if |z —a| < p < s, then
S P m+1
Rn m < (*) nire:
| R (2)] o s 1o
Thus, if |z —a|] = p and z € T, writting f,,(2) = fu(a) + (z —a) f/(a) +
R,,1(%) and using the above inequality with m = 1 gives

2 fo oo,z p
fyll ,T < — + fn r- 7
i < 22 1 2 )
Set p = ts with t € (0,1). Therefore (7) becomes
U (2 falloor 1
! < - 7 nir | - 8
il < 3 (220224 )
Let a = 2| fu|leor and 8 = | fu|-. We let ¢ denote the function
Q 1513
= — 4+
plt) =+ 17—

where t € (0,1). A simple calculation gives

i (B—a)t? +2at —
¥ (t) - tg(l - t)g
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For f—a # 0, the value of the reduced discriminant of the polynomials
(B — a)t* + 2at — a being equal to /a3, we find that it has two roots
to and t; given by

b= OV ay, = eVl
B—a B—a
If 8 > «, we find that
Ja
Va+ /B

t0<0andt1=

If B < «, we find that
LO‘
Va++/B

1 1
If a =, ¢'(t) vanishes for t = 5 and @(5) = 3a.

to>1and t; =

_va
Vva+ /B

Therefore, in any case ¢(t) reaches its minimum at ¢ =

(0,1) and we find that

() e

This equality is also true when § = «. Finally we obtain

2
I frlloor < ;(2||fn||oo,1r + \/ZanHoo,T [ fall)-
It follows that

A(F) < max(a(f), V(P flmsup 1, 127).

Making r — 1 and using v(f) = lim,_;(limsup,,_, , | fu|¥/™) gives (ii)
and concludes the proof. []

Using Theorem 3.5, (ii) we get straightforwardly:

Corollary 3.6. Let f € H(T). If v1(f) =0, then for every m € N* we
have v (f™) = 0.

3.3. Continuity of the differential operators d/dz and dy. To
establish the continuity of these differential operators we state and
prove the following.

Theorem 3.7. Let f € H"(T) for some r > 1. The following holds:
() (o) = 1o (") < i), o € (L,7);

(i) v(@nf) = v(F) < v();

(iii) If f(0) =0, then v(Gof) = v([') = v([).
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Proof. Let (f,), denote a representative of f in X (T) and let z € C,
with p € (1,7). We have (0yf)(z) = izf'(z) with % < |z| < p, and then

1
;Hféllp < %0 fnll, < Plf2l

which gives
lim sup ||89fn||1/” = hm 0 sup 11 Hl/”
n—+00
It follows that v,(0pf) = v,(f') and V(&gf) = v(f").
Let p € (1,7) and take 7’ such that p <7’ < r. Hence, for all z € C,

we have

1 fa(§)dE 1 fn(§)d€
) = 5 g=r =2 20T Sy £z

and then
by L[ S fu(€)d

27 Jgor (€ —2)%  2im gy (€—2)%

It follows that )
Pl , Ul

| (2)] < (' — p)? (% _ %)2

Simple calculation gives

|f(2)] <

r! +7“p

( ) an”r’

and then
4+ p

| falo < =2 7 [ follar-

Using | fol < ||fn and letting " — r yields
T+ rp?

Il < o )anH

It follows that v,(dsf) = v,(f") < v,.(f) and v(dof) = v(f') < v(f)
which proves (i) and (ii).
Since (0yf,)(k) = ik f, (k) for all k € Z, it follows from (2) that

1/n
V(f') = lim {hmsup sup K0 | }

p—1 n—

Hence, if f(0) = 0, we can choose (f,), such that fn(O) = 0 for every
n and we will have

sup (o || fa(K)]) = sup (o] £ (k).
keZ keZ
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This leads to v(dpf) = v(f) and then v(dpf) = v(f), proving (iii). [

Thus, the following corollary is a straightforward consequence of The-
orem 3.7.

Corollary 3.8. The differential operators d/dz and 0y are continuous
in each of the following cases:
(i) from H(T) to H(T);
(i) from H"(T) to H(T);
(iii) from H"(T) to H*(T) with 1 < s <.
Consequently H(T) is a topological differential algebra.

3.4. Completeness of the topological algebras H"(T).
Theorem 3.9. The ultrametric algebra (H"(T),w,) is a complete one.

Proof. Let (F,,)m be a Cauchy sequence in H"(T). It follows from the
definition of v, that there exist my, mo € N* with my > m; and two
representatives (FL1 ), and (FL] ), of F,, and F,,, respectively such
that: ,
lim sup |Fhd = FELIY™ < o (9)
Then, we set
Fon= FIT and Frpn = — il

mi,n ma,n"’ (10)
In the same way we get ms € N* with mgz > my and two representatives
(K12 ), and (F2 ), of F,, and F,, respectively such that:

ms,n

hmsupH m L — FR U < —

st ma, n” 22 .
Then, for each n € N*, we set

Fms,n:Fgg],n_F[] +Fm2n

ma,n

Hence, by induction, we get a subsequence (Fn, )k along with repre-
sentatives (FIF ), and (FIF ), of FIF ~and FU¥I respectively such

Mp41,n/ 1 k+1

that for every k € N*,

i sup [FLE,,, — 1" < o (1)
Then, for every (k,n) € N* x N* we set

e L S O (12)
It follows that

Foorn = Fryn = F;J]H L, FJg]n
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for 1 < j < k, and summing up we find that for every k£ > 2:
k
ka+1,n = Fgg+1,n + Z(F'fl;:z]_,é] - F'IE:ZJ,TL) (13)
j=2

Since (F,E{;ﬂ)n and (F,[,{]]n)n are both representatives of F,, », it follows

that (2’“ [FL-1 Fg}n]) e N,(T) and then (F,,., )n is a repre-

j=2L1" my,

sentative of F,, ... Using (12), we get F,,, ., — F, = F}fgﬂm - an
and then using (11) we find
1
lim sup | Fp, . 0 — Fopn| Y™ < = (14)
n—+ao A ' Qk

Then, there exists a sequence (1), of positive integers which is strictly
increasing and such that

* ES 1 "
V(k,n) e N* x N*,n = g, [|[Fingn — Frnllr < (Qk) ) (15)

For each k € N*, we define the sequence of functions (Gy. ), as follows:
Grn = Fo,n if n =1, and Gy, = 0 otherwise.

It follows that (G,). is a moderate sequence, and if Gy = [(Grn)],
then Gy, = F,,,,. We also have:

1\*
V(k,n) € N* X N*, HGIH'LN — ka” < (271> .
Using successively the above inequality, we get for every p € N*:

||Gk+p,n — Gk,n”r < ||Gk+p,n - Gk+p—1,n||r +--- 4 HGk-‘rl,n - Gk,n”r

< (BT ()
< (@)
|Gripn — Grnlr < ()7 55

It follows that for each n € N*, the sequence (Gj,)i is a Cauchy se-
quence in O, and then it converges to an element g, in O,. Letting
p — 40 in the above inequality gives

I\t 1

This shows that (g,) is a moderate element; in fact we have:

1 n
ol < 16l + (55 )

Hgn — Gk:,n
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Then we set g = [(g,)]. Using (16), we have for every p € N*:

k—1 1/n
" 2 2n —1
k
1/n < 1
n—-+oo " 2

”gn - Gk,n

which gives

Vr(g - Gk) < lim sup ”gn - Gk,n

and proves that
lim v.(¢g —Gy) =0.

k—+0
Hence, (F,,, ), converges to g in H(T), and since (F},,),, is a Cauchy
sequence, it converges to g which concludes the proof. []

4. FUNCTIONAL CALCULUS AND APPLICATIONS

All the results stated in this section for the algebra H(T) are also true
for the subalgebras H"(T) and C.

4.1. Exponential, logarithm and power functions.

4.1.1. The exponential of a generalized hyperfunction. Let u € H(T)
and let (u,) be a representative of u such that u, € O, for some r > 1.
If z € C,, then |exp(u,(2))| = exp(Ru,(z)) and consequently

| exp(uy)|l, = exp(sup Ru,(2)).

zelyp
It follows that (u,) satisfies | exp(u,)|, < a™ for some positive constant
a if and only if sup,c¢, Ru,(2) < nlna.

Definition 4.1. A generalized hyperfunction u is said to be real sublin-
ear if it admits a representative (uy,), such that u, € O, for somer > 1
and sup,ec, Ru,(2) < An for a real constant X and n large enough.

We have the following:

Proposition 4.1. For a generalized hyperfunction u, the condition to
be real sublinear does not depend on the chosen representative.

Proof. Let (u,), and (v,), be two representatives of u where (uy,),, is
real sublinear; we set

o, = sup Ru,(2) and 5, = sup Ru,(2).
2eCy 2eC,

It follows that

e — e ={le™ | — e[| < e — e,
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and then using |e* — 1| < |z]e/*l, we get
e — o] < e (e — 1),
< llen e =em =1
< etrelvnmnlr |y, — uy, |,

Since (v, — uy,), is negligible, for every € > 0 there exists 7; € N such
that elvn=uelr |y, — w,|, < e if n > . It follows that e’ < (1 + ¢)e®n
for n > m;. Hence, if o, < An for n > n > 1y, then we have 3, <
A+ In(1 + €)]n for n > n which proves the proposition ]

We notice that if v is bounded, i.e. |u,l, < a for some a > 0 for n
large enough, then it is real sublinear. Clearly, if w is real sublinear
then A\u is also real sublinear if A\ is a nonnegative real number. It is
easily seen that if u,v € H(T), then

exp(u + v) = expu X expv.

Moreover, since sup,cq, (—Run(2)) = —inf.ec, Rup(2), it follows that
(—u) is real sublinear if and only if inf.cc, Ru,(2) = un for some p e R
when n is large enough. Thus u and (—u) are both real sublinear if
and only if there are A, u € R such that

pn < inf Ru,(z) < sup(—Ru,(2)) < An.
zeCr 2€C,

Under this condition exp(u) and exp(—u) are invertible with
[exp(u)] ™ = exp(—u).
4.1.2. The exponential of u for v(u) < 1.

Theorem 4.2. If ue H(T) is such that v(u) < 1, then exp(u) is well
defined in H(T) and is given by

ok
exp(u) = Z o
k=0 "'

Proof. Let u € H(T) satisfy v(u) < 1 and choose any representative
(tn)n of u. Then we have:

v(u) = lirr{(lim sup [u, |¥™) < 1.
r— n—00

Hence, for every a such that v(u) < a < 1, there exists p > 1 such
that
1/n

St <a,

vp(u) = limsup |u,||
n—00
and there exists ng € N* such that for every n > ny:

|un|, < a™ < 1.
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Hence, (|uy,)n is bounded and then exp(u) is well defined. Moreover,

since Vp(%];) = v,(u¥), if p and ¢ are two integers such that p > ¢, it

follows from v,(u) < 1, that:

Vp( Z Z[) $ max Vﬂ(%) < [, ()]

Fl<k<
k—q+1 e P

Hence, we have lim,, ;o [v,(u)]97 = 0 and then,

Pk
lim v — 1 =0
pg—to P Z k!
k=q+1

showing that (ZZLZO %’f) is a Cauchy sequence in H”(T). Since H?(T)
is complete and the embedding u, : H?(T) — H(T) is continuous, it
follows that the series ), ’;—f converges in H(T) to exp(u). []

4.1.3. The logarithm function. Let u € H(T) admit a representative
(uy) such that u,(C,) "nR_ = & for n > ny for some ny € N*. Then
log(u,,) is holomorphic in C, and for every z € C,., we have

log(u,(2)) = In |u,(2)| + 7 arg(u,(2))

where arg denotes the principal determination of the argument func-
tion. If |u,|, < a™ for n > n for some a > 1 and n € N*, then we have
| 1In ||l < In|u,|, < nlna. It follows that

[log(u,)|- < nlna + 27.

This shows that (log u,) is a moderated sequence and logu = cl(log u,,)
is real sublinear. Consequently, exp(logu) is well defined, and one gets

exp(logu) = u. (17)

The condition u,(C,) nR_ = ¢ for the existence of logu depends on
the chosen representative (u,). Then it is necessary to get a sufficient
one depending only on wu.

Proposition 4.3. Let u € H(T) and let (u,) denote a representative
of u in some ON". Define

d,(u,) = dist(u,(C,),R_) = zeClrl,l/\feR_ [un(2) — Al (18)
Then (d.(uy,)) € Ce and d.(u) = cl(d.(uy,)) is independent on the rep-
resentative (uy,), and d,(u) < ds(u) if s < r. Moreover if d.(u) € C*,
then logu is well defined .
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Proof. For every z € (), and A € R_, we have
dr(up) < |up(z) = Al
and then (d,(u,)) € C.. Let (g,) denote another representative of u in
ON*. For every z € C, and X € R_, writting (g,(2) — \) — (un(2) = \) =
gn(2) — un(2), gives
[19n(2) = Al = Jun(2) = All < |ga(2) — un(2)].
It follows that
dr(gn) < |9n(2) = un(2)] + |un(z) = Al
which leads to

| (gn) — dr(un)| < [gn(2) — un(2)] < [|gn — unllr-

Whence (d,-(g9,) — d.(u,)) € Z. i.e. cl(d,(g,)) = cl(d.(u,)). This shows
that cl(,d(u,)) does not depend on the representative (u,) and then
d,(u) = cl(d.(uy,)) is well defined. Since {(z,\) € Cs x R_} < {(z,\) €
C, xR_}if s < r, it follows that d,.(u) < ds(u). Now assume that d,.(u)
is an invertible element of C. This means that:

de e (0,1),3Ing € N*,Vn > ng : dist(u,(C,),R_) = ". (19)

Since dist(u,(C;),R_) > 0 for n > ny, it follows that u,(C,) "R_ =
for n > ng and then logu is well defined. []

Corollary 4.4. Let w € H(T). If d,(u) is invertible for some r > 1,
then u is invertible.

Proof. Let (u,) denote a representative of u such that u, € O,. Since
{(2,0);2 € C,} < {(2,)\) € C, x R_}, it follows that inf,ec, |u,(2)| =
d,(u,). Hence, if d,.(u) is invertible, cl(inf.ec, |u,(2)|) is invertible
which means that u is invertible (see Section 2.3). []

Remark 4.1. If £ € C, we set d(§) = infyeg_ | — N = d.(§) for any
r > 1, & being considered as a constant generalized hyperfunction.

4.1.4. Series expansion of log(1 + u) for v(u) < 1.

Theorem 4.5. Let u € H(T) be such that v(u) < 1. Then log(1 + u)
is well defined in H(T) and is given by

& (-

log(1 4+ u) = Z k

k=1
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Proof. Let u € H(T) satisty v(u) < 1. It follows that there exists
p > 1 such that | = limsup, . |u,[)/" < 1. Taking a such that
| < a < 1, there exists ng € N* such that |u,|, < o™ for n > ny.

Hence, for every z € C, and every A € R_, if n > ng we have

(L +un(2)) = Al = (1= A) = [lual, = (1 —a)"
Hence, 1 4+ u € H?(T) and d,(1 + u) € C* for n = ngy. It follows from
Proposition 4.3 that log(1 + u) is well defined. Since I/p(%) =
v,(u”), we can proceed as in the proof of Theorem 4.2 to show that

(Z;nzl (71)];:1”]6) is a Cauchy sequence in H?(T). Hence, the series

+oo (—1)k+1yk

o1 ——— converges in H(T) to log(1 4+ u). [

4.1.5. Power functions. Let h € H(T) such that logh exists and let
s € H(T). If slogh is real sublinear, we can calculate exp(slogh),
then we define

h?® = exp(slogh).

Let (s,) and (h,) be respective representatives of s and & in some OY*
with d,.(h) invertible. If Rs,, = a,, and s, = b, then we have

R(sy,loghy,) = ap In |hy,| — b, arg hy,.

For instance if (a,) is bounded and b, = O(n) then slogh is real
sublinear. We note that if s € C, then slogh is always real sublinear
and h® is well defined.

Proposition 4.6. Let s € R such that |s| = 1 and h € H(T). If logh
exists, then the equation

u® =h (20)
has a solution u € H(T) given by u = h* = exp(Llogh).
Proof. Since logh exists and s # 0, then h'* = exp(Llogh) is well
defined. We show that u = h'/* is a solution to (20). Let (h,) be a

representative of h in some ON" such that h,(C,) " R_ = J for every
n € N*. We have

exp(tloghy) = exp (L(0n [+ iargh,);
= exp(LIn|hy|)exp (Larghy);
= |hg|V exp (targh,) .

Since |s| = 1, it follows that *argh, € (—m,7) and then

1 1
arg <exp(8 log hn)) = arg P,



20 VINCENT VALMORIN

Thus exp(+ log h,)(Cr)NR_ = & for every n and then log [exp (£ log hy,) |
is well defined and

log [exp (flogh,)] = lnlh,|+ Larghy;
= % log h,,.
It follows that slog [exp(% log hn)] = log h,,. Then we have

1
exp [s log (exp( log hn))] = h,
s

which gives
(hM)* = exp(slog h'/*);
= exp [slog (exp(Llogh))| = h
and proves the result. []
Let Z denote the subring of generalized integers, that is
Z=1{2eC,Az)n e ZV NC,:cl(z,) = Z}.
Then, we have the following.

Proposition 4.7. Let s € (—1,1) and h € H(T) such that logh exists.
Then, there exists a generalized hyperfunction p valued in Z and such
that

(hl/s)s _ (eﬂ'Sﬂ-)zph. (21)
Proof. Keep the notation of Proposition 4.6 and set
hn 977, S
e o+ (22)

where p, s(2) € Z and |0, 5(z)| < |s|m for z € C,.. Since

1 h,
“log hy = In [V 4 i 2280
S

Y

it follows that
10y,

1
exp(~ logh) = (B exp () |

Thus we have

1 10,5
In |h,| + on.

1
In (exp(s log hn)>

T s
and then
slog [exp (% log hn)] = 1In|hy| +ib0,s;
= In|h,| + iargh, — 2isp, 7,
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that is
1
slog [eXp ( log hn>] = log hy, — 2isp, s. (23)
5
The above equality gives

_ logh, —slog (exp(%log hy,))
B 2ism

Pn,s

which shows that p,, s is a holomorphic function in C,. Since p,, ; takes
its values in Z and C, is a connected space, it follows that for each
n € N*, p, s is constant. The above equality also shows that (p,s), is
moderated, but using (22) yields

n,s

arg hn - en,s
25T '
Then, since |arg h,| < 7 and |6, 5| < |s|m, we obtain precisely that
1+ |s]
2]s|

”pn,s HT’ <

which shows that (p,s), € A7 and allows us to define

p= Cl(pn,s)-
Equality (23) also gives

1 .
exp [s log (exp( log hn)>] — (G_ZSTF)Qpn,shn'
S

It follows from |sm| < 7 that e™*™ has a logarithm and then (e™%™)%
is well defined as mentioned at the beginning of Section 4.1.5. Hence,
we have

(hY/%)* = exp(slog h/*) = (e7*™)%h.
The proposition is thus proved. []

The proof of Proposition 4.6 shows that the invertibility of d,.(h) implies
that exp( log h,)(C,) "NR_ = ¢ for n is large enough. In fact, we have:

Proposition 4.8. Let h € H(T) such that d,(h) is invertible for some
r> 1. If s is a real number such that |s| =1, then d, (exp(Llogh)) is
also invertible.

Proof. Let (h,) be a representative of h in ON*. We have

2

z€C NeR_

1 1
d,? (exp(slog hn)> = inf ‘(exp(slog h)> —A
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For z fixed in C,, set p, = |h,(2)|"/* and 6,, = arg h,(z). Then we get

dz(exp( log h,, )) = infiec, aer_ ‘pncos (9") A+ ip, sin (9")‘
d,>? (exp(gloghn)) = inf,eo rer {()\ Pn COS (9”)) + pp? sin (9")}.

Set f(A) = (A — pycos (9")) + py?sin? (%) where A < 0. Then f is a
derivable function of A and f(A) =2 (A — p, cos (%)).

If cos ( ) 0, then f/(\) < 0 and f reaches its minimum p,* at A = 0;
If cos (9") < 0, then f reaches its minimum p,?sin® (2) at X\ =
pn cos (%),

The condition cos (9—") < 0 implies that § < ‘%"‘ < ﬁ and then

sin? (9 ) > sin (s) It follows that in any case,

inf f(\) = p,”sin® (g)

AER_

and then

1
d, (exp( log Ay, )) sin (| |> me | (2)] 2. (24)
zelyp
We notice that sin <| ‘) # 0 if |s|] > 1. Since d,(h) is invertible, it

follows from Corollary 4.4 that h is invertible, which means that there
are e € (0,1) and ny € N* such that inf.cc, |h,(2)] = " if n > ny. If
s > 1, using (24), we have that d, (exp(llogh,)) = (b"/*)" for some
b € (0,1) and n large enough. If s < —1, since h™! is invertibe with
(h, ') as representative and

: /s _ -1 1/|s|
Inf |ha(2)[7* = inf |h"(2)[7F,

it follows that d, (exp(tlogh,)) = (c'/I*)* for some c € (0,1) and n
large enough. Thus d, (exp(s log h)) is invertible for |s| > 1.
If s =1, we have exp(log h) = h which is invertible. If s = —1, since

—log hy(z) = In |h, (2)|"" +dargh, ' (2) = logh; (),

it follows that exp(—logh) = exp(logh™!) = h~! which is invertible.
The proposition is thus proved. []

4.2. Application to nonlinear differential equations. Consider
the nonlinear ordinary differential equation:

69h —uh® = 0. (25)
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Proposition 4.9. Assume that u € H(T) satisfies 1(0) = 0 and s €
(—0,0] U [2,4+00). If U € H(T) is a primitive of u with respect to 0y,
there exists p > 1 and pe C* such that d,((1 —s)U + p) € C*, and

h=((1=9)U+pe
is a solution to (25).

Proof. Since 4(0) = 0, Proposition 2.2 implies that there exists U €
H(T) such that dyU = u. Then (25) is formally equivalent to

ifsh = oyU. (26)

On the other hand, we have:
9 1 . (1 - S)agh
o hs—l - hs

dp(h* 1 —(1—3s)U) =0.
Thus, there exists a constant p € C such that

Rt = (1 —5)U + p. (27)

which gives

Let a > v(U) + L,v(U) < b < a,a > 0 and take u = cl(p,) with
pn = a™ + ™. If (U,) is any representative of U, there are p > 0 and
1 € N* such that:

U, < b", n>n.
For every Ae R_ and z € C,, if n > 7, we have
(1= 5)Un(2) + ptn — Al fin — A — |1 = s[Un(2)]
pn = A= [1=s||Unl,
a” +a" — XA —|1—s|b"
(@™ — 1 —s|b™ — \) + ™.

VoV WV WV

It follows from the hypotheses that a” — |1 — s[b™ — A = 0 for n large
enough which implies that |(1 — s)U,(2) + pun — A| = a” for such n.
Then we have

d,((1 —s)U + pn) € H*(T).
Thus, log((1—s)U + ) is well defined. Using Proposition 4.6 and (27),
we get that

h=((1-s)U+ )b

=

is effectively a solution to (25). [
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Now consider the nonlinear Cauchy problem:

Oph —uh® = 0
{ he) = 23
where ¢ € T, 7 € C and d(7) € C*. Then, we have:

Theorem 4.10. Let u € H(T) satisfy 4(0) = 0 and s € (—0,0] U
|2, +00). Assume that there exist ¢ > |1 — s|m and € > 0 such that

A7) — cv.(u) = a (29)

for some positive real o € C* where v-(u) = cl((v(u) +¢€)"). Then, (28)
has a solution in H(T).

Proof. We keep the notation of Proposition 4.9 and we set
w=((1-s)U + p)Ye=b (30)

where 3 € C. We show that 3 can be chosen for w to be a solution to
(28). Recall that ¢ € T means that it has a representative (), in T .
Set ¢, = € and take r > 1 such that

(r—1)r<

c
T — . (31)
i0

For 0 € [-m, 7|, we set 2/ = ¢ € T and 2z = pe where p varies
in (1/r,r); thus we have z € C,. We denote by &, the path from (,
through 2" arriving at z whose image is the union of the circle arc ¢, 2’/

and the line segment [2'z]. Let (U,), be a representative of U; then
we have

Un(2) = Un(Gn) = S,@Z U (§)d€
= Sz UnOdE + §p.,  Un(€)de.
If u,(z) = 0pU,(z), then (u,), is a representative of u and

U,'L(é) _ _Z.aOUn(g) un(g)

whence we find that

_ _ Un(f)d . un(f)d
Un(2) — Un(Cn) ZL7 ¢ £ zf[z,,z] ¢ €.

The length |6 — 6, of ¢, 2" will be chosen such that |6 — 6,| < 7. We
notice that |z — 2/| < max(l — —,r — 1) = r — 1 since r > 1. Then,
using 1/|¢] < rif £ e [2/,z] and [{] = 1 if £ € T, we find that

Un(2) = Un(Ga)| < 10 = O] supgec | 42

€ ‘ + |Z - zl| Sup{e[z’,z]
< |6 — 6, SUDger [un ()| + (r — 1)1 |unl,.

§ ¢

%q
3
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Thus we get
|Un(2) = Un(G)| < (7 + (r = D)r) ] (32)
Let (7,)n be a representative of 7. Writting w(() = 7, we find that
B=-(1-sUQ)+7"
and then, for every A e R_,

(1= 8)Un(2) + Bn = Al = |(1=5)Un(z )—(1—S)U(C )+Ts_1—>\|
(1 =) (Un(2) =U(G)) + 7" = Al
where 3, = —(1 — s)U((,) + 7571 Tt follows that

(L= 9)Un(2) + Bn = Al = |57 = Al = L= s(m + (r = D)) |un],
and then
d (1= 8)Upn + B) = d(r;7") = [L = sl(m + (r = 1)r) Jua),-
There exists ng € N* such that |u,|, < (v(u) + &)™ if n > ngy, whence
d (1= 8)U, + Bo) = d(r5™) — 1 = s|(m + (r — D)r)(v(u) +¢)"

for n > ng. It follows from (31) that |1—s|(m+(r—1)r) < ¢. Then, using
(29) we get that d,((1—s)U + ) = « which shows that d,.((1—s)U + )
is invertible. Thus w is well defined by (30) and is a solution to (28).
[
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