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FUNCTIONAL CALCULUS IN THE ALGEBRA OF
GENERALIZED HYPERFUNCTIONS ON THE CIRCLE

AND APPLICATIONS

VINCENT VALMORIN

Abstract. This paper deals with a functional calculus in the al-
gebra HpTq of generalized hyperfunctions on the circle. This is
done introducing an inductive family of complete ultrametric sub-
algebras. Power series expansions of classical functions such as the
exponential, logarithm or power ones are considered. As an appli-
cation, a nonlinear Cauchy problem involving fractional powers of
generalized hyperfunctions is studied. 1

1. Introduction

This paper aims to provide the algebra HpTq of generalized periodic hy-
perfunctions with a functional calculus based on elementary functions
but with high nonlinearities. This becomes essential when dealing with
nonlinear differential or functional equations. The algebra HpTq was
introduced in [18] and its ultrametric topology in [17]. Earlier a first
version was given in [16] involving real 2π-periodic smooth functions.
Later on, using the framework of sequence spaces, see [5, 6, 7], the au-
thor and his collaborators have given a general topological description
of various algebras of generalized functions including HpTq. This des-
crition involves projective and inductive limits of locally convex spaces.
It is well-known that contrary to projective limits inductive limits have
a bad inheritance of completeness. Moreover it has never been proved
that HpTq was a complete space or not. Then to overcome such a situ-
ation, we introduce an inductive family pHrpTqqr¡1 of complete ultra-
metric differential algebras in such a way that HpTq � ind limrÑ1HrpTq
in a set theoritical sense. Therefore it is shown that the induced induc-
tive limit topology on HpTq is finer that its original one. Recall that
the initial ultrametric topology of HpTq is given by ωpf, gq � νpf � gq
where ν is the so-called indicator introduced in [17]. We point out that
νpλq � 1 for all nonzero complex number λ. It follows that pHpTq, ωq is
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2 VINCENT VALMORIN

not a classical topological algebra over the field C of complex numbers
since the multiplication by a nonzero complex number is not contin-
uous. Nevertheless ν induces a complete ultrametric structure on the
associated algebra C of generalized complex numbers over which HpTq
is a classical topological algebra but it should be noticed that C is not
a field nor a domain. In the same way the topology of each algebra
HrpTq is defined by an indicator νr. Endowed with the ultrametric ωr
such that ωpf, gq � νrpf � gq, HrpTq is a complete algebras.
For the basic theory of Colombeau generalized functions, we refer to
[3, 4, 9, 10, 13, 14]. Topological results on generalized functions can be
found in [7, 13]. For the theory of periodic hyperfunctions we refer to
[1, 2, 11, 12]. We notice that a product of hyperfunctions on the circle is
defined in [8] in a more classical setting. This is done using conditions
on Fourier coefficients. In the setting of Colombeau algebras, the first
work on product of hyperfunctions has been done in [15].
The paper is organized as follows. Section 2 presents some preliminaries
on the algebra HpTq which are useful for the sequel. References for this
section are mainly [12, 17, 18]. In Section 3 we define and study the
algebras HrpTq, r ¡ 1. They are proved to be complete and the same
is done for the algebra C of generalized numbers endowed with the
ultrametric ω. In Section 4 we give necessary of sufficient conditions
for the existence of logphq, expphq or hs, s P R where h P HpTq. Section
4 is concerned with the resolution of a nonlinear Cauchy problem in
HpTq where the introduced functional calculus is used.

2. Preliminaries

2.1. The algebra of generalized hyperfunctions on the circle.
For this section we refer mainly to [12, 17, 18]. For r ¡ 1 let

Cr � tz P C, 1{r   |z|   ru and }f}r � sup
zPCr

|fpzq|

for every bounded continuous function f defined in Cr. We denote
by Or the Banach space of bounded holomorphic functions in Cr en-
dowed with the norm } � }r. Then, the topological space of real analytic
functions on the unit circle T is

ApTq � ind limrÑ1Or.

If X pTq is the set of sequences of functions pfnqn with fn P ApTq, we
denote by XepTq the subset of X pTq whose elements pfnqn satisfy:

Da ¡ 0, Dη P N, Dr ¡ 1, fn P Or, }fn}r ¤ an, n ¡ η.
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We denote by NepTq the subset of XepTq constituted of elements pfnqn
satisfying:

@b P p0, 1q, Dη P N, Dr ¡ 1, fn P Or, }fn}r ¤ bn, n ¡ η.

Clearly XepTq is an algebra for usual termwise operations and NepTq
is an ideal of XepTq.
Proposition 2.1. [18, Proposition 3.1] If pfnqn P X pTq, then:
(i) pfnqn P XepTq if and only if

Da ¡ 0, Dη P N, Dr ¡ 1, | pfnpkq| ¤ anr�|k|, n ¡ η, k P Z.

(ii) pfnqn P NepTq if and only if

@b P p0, 1q, Dη P N, Dr ¡ 1, | pfnpkq| ¤ bnr�|k|, n ¡ η, k P Z.

The algebra of generalized hyperfunctions on T is the factor algebra
HpTq � XepTq{NepTq

The class of pfnqn in HpTq will be denoted by clpfnq.
Embedding of BpTq and ApTq in HpTq. The space BpTq of periodic
hyperfunctions is the topological dual of ApTq. For n P N we set

ϕnpzq �
¸
|k|¤n

zk.

Then we have ϕn � ϕn � ϕn and limnÑ8 ϕn � δ in BpTq where δ
is the periodic Dirac distribution. If H P BpTq, then pH � ϕnqpzq �°

|k|¤n
pHpkqzk and limnÑ8H � ϕn � H in BpTq. Moreover, the maps

i : BpTq Ñ XepTq defined by ipHq � pH � ϕnqn and i0 : ApTq Ñ XepTq
defined by i0pfq � pfnqn with fn � f , satisfy the following:
(i) i and i0 are linear embeddings;
(ii) i0 is a morphism of algebras.

We denote by Bθ be the differential operator defined for f P Or, by

Bθf � iz
df

dz

where z P Cr. It follows that for every k P Z,zpBθfqpkq � ikf̂pkq.
Henceforth, HpTq is endowed with two structures of differential algebra
defined by

df

dz
� cl

�
dfn
dz



and Bθf � clpBθfnq
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where f P HpTq and pfnqn is any representative of f . Passing to the
quotient spaces we get a linear embedding ī and an injective morphism
of algebras ī0 such that ī|ApTq � ī0. For any H P BpTq one has

īpdH
dz

q � d

dz

�̄
ipHq� and īpBθHq � Bθ

�̄
ipHq� .

2.2. The algebra of generalized numbers of exponential type.
Let Ce be the algebra of complex valued sequences pznqn¥1 such that:

Da ¡ 0, Dη P N�, @n P Eη, |zn| ¤ an.

Elements of Ce are said to be of exponential growth. In the same way,
we define Ie as the set of elements pznqn P Ce for which

@b P p0, 1q, Dη P N�, @n P Eη, |zn| ¤ bn.

The elements of Ie are said to be of exponential decrease. It may be
seen that Ce is a subalgebra of C and that Ie is an ideal of Ce.

Definition 2.1. The algebra of complex generalized numbers of expo-
nential type, is the quotient algebra C � Ce{Ie.
The complex number z is identified with a generalized number clpznq
where zn � z for all n. We denote by T̃ the subalgebra of C constituted
of elements z with a representative in TN� .

Definition 2.2. [18, Definition 3.3] Let f P HpTq and z P T̃. The
value fpzq of f at z is the generalized number fpzq � cl pfnpznqq where
f � clpfnq and z � clpznq with pznqn P TN�.

2.2.1. Fourier coefficients of a generalized hyperfunction.

Definition 2.3. The Fourier coefficent of rank k P Z of the generalized
hyperfunction f is the generalized number

f̂pkq � cl
�

1
2iπ

»
|z|�1

fnpzqz�k�1dz



where pfnqn is an arbitrary representative of f .

The Fourier coefficients do not depend on the chosen representative
and we have the following:

Proposition 2.2. [18, Proposition 3.8 ] If f P HpTq, then:
(i) There exists F P HpTq such that BθF � f if and only if f̂p0q � 0.
(ii) There exists F P HpTq such that dF

dz
� f if and only if f̂p�1q � 0.
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2.3. Invertibility. We denote by C� the subset of invertible elements
in C. It follows from [18, Threorem 3.9], that z P C� if and only if z
admits a representative pznqn such that

Db P p0, 1q, Dη P N�, @n ¡ η, |zn| ¥ bn.

Let H�pTq denote the subset of invertible elements of HpTq. From [18,
Theorem 3.10], we know that f P H�pTq if and only if it admits a
representative pfnqn for which there is r ¡ 1 such that fn P Or and:

Db P p0, 1q, Dη P N�, @n ¡ η, inf
zPCr

|fnpzq| ¥ bn.

This means that the generalized number clpinfzPCr |fnpzq|q is invertible.
Moreover this condition does not depend on the chosen representative.

2.4. The topological structure of HpTq.
Definition 2.4. [17, Definition 3.1] The indicator of f P HpTq is:

νpfq � lim
rÑ1

�
lim sup
nÑ�8

}fn}1{n
r



(1)

where pfnqn is an arbitrary representative of f .

It is shown (c.f. [17, Proposition 3.6] that νpfq is also given by

νpfq � lim
rÑ1

#
lim sup
nÑ�8

�
sup
kPZ

pr|k|| pfnpkq|q�1{n
+
. (2)

Then we have:

Proposition 2.3. [17, Proposition 3.1] Let f, g P HpTq and λ P C�.
Then the following holds.
(i) νpfq ¥ 0 and νpfq � 0 iff f � 0;
(ii) νpλfq � νpfq;
(iii) νpfgq ¤ νpfqνpgq;
(iv) νpf � gq ¤ suppνpfq, νpgqq;
(v) |νpfq � νpgq| ¤ νpf � gq;
(vi) νpf�1q ¥ pνpfqq�1 if f P H�pTq.
Setting

ωpf, gq � νpf � gq, f, g P HpTq,
we define a translation invariant ultrametric distance on HpTq. More-
over addition and multiplication are continuous mappings from HpTq2
to HpTq where HpTq2 is endowed with the ultrametric distance D de-
fined by

Drpf, gq, pu, vqs � suppωpf, uq, ωpg, vqq.
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The inverse fonction is a continuous operator of H�pTq (see [17, Propo-
sition 3.4 and Corollary 3.2]). We end this section by the following
result.

Proposition 2.4. [17, Corollary 3.5] The following holds:
(i) If f P īpBpTqq and f � 0, then νpfq � 1.
(ii) The mapping ν is surjective from HpTq to R�.

3. Completeness of basic subalgebras

3.1. Completeness of the ultrametric space C. The subalgebra
C of HpTq is endowed with the restriction of ν and then with the
restriction of the metric ω.

Theorem 3.1. The ultrametric space pC, ωq is complete. Then it is a
closed subspace of HpTq.
Proof. Let pλmqm be a Cauchy sequence in C; we denote by pλm,nqn a
representative of λm. Then we have:

@ε ¡ 0, Dm0 P N�, @p, q P N�, p ¡ q ¥ m0, lim inf
nÑ�8

|λp,n � λq,n|1{n ¤ ε{2.
Hence, for each pp, qq as above there exists η ¡ 0 such that |λp,n �
λq,n|1{n ¤ ε. It follows that we can define two sequences pmkq and pηkq
of positive integers both strictly increasing and such that:

@k P N�, @n P N�, n ¥ ηk, |λmk�1,n � λmk,n| ¤
1

2kn . (3)

We define the sequence pµmqm in C by

µk,n � λmk,n if n ¥ ηk and µk,n � 0 if n   ηk.

Since the sequence pηkq is increasing, we have µk�1,n � 0 if n   ηk.
Then it follows that

@k P N�, @n P N�, |µk�1,n � µk,n| ¤ 1
2kn . (4)

Hence, we have
�8̧

k�1
|µk�1,n � µk,n| ¤

�8̧

k�1

�
1
2n


k
� 1

2n � 1 .

It follows that for each n P N�, the sequence pµk,nqk converges to ζn
where

ζn � µ1,n �
�8̧

k�1
µk�1,n � µk,n.
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This shows that pζnq is a moderate element, and then we set ζ � clpζnq.
Using (4), we have for every p P N�:

|µk�p,n�µk,n| ¤
p�1̧

j�0
|µk�j�1,n�µk�j,n| ¤

p�1̧

j�0

�
1
2n


k�j
¤
�

1
2n


k�1 1
2n � 1 .

Letting pÑ �8, we get that

|ζn � µk,n| ¤
�

1
2n


k�1 1
2n � 1 ,

from which it follows that

lim sup
nÑ�8

|ζn � µk,n|1{n ¤
�

1
2


k
.

This means that νpµk � ζq ¤ �1
2

�k showing that pµkqk converges to ζ
in pC, ωq. But since µk,n � λmk,n for n ¥ ηk, it follows that µk � λmk

which implies that pλmqm converges to ζ and concludes the proof. l

3.2. The ultrametric algebras HrpTq. For every r ¡ 1 we set

X r
e pTq � tpfnqn P XepTq, Dη P N, @n ¡ η, fn P Or, lim sup

nÑ�8
}fn}1{n

r   �8u

and we define

HrpTq � tf P HpTq, Dpfnqn P X r
e pTq, clpfnq � fu.

Therefore, if R� � r0,�8q, we get a well defined mapping

νr : HrpTq Ñ R�

by setting

νrpfq � inftlim sup
nÑ�8

}fn}1{n
r , pfnqn P X r

e pTq, clpfnq � fu. (5)

Then, νr satisfies to the following.

Proposition 3.2. Let f, g P HrpTq and λ P C�. Then we have:
(i) νrpλq � νpλq;
(ii) νrpλfq � νrpfq;
(iii) νpfq ¤ νrpfq;
(iv) νrpfq � 0 if and only if f � 0;
(v) νrpfgq ¤ νrpfqνrpgq;
(vi) νrpf � gq ¤ maxpνrpfq, νrpgqq.
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Proof. Assume that clpλnq and clpµnq are two representatives of λ.
Then, we have pλn � µnqn P Ne and consequently for every b P p0, 1q
there is η P N such that |λn � µn|   bn for n ¡ η. Therefore

|λn|1{n ¤ p|µn| � bnq1{n ¤ |µn|1{n � b

and then lim supnÑ�8 |λn|1{n ¤ lim supnÑ�8 |µn|1{n. It follows that
lim supnÑ�8 |λn|1{n � lim supnÑ�8 |µn|1{n which shows that

νrpλq � lim sup
nÑ�8

|λn|1{n � νpλq

and proves (i). The proof of (ii) can be done following those of [17,
Proposition 3.1], (see Proposition 2.3). To prove (iii), let α ¡ νrpfq.
Then, there exists a representative pfnqn of f in X r

e pTq such that
lim supnÑ�8 }fn}1{n

r   α. Since }fn}1{n
ρ ¤ }fn}1{n

r for ρ   r, it follows
that νpfq � limρÑ1plim supnÑ�8 }fn}1{n

ρ q   α. Thus, νpfq ¤ νrpfq.
We see that (iv) follows from (iii). Now take β ¡ νpgq and choose
a representative pgnqn of g such that lim supnÑ�8 }gn}1{n

r   β. Since
lim supnÑ�8 }fngn}1{n

r ¤ lim supnÑ�8 }fn}1{n
r � lim supnÑ�8 }gn}1{n

r , it
follows that νrpfgq ¤ αβ proving (v). Using the above notation, there
exists η P N such that }fn}r   αnand }gn}r   βn for n ¡ η. It follows
that

}fn � gn}1{n
r ¤ pαn � βnq1{n.

Assuming tha α ¥ β we get

pαn � βnq1{n � α

�
1 �

�
β

α


n
1{n

Ñ α as nÑ �8

which proves (vi). The proof of the proposition is then complete.
l

Clearly HrpTq is a subalgebra of HpTq and HrpTq � HspTq if r ¥ s ¡ 1
since νr ¥ νs. Moreover we have HpTq � Yr¡1HrpTq. We introduce
the ultrametric distances ωr on HrpTq and Dr on HrpTq2 as follows:
ωrpf, gq � νrpf � gq and Drppf, uq, pg, vqq � maxpωrpf, gq, ωrpu, vqq.

It is easily seen that addition and multiplication are continuous maps
from HrpTq2 to HrpTq, and the inverse map is a continuous operator
on HrpTq� the group of invertible elements in HrpTq. Moreover, if r ¥
s ¡ 1 the embeddings us,r : HrpTq Ñ HrpTq and ur : HrpTq Ñ HpTq
are continuous. It follows that

HpTq � ind limrÑ1HrpTq,
can be endowed with the inductive limit topology of the spaces HrpTq
which will be denoted by T . Then we have:
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Proposition 3.3. The inductive limit topology defined by the ultramet-
ric spaces HrpTq on HpTq is finer that the one induced by ν.

Proof. Let V be an open set in HpTq for the topology defined by ν
and take f P V . Then, there exists an open ball centered at f such that
Bpf, αq � V . If r ¡ 1 is such that f P HrpTq, the corresponding open
ball Brpf, αq for the topology induced by νr satisfies Brpf, αq � Bpf, αq
since ν ¤ νr. It follows that Brpf, αq � V X HrpTq which proves that
V XHrpTq is an open set in Hr for the topology induced by νr. Hence
V is an open set for the topology T , which concludes the proof. l
For any bounded function g on T, we set

}g}8,T � sup
zPT

|gpzq|.
Then, the following holds:

Proposition 3.4. Let f P HpTq. If pfnqn and pgnqn are two represen-
tatives of f , then

lim sup
nÑ�8

}fn}1{n
8,T � lim sup

nÑ�8
}gn}1{n

8,T.

Proof. Since pfn � gnqn P NepTq, then for every b P p0, 1q there are
r ¡ 1 and η P N such that fn, gn P Or and }fn � gn}r   bn if n ¡ η.
Thus we have: @b P p0, 1q, Dr ¡ 1, Dη P N, @n ¡ η,

}fn � gn}8,T   bn, n ¡ η.

It folows that }fn}8,T ¤ }gn}8,T � bn for n ¡ η and then

lim sup
nÑ�8

}fn}1{n
8,T ¤ maxplim sup

nÑ�8
}gn}1{n

8,T, bq.

- If lim supnÑ�8 }gn}1{n
8,T � 0, then lim supnÑ�8 }fn}1{n

8,T ¤ b for every
b P p0, 1q which implies that lim supnÑ�8 }fn}1{n

8,T � 0.
- If lim supnÑ�8 }gn}1{n

8,T ¡ 0, taking b   lim supnÑ�8 }fn}1{n
8,T gives

lim supnÑ�8 }fn}1{n
8,T ¤ lim supnÑ�8 }gn}1{n

8,T.
We have proved that in any case we have

lim sup
nÑ�8

}fn}1{n
8,T ¤ lim sup

nÑ�8
}gn}1{n

8,T.

The converse inequality can be shown to be true in the same way. l
This allows us to define

ν1pfq � lim sup
nÑ�8

}fn}1{n
8,T (6)

where pfnqn is any representative of f . It is easy to see that properties
(i), (iii) and (vi) of Proposition 3.2 are satisfied for r � 1 and ν1 ¤ ν.
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Theorem 3.5. For every r ¡ 1 and for every f P HrpTq we have:
(i) νrpfq ¤ maxpνrpf 1q, ν1pfqq;
(ii) ν1pf 1q ¤

a
ν1pfqνpfq.

Proof. For z P Cr set z1 � z{|z|. If pfnqn is a representative of f , we
have

fnpzq �
»
rz1,zs

f 1npξqdξ � fnpz1q
and then

|fnpzq| ¤ |z � z1|}f 1n}r � }fn}8,T.
Since |z � z1| ¤ maxpr � 1, 1 � 1{rq � r � 1, it follows that

|fnpzq| ¤ pr � 1q}f 1n}r � }fn}8,T.
Finally we obtain

lim sup
nÑ�8

}fn}1{n
r ¤ maxplim sup

nÑ�8
}f 1n}1{n

r , lim sup
nÑ�8

}fn}1{n
8,Tq

from which (i) follows.
Now let a P T and choose s ¡ 0 such Dpa, sq � Cr where Dpa, sq �
tz P C, |z� a|   su. Recall that the remainder after the term of degree
m in the Taylor expansion of fn about a is

Rn,mpzq � pz � aqm�1

2iπ

»
Γs

fnpξqdξ
pξ � zqpξ � aqm�1

where Γs � tξ P C, |ξ � a| � su. It follows that if |z � a| ¤ ρ   s, then

|Rn,mpzq| ¤ s

s� ρ

�ρ
s

	m�1
}fn}r.

Thus, if |z � a| � ρ and z P T, writting fnpzq � fnpaq � pz � aqf 1npaq �
Rn,1pzq and using the above inequality with m � 1 gives

}f 1n}8,T ¤
2}fn}8,T

ρ
� ρ

sps� ρq}fn}r. (7)

Set ρ � ts with t P p0, 1q. Therefore (7) becomes

}f 1n}8,T ¤
1
s

�
2}fn}8,T

t
� t

1 � t
}fn}r



. (8)

Let α � 2}fn}8,T and β � }fn}r. We let ϕ denote the function

ϕptq � α

t
� βt

1 � t

where t P p0, 1q. A simple calculation gives

ϕ1ptq � pβ � αqt2 � 2αt� α

t2p1 � tq2 .
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For β�α � 0, the value of the reduced discriminant of the polynomials
pβ � αqt2 � 2αt� α being equal to

?
αβ, we find that it has two roots

t0 and t1 given by

t0 � �α �?
αβ

β � α
and t1 � �α �?

αβ

β � α
.

If β ¡ α, we find that

t0   0 and t1 �
?
α?

α �?
β
,

If β   α, we find that

t0 ¡ 1 and t1 �
?
α?

α �?
β
.

If α � β, ϕ1ptq vanishes for t � 1
2 and ϕp12q � 3α.

Therefore, in any case ϕptq reaches its minimum at t �
?
α?

α �?
β

in

p0, 1q and we find that

ϕ

� ?
α?

α �?
β



� α � 2

a
αβ.

This equality is also true when β � α. Finally we obtain

}f 1n}8,T ¤
2
s
p2}fn}8,T �

b
2}fn}8,T � }fn}rq.

It follows that

ν1pf 1q ¤ maxpν1pfq,
a
ν1pfq

c
lim sup
nÑ�8

}fn}1{n
r q.

Making r Ñ 1 and using νpfq � limrÑ1plim supnÑ�8 }fn}1{n
r q gives (ii)

and concludes the proof. l
Using Theorem 3.5, (ii) we get straightforwardly:

Corollary 3.6. Let f P HpTq. If ν1pfq � 0, then for every m P N� we
have ν1pf pmqq � 0.

3.3. Continuity of the differential operators d{dz and Bθ. To
establish the continuity of these differential operators we state and
prove the following.

Theorem 3.7. Let f P HrpTq for some r ¡ 1. The following holds:
(i) νρpBθfq � νρpf 1q ¤ νrpfq, @ρ P p1, rq;
(ii) νpBθfq � νpf 1q ¤ νpfq;
(iii) If f̂p0q � 0, then νpBθfq � νpf 1q � νpfq.
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Proof. Let pfnqn denote a representative of f in X r
e pTq and let z P Cρ

with ρ P p1, rq. We have pBθfqpzq � izf 1pzq with 1
ρ
¤ |z| ¤ ρ, and then

1
ρ
}f 1n}ρ ¤ }Bθfn}ρ ¤ ρ}f 1n}ρ

which gives
lim sup
nÑ�8

}Bθfn}1{n
ρ � lim sup

nÑ�8
}f 1n}1{n

ρ .

It follows that νρpBθfq � νρpf 1q and νpBθfq � νpf 1q.
Let ρ P p1, rq and take r1 such that ρ   r1   r. Hence, for all z P Cρ
we have

fnpzq � 1
2iπ

»
|ξ|�r1

fnpξqdξ
ξ � z

� 1
2iπ

»
|ξ|�1{r1

fnpξqdξ
ξ � z

and then

f 1npzq �
1

2iπ

»
|ξ|�r1

fnpξqdξ
pξ � zq2 �

1
2iπ

»
|ξ|�1{r1

fnpξqdξ
pξ � zq2 .

It follows that
|f 1npzq| ¤

r1}fn}r1
pr1 � ρq2 �

1
r1
}fn}r1

p1
ρ
� 1

r1
q2 .

Simple calculation gives

|f 1npzq| ¤
r1 � r1ρ2

pr1 � ρq2 }fn}r1

and then
}f 1n}ρ ¤

r1 � r1ρ2

pr1 � ρq2 }fn}r1 .
Using }fn}r1 ¤ }fn}r and letting r1 Ñ r yields

}f 1n}ρ ¤
r � rρ2

pr � ρq2 }fn}r.

It follows that νρpBθfq � νρpf 1q ¤ νrpfq and νpBθfq � νpf 1q ¤ νpfq
which proves (i) and (ii).
Since {pBθfnqpkq � ik pfnpkq for all k P Z, it follows from (2) that

νpf 1q � lim
ρÑ1

#
lim sup
nÑ�8

�
sup
kPZ

pρ|k||k|| pfnpkq|q�1{n
+
.

Hence, if f̂p0q � 0, we can choose pfnqn such that pfnp0q � 0 for every
n and we will have

sup
kPZ

pρ|k||k|| pfnpkq|q ¥ sup
kPZ

pρ|k|| pfnpkq|q.
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This leads to νpBθfq ¥ νpfq and then νpBθfq � νpfq, proving (iii). l
Thus, the following corollary is a straightforward consequence of The-
orem 3.7.

Corollary 3.8. The differential operators d{dz and Bθ are continuous
in each of the following cases:
(i) from HpTq to HpTq;
(ii) from HrpTq to HpTq;
(iii) from HrpTq to HspTq with 1   s   r.
Consequently HpTq is a topological differential algebra.

3.4. Completeness of the topological algebras HrpTq.
Theorem 3.9. The ultrametric algebra pHrpTq, ωrq is a complete one.

Proof. Let pFmqm be a Cauchy sequence in HrpTq. It follows from the
definition of νr that there exist m1,m2 P N� with m2 ¡ m1 and two
representatives pF r1s

m1,nqn and pF r1s
m2,nqn of Fm1 and Fm2 respectively such

that:
lim sup
nÑ�8

}F r1s
m2,n � F r1s

m1,n}1{n
r   1

21 . (9)

Then, we set
Fm1,n � F r1s

m1,n and Fm2,n � F r1s
m2,n. (10)

In the same way we get m3 P N� with m3 ¡ m2 and two representatives
pF r2s

m2,nqn and pF r2s
m3,nqn of Fm2 and Fm3 respectively such that:

lim sup
nÑ�8

}F r2s
m3,n � F r2s

m2,n}1{n
r   1

22 .

Then, for each n P N�, we set
Fm3,n � F r2s

m3,n � F r2s
m2,n � Fm2,n.

Hence, by induction, we get a subsequence pFmk
qk along with repre-

sentatives pF rks
mk�1,n

qn and pF rks
mk,n

qn of F rks
mk�1

and F rks
mk

respectively such
that for every k P N�,

lim sup
nÑ�8

}F rks
mk�1,n

� F rks
mk,n

}1{n
r   1

2k . (11)

Then, for every pk, nq P N� � N� we set

Fmk�1,n � F rks
mk�1,n

� F rks
mk,n

� Fmk,n. (12)

It follows that
Fmj�1,n � Fmj ,n � F rjs

mj�1,n
� F rjs

mj ,n
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for 1 ¤ j ¤ k, and summing up we find that for every k ¥ 2:

Fmk�1,n � F rks
mk�1,n

�
ķ

j�2
pF rj�1s

mj ,n
� F rjs

mj ,n
q. (13)

Since pF rj�1s
mj ,n

qn and pF rjs
mj ,n

qn are both representatives of Fmj ,n, it follows
that

�°k
j�2rF rj�1s

mj ,n
� F rjs

mj ,n
s
	
n
P NepTq and then pFmk�1,nqn is a repre-

sentative of Fmk�1 . Using (12), we get Fmk�1 � Fmk
� F rks

mk�1,n
� F rks

mk,n

and then using (11) we find

lim sup
nÑ�8

}Fmk�1,n � Fmk,n}1{n
r   1

2k . (14)

Then, there exists a sequence pηkqk of positive integers which is strictly
increasing and such that

@pk, nq P N� � N�, n ¥ ηk, }Fmk�1,n � Fmk,n}r ¤
�

1
2k


n
. (15)

For each k P N�, we define the sequence of functions pGk,nqn as follows:
Gk,n � Fmk,n if n ¥ ηk and Gk,n � 0 otherwise.

It follows that pGk,nqn is a moderate sequence, and if Gk � rpGk,nqs,
then Gk � Fmk

. We also have:

@pk, nq P N� � N�, }Gk�1,n �Gk,n} ¤
�

1
2n


k
.

Using successively the above inequality, we get for every p P N�:
}Gk�p,n �Gk,n}r ¤ }Gk�p,n �Gk�p�1,n}r � � � � � }Gk�1,n �Gk,n}r

¤ � 1
2n

�k�p�1 � � � � � � 1
2n

�k
¤ � 1

2n

�k �� 1
2n

�p�1 � � � � � 1
�

}Gk�p,n �Gk,n}r ¤ � 1
2n

�k�1 1
2n�1 .

It follows that for each n P N�, the sequence pGk,nqk is a Cauchy se-
quence in Or and then it converges to an element gn in Or. Letting
pÑ �8 in the above inequality gives

}gn �Gk,n}r ¤
�

1
2n


k�1 1
2n � 1 . (16)

This shows that pgnq is a moderate element; in fact we have:

}gn}r ¤ }Gk,n}r �
�

1
2k�1


n
.
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Then we set g � rpgnqs. Using (16), we have for every p P N�:

}gn �Gk,n}1{n
r ¤

�
1
2


k�1� 1
2n � 1


1{n

which gives

νrpg �Gkq ¤ lim sup
nÑ�8

}gn �Gk,n}1{n
r ¤

�
1
2


k
and proves that

lim
kÑ�8

νrpg �Gkq � 0.

Hence, pFmk
qk converges to g in HpTq, and since pFmqm is a Cauchy

sequence, it converges to g which concludes the proof. l

4. Functional calculus and applications

All the results stated in this section for the algebra HpTq are also true
for the subalgebras HrpTq and C.

4.1. Exponential, logarithm and power functions.

4.1.1. The exponential of a generalized hyperfunction. Let u P HpTq
and let punq be a representative of u such that un P Or for some r ¡ 1.
If z P Cr, then | exppunpzqq| � expp<unpzqq and consequently

} exppunq}r � exppsup
zPCr

<unpzqq.

It follows that punq satisfies } exppunq}r ¤ an for some positive constant
a if and only if supzPCr

<unpzq ¤ n ln a.

Definition 4.1. A generalized hyperfunction u is said to be real sublin-
ear if it admits a representative punqn such that un P Or for some r ¡ 1
and supzPCr

<unpzq ¤ λn for a real constant λ and n large enough.

We have the following:

Proposition 4.1. For a generalized hyperfunction u, the condition to
be real sublinear does not depend on the chosen representative.

Proof. Let punqn and pvnqn be two representatives of u where punqn is
real sublinear; we set

αn � sup
zPCr

<unpzq and βn � sup
zPCr

<unpzq.

It follows that
|eβn � eαn | � |}evn}r � }eun}r| ¤ }evn � evn}r
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and then using |ez � 1| ¤ |z|e|z|, we get
|eβn � eαn | ¤ }eunpevn�un � 1q}r

¤ }eun}r}evn�un � 1}r
¤ eαne}vn�un}r}vn � un}r.

Since pvn � unqn is negligible, for every ε ¡ 0 there exists η1 P N such
that e}vn�un}r}vn � un}r ¤ ε if n ¡ η1. It follows that eβn ¤ p1 � εqeαn

for n ¡ η1. Hence, if αn ¤ λn for n ¡ η ¡ η1, then we have βn ¤
rλ� lnp1 � εqsn for n ¡ η which proves the proposition l
We notice that if u is bounded, i.e. }un}r ¤ α for some α ¡ 0 for n
large enough, then it is real sublinear. Clearly, if u is real sublinear
then λu is also real sublinear if λ is a nonnegative real number. It is
easily seen that if u, v P HpTq, then

exppu� vq � expu� exp v.
Moreover, since supzPCr

p�<unpzqq � � infzPCr <unpzq, it follows that
p�uq is real sublinear if and only if infzPCr <unpzq ¥ µn for some µ P R
when n is large enough. Thus u and p�uq are both real sublinear if
and only if there are λ, µ P R such that

µn ¤ inf
zPCr

<unpzq ¤ sup
zPCr

p�<unpzqq ¤ λn.

Under this condition exppuq and expp�uq are invertible with
rexppuqs�1 � expp�uq.

4.1.2. The exponential of u for νpuq   1.

Theorem 4.2. If u P HpTq is such that νpuq   1, then exppuq is well
defined in HpTq and is given by

exppuq �
�8̧

k�0

uk

k! .

Proof. Let u P HpTq satisfy νpuq   1 and choose any representative
punqn of u. Then we have:

νpuq � lim
rÑ1

plim sup
nÑ8

}un}1{n
r q   1.

Hence, for every α such that νpuq   α   1, there exists ρ ¡ 1 such
that

νρpuq � lim sup
nÑ8

}un}1{n
ρ   α,

and there exists n0 P N� such that for every n ¥ n0:
}un}ρ   αn   1.
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Hence, p}un}ρqn is bounded and then exppuq is well defined. Moreover,
since νρpuk

k! q � νρpukq, if p and q are two integers such that p ¡ q, it
follows from νρpuq   1, that:

νρ

�
p̧

k�q�1

uk

k!

�
¤ max

q�1¤k¤p
νρpu

k

k! q ¤ rνρpuqsq�1.

Hence, we have limqÑ�8rνρpuqsq�1 � 0 and then,

lim
p,qÑ�8

νρ

�
p̧

k�q�1

uk

k!

�
� 0

showing that
�°m

k�0
uk

k!

	
m
is a Cauchy sequence in HρpTq. Since HρpTq

is complete and the embedding uρ : HρpTq Ñ HpTq is continuous, it
follows that the series

°
k¥0

uk

k! converges in HpTq to exppuq. l

4.1.3. The logarithm function. Let u P HpTq admit a representative
punq such that unpCrq X R� � H for n ¡ n0 for some n0 P N�. Then
logpunq is holomorphic in Cr and for every z P Cr, we have

logpunpzqq � ln |unpzq| � i argpunpzqq
where arg denotes the principal determination of the argument func-
tion. If }un}r ¤ an for n ¡ η for some a ¡ 1 and η P N�, then we have
} ln |un|}r ¤ ln }un}r ¤ n ln a. It follows that

} logpunq}r ¤ n ln a� 2π.

This shows that plog unq is a moderated sequence and log u � clplog unq
is real sublinear. Consequently, expplog uq is well defined, and one gets

expplog uq � u. (17)

The condition unpCrq X R� � H for the existence of log u depends on
the chosen representative punq. Then it is necessary to get a sufficient
one depending only on u.

Proposition 4.3. Let u P HpTq and let punq denote a representative
of u in some ON�

r . Define

drpunq � distpunpCrq,R�q � inf
zPCr,λPR�

|unpzq � λ|. (18)

Then pdrpunqq P Ce and drpuq � clpdrpunqq is independent on the rep-
resentative punq, and drpuq ¤ dspuq if s   r. Moreover if drpuq P C�,
then log u is well defined .
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Proof. For every z P Cr and λ P R�, we have

drpunq ¤ |unpzq � λ|
and then pdrpunqq P Ce. Let pgnq denote another representative of u in
ON�
r . For every z P Cr and λ P R�, writting pgnpzq�λq�punpzq�λq �

gnpzq � unpzq, gives
||gnpzq � λ| � |unpzq � λ|| ¤ |gnpzq � unpzq|.

It follows that

drpgnq ¤ |gnpzq � unpzq| � |unpzq � λ|
which leads to

|drpgnq � drpunq| ¤ |gnpzq � unpzq| ¤ }gn � un}r.
Whence pdrpgnq � drpunqq P Ie i.e. clpdrpgnqq � clpdrpunqq. This shows
that clprdpunqq does not depend on the representative punq and then
drpuq � clpdrpunqq is well defined. Since tpz, λq P Cs � R�u � tpz, λq P
Cr�R�u if s   r, it follows that drpuq ¤ dspuq. Now assume that drpuq
is an invertible element of C. This means that:

Dc P p0, 1q, Dn0 P N�, @n ¡ n0 : distpunpCrq,R�q ¥ cn. (19)

Since distpunpCrq,R�q ¡ 0 for n ¡ n0, it follows that unpCrqXR� � H
for n ¡ n0 and then log u is well defined. l

Corollary 4.4. Let u P HpTq. If drpuq is invertible for some r ¡ 1,
then u is invertible.

Proof. Let punq denote a representative of u such that un P Or. Since
tpz, 0q; z P Cru � tpz, λq P Cr � R�u, it follows that infzPCr |unpzq| ¥
drpunq. Hence, if drpuq is invertible, clpinfzPCr |unpzq|q is invertible
which means that u is invertible (see Section 2.3). l

Remark 4.1. If ξ P C, we set dpξq � infλPR� |ξ � λ| � drpξq for any
r ¡ 1, ξ being considered as a constant generalized hyperfunction.

4.1.4. Series expansion of logp1 � uq for νpuq   1.

Theorem 4.5. Let u P HpTq be such that νpuq   1. Then logp1 � uq
is well defined in HpTq and is given by

logp1 � uq �
�8̧

k�1

p�1qk�1

k
uk.
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Proof. Let u P HpTq satisfy νpuq   1. It follows that there exists
ρ ¡ 1 such that l � lim supnÑ�8 }un}1{n

ρ   1. Taking α such that
l   α   1, there exists n0 P N� such that }un}ρ   αn for n ¡ n0.
Hence, for every z P Cρ and every λ P R�, if n ¡ n0 we have

|p1 � unpzqq � λ| ¥ p1 � λq � }un}ρ ¥ p1 � αqn.
Hence, 1 � u P HρpTq and dρp1 � uq P C� for n ¥ n0. It follows from
Proposition 4.3 that logp1 � uq is well defined. Since νρp p�1qk�1uk

k
q �

νρpukq, we can proceed as in the proof of Theorem 4.2 to show that�°m
k�1

p�1qk�1uk

k

	
m

is a Cauchy sequence in HρpTq. Hence, the series°�8
k�1

p�1qk�1uk

k
converges in HpTq to logp1 � uq. l

4.1.5. Power functions. Let h P HpTq such that log h exists and let
s P HpTq. If s log h is real sublinear, we can calculate expps log hq,
then we define

hs � expps log hq.
Let psnq and phnq be respective representatives of s and h in some ON�

r

with drphq invertible. If <sn � an and =sn � bn then we have
<psn log hnq � an ln |hn| � bn arg hn.

For instance if panq is bounded and bn � Opnq then s log h is real
sublinear. We note that if s P C, then s log h is always real sublinear
and hs is well defined.

Proposition 4.6. Let s P R such that |s| ¥ 1 and h P HpTq. If log h
exists, then the equation

us � h (20)
has a solution u P HpTq given by u � h1{s � expp1

s
log hq.

Proof. Since log h exists and s � 0, then h1{s � expp1
s

log hq is well
defined. We show that u � h1{s is a solution to (20). Let phnq be a
representative of h in some ON�

r such that hnpCrq XR� � H for every
n P N�. We have

expp1
s

log hnq � exp
�1
s
pln |hn| � i arg hnq

�
;

� expp1
s

ln |hn|q exp
�
i
s

arg hn
�

;
� |hn|1{s exp

�
i
s

arg hn
�
.

Since |s| ¥ 1, it follows that 1
s

arg hn P p�π, πq and then

arg
�

expp1
s

log hnq


� 1
s

arg hn.
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Thus expp1
s

log hnqpCrqXR� � H for every n and then log
�
exp

�1
s

log hn
��

is well defined and
log
�
exp

�1
s

log hn
�� � 1

s
ln |hn| � i

s
arg hn;

� 1
s

log hn.

It follows that s log
�
expp1

s
log hnq

� � log hn. Then we have

exp
�
s log

�
expp1

s
log hnq


�
� hn

which gives
ph1{sqs � expps log h1{sq;

� exp
�
s log

�
expp1

s
log hq�� � h

and proves the result. l
Let Z denote the subring of generalized integers, that is

Z � tz̃ P C, Dpznqn P ZN� X Ce : clpznq � z̃u.
Then, we have the following.

Proposition 4.7. Let s P p�1, 1q and h P HpTq such that log h exists.
Then, there exists a generalized hyperfunction p valued in Z and such
that

ph1{sqs � pe�isπq2ph. (21)

Proof. Keep the notation of Proposition 4.6 and set
arg hn
s

� 2pn,sπ � θn,s
s

(22)

where pn,spzq P Z and |θn,spzq|   |s|π for z P Cr. Since
1
s

log hn � ln |hn|1{s � i
arg hn
s

,

it follows that

expp1
s

log hnq � |hn|1{s exp
�
iθn,s
s



.

Thus we have

ln
�

expp1
s

log hnq


� 1
s

ln |hn| � iθn,s
s

and then
s log

�
exp

�1
s

log hn
�� � ln |hn| � iθn,s;

� ln |hn| � i arg hn � 2ispn,sπ,
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that is

s log
�

exp
�

1
s

log hn

�

� log hn � 2ispn,sπ. (23)

The above equality gives

pn,s �
log hn � s log

�
expp1

s
log hnq

�
2isπ

which shows that pn,s is a holomorphic function in Cr. Since pn,s takes
its values in Z and Cr is a connected space, it follows that for each
n P N�, pn,s is constant. The above equality also shows that ppn,sqn is
moderated, but using (22) yields

pn,s � arg hn � θn,s
2sπ .

Then, since | arg hn|   π and |θn,s|   |s|π, we obtain precisely that

}pn,s}r ¤ 1 � |s|
2|s|

which shows that ppn,sqn P X r
e and allows us to define

p � clppn,sq.
Equality (23) also gives

exp
�
s log

�
expp1

s
log hnq


�
� pe�isπq2pn,shn.

It follows from |sπ|   π that e�isπ has a logarithm and then pe�isπq2p
is well defined as mentioned at the beginning of Section 4.1.5. Hence,
we have

ph1{sqs � expps log h1{sq � pe�isπq2ph.
The proposition is thus proved. l

The proof of Proposition 4.6 shows that the invertibility of drphq implies
that expp1

s
log hnqpCrqXR� � H for n is large enough. In fact, we have:

Proposition 4.8. Let h P HpTq such that drphq is invertible for some
r ¡ 1. If s is a real number such that |s| ¥ 1, then dr

�
expp1

s
log hq� is

also invertible.

Proof. Let phnq be a representative of h in ON�
r . We have

dr
2
�

expp1
s

log hnq


� inf

zPCr,λPR�

�����expp1
s

log hq


� λ

����2 .
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For z fixed in Cr, set ρn � |hnpzq|1{s and θn � arg hnpzq. Then we get

dr
2 �expp1

s
log hnq

� � infzPCr,λPR�
��ρn cos

�
θn

s

�� λ� iρn sin
�
θn

s

���2
dr

2 �expp1
s

log hnq
� � infzPCr,λPR�t

�
λ� ρn cos

�
θn

s

��2 � ρn
2 sin2 � θn

s

�u.
Set fpλq � �λ� ρn cos

�
θn

s

��2 � ρn
2 sin2 � θn

s

�
where λ ¤ 0. Then f is a

derivable function of λ and f 1pλq � 2
�
λ� ρn cos

�
θn

s

��
.

If cos
�
θn

s

� ¥ 0, then f 1pλq ¤ 0 and f reaches its minimum ρn
2 at λ � 0;

If cos
�
θn

s

�   0, then f reaches its minimum ρn
2 sin2 � θn

s

�
at λ �

ρn cos
�
θn

s

�
.

The condition cos
�
θn

s

�   0 implies that π
2   �� θn

s

��   π
|s|

and then
sin2 � θn

s

� ¡ sin2 �π
s

�
. It follows that in any case,

inf
λPR�

fpλq ¥ ρn
2 sin2

�π
s

	
and then

dr

�
expp1

s
log hnq



¥ sin

�
π

|s|



inf
zPCr

|hnpzq|1{s. (24)

We notice that sin
�
π
|s|

	
� 0 if |s| ¡ 1. Since drphq is invertible, it

follows from Corollary 4.4 that h is invertible, which means that there
are e P p0, 1q and n0 P N� such that infzPCr |hnpzq| ¥ en if n ¡ n0. If
s ¡ 1, using (24), we have that dr

�
expp1

s
log hnq

� ¥ pb1{sqn for some
b P p0, 1q and n large enough. If s   �1, since h�1 is invertibe with
ph�1

n q as representative and

inf
zPCr

|hnpzq|1{s � inf
zPCr

|h�1
n pzq|1{|s|,

it follows that dr
�
expp1

s
log hnq

� ¥ pc1{|s|qn for some c P p0, 1q and n

large enough. Thus dr
�
expp1

s
log hq� is invertible for |s| ¡ 1.

If s � 1, we have expplog hq � h which is invertible. If s � �1, since

� log hnpzq � ln |hnpzq|�1 � i arg h�1
n pzq � log h�1

n pzq,
it follows that expp� log hq � expplog h�1q � h�1 which is invertible.
The proposition is thus proved. l

4.2. Application to nonlinear differential equations. Consider
the nonlinear ordinary differential equation:

Bθh� uhs � 0. (25)
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Proposition 4.9. Assume that u P HpTq satisfies ûp0q � 0 and s P
p�8, 0s Y r2,�8q. If U P HpTq is a primitive of u with respect to Bθ,
there exists ρ ¡ 1 and µ P C� such that dρpp1 � sqU � µq P C�, and

h � pp1 � sqU � µq1{ps�1q

is a solution to (25).

Proof. Since ûp0q � 0, Proposition 2.2 implies that there exists U P
HpTq such that BθU � u. Then (25) is formally equivalent to

Bθh
hs

� BθU. (26)

On the other hand, we have:

Bθ
�

1
hs�1



� p1 � sqBθh

hs

which gives
Bθphs�1 � p1 � sqUq � 0.

Thus, there exists a constant µ P C such that

hs�1 � p1 � sqU � µ. (27)

Let a ¡ νpUq � 1, νpUq   b   a, α ¡ 0 and take µ � clpµnq with
µn � an � αn. If pUnq is any representative of U , there are ρ ¡ 0 and
η P N� such that:

}Un}ρ   bn, n ¡ η.

For every λ P R� and z P Cρ, if n ¡ η, we have

|p1 � sqUnpzq � µn � λ| ¥ µn � λ� |1 � s||Unpzq|
¥ µn � λ� |1 � s|}Un}ρ
¥ an � αn � λ� |1 � s|bn
¥ pan � |1 � s|bn � λq � αn.

It follows from the hypotheses that an � |1 � s|bn � λ ¥ 0 for n large
enough which implies that |p1 � sqUnpzq � µn � λ| ¥ αn for such n.
Then we have

dρpp1 � sqU � µq P H�pTq.
Thus, logpp1�sqU�µq is well defined. Using Proposition 4.6 and (27),
we get that

h � pp1 � sqU � µq1{ps�1q

is effectively a solution to (25). l
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Now consider the nonlinear Cauchy problem:" Bθh� uhs � 0
hpζq � τ

(28)

where ζ P T̃, τ P C and dpτq P C�. Then, we have:
Theorem 4.10. Let u P HpTq satisfy ûp0q � 0 and s P p�8, 0s Y
r2,�8q. Assume that there exist c ¡ |1 � s|π and ε ¡ 0 such that

dpτ s�1q � cγεpuq ¥ α (29)
for some positive real α P C� where γεpuq � clppνpuq� εqnq. Then, (28)
has a solution in HpTq.
Proof. We keep the notation of Proposition 4.9 and we set

w � pp1 � sqU � βq1{ps�1q (30)
where β P C. We show that β can be chosen for w to be a solution to
(28). Recall that ζ P T̃ means that it has a representative pζnqn in TN� .
Set ζn � eiθn and take r ¡ 1 such that

pr � 1qr   c

|1 � s| � π. (31)

For θ P r�π, πs, we set z1 � eiθ P T and z � ρeiθ where ρ varies
in p1{r, rq; thus we have z P Cr. We denote by κz the path from ζn
through z1 arriving at z whose image is the union of the circle arc �ζn, z1
and the line segment rz1zs. Let pUnqn be a representative of U ; then
we have

Unpzq � Unpζnq � ³
κz
U 1
npξqdξ

� ³
�ζ,z1
U 1
npξqdξ �

³
rz1,zs

U 1
npξqdξ.

If unpzq � BθUnpzq, then punqn is a representative of u and

U 1
npξq � �iBθUnpξq

ξ
� �iunpξq

ξ
,

whence we find that

Unpzq � Unpζnq � �i
»
�ζ,z1

unpξq
ξ

dξ � i

»
rz1,zs

unpξq
ξ

dξ.

The length |θ � θn| of �ζ, z1 will be chosen such that |θ � θn| ¤ π. We
notice that |z � z1|   maxp1 � 1

r
, r � 1q � r � 1 since r ¡ 1. Then,

using 1{|ξ|   r if ξ P rz1, zs and |ξ| � 1 if ξ P T, we find that

|Unpzq � Unpζnq| ¤ |θ � θn| supξP�ζ,z1
���unpξq

ξ

���� |z � z1| supξPrz1,zs
���unpξq

ξ

���
¤ |θ � θn| supξPT |unpξq| � pr � 1qr}un}r.
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Thus we get
|Unpzq � Unpζnq| ¤ pπ � pr � 1qrq}un}r. (32)

Let pτnqn be a representative of τ . Writting wpζq � τ , we find that
β � �p1 � sqUpζq � τ s�1

and then, for every λ P R�,
|p1 � sqUnpzq � βn � λ| � |p1 � sqUnpzq � p1 � sqUpζnq � τ s�1

n � λ|
� |p1 � sqpUnpzq � Upζnqq � τ s�1

n � λ|
where βn � �p1 � sqUpζnq � τ s�1

n . It follows that
|p1 � sqUnpzq � βn � λ| ¥ |τ s�1

n � λ| � |1 � s|pπ � pr � 1qrq}un}r
and then

drpp1 � sqUn � βnq ¥ dpτ s�1
n q � |1 � s|pπ � pr � 1qrq}un}r.

There exists n0 P N� such that }un}r   pνpuq � εqn if n ¡ n0, whence
drpp1 � sqUn � βnq ¥ dpτ s�1

n q � |1 � s|pπ � pr � 1qrqpνpuq � εqn
for n ¡ n0. It follows from (31) that |1�s|pπ�pr�1qrq   c. Then, using
(29) we get that drpp1�sqU�βq ¥ α which shows that drpp1�sqU�βq
is invertible. Thus w is well defined by (30) and is a solution to (28).
l
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