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PERSPECTIVE OPEN

Context-based learning for Inhibition of alternative
conceptions: the next step forward in science education
Alexandra Renouard 1 and Yves Mazabraud2,3

The scientific literacy level of the whole population has long been focusing the researchers’ attention because of its direct impact
on many aspects of our lives. As a matter of fact, studies in cognition have both been inspired by educational issues as well as by
misconceptions of scientific ideas often based on irrational beliefs, old theories, unscientific reasoning, or unassimilated conceptual
instruction. As a result, individual conceptions are now accurately described in many scientific fields, which has led to
improvements in science teaching and learning. However, the community (scientists, academics, high school and primary school
teachers, and educators) has not yet succeeded in solving all the issues, so some pre-existing misconceptions still persist in the
population. In this paper, we argue that cognition studies must now focus on the origin of individuals’ conceptions and on their
modes of acquisition and propagation. The goal is to provide educational tools for acting upstream, during early scientific
instruction, before the very acquisition of scientific conceptions.
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INTRODUCTION
Twentieth-first century challenges often remind us how essential
the understanding of science is to mankind (global warming,
natural disasters, energy and water access, personal health,
epidemics, and pandemics). Many of our daily decisions—
choosing domestic energy or a car, the most suitable living
location in seismic, volcanic and flood zones, personal diet and
physical activity, or following a medical treatment—are related to
scientific notions. For instance, a more efficient health care can be
promoted by involving the patients in medical decision-making.
This allows better treatment adherence and reduces anxiety. Well-
calibrated instruction can also prevent decline in vaccine coverage
rates and help to protect the population.1 From the individual to
the societal level, the more the decisions are scientifically
supported, the greater the benefit. That’s why, to make the right
choices, the general public, not only the elite scientific commu-
nity, needs to be scientifically literate. Indeed, the interest for
science education research has been growning worldwide in
many fields: the creation of dedicated groups,2,3 structuring
methodology,4–6 and clear definition of common objectives.7

Moreover, international syllabus of basic scientific concepts and
skills are proposed to encourage global science literacy and more
effective training for future professionnals.8 Finally, a substantial
international study effort on conceptions developed by individuals
is being widely deployed.9–16

Nevertheless, if everybody is daily exposed in the media to
many scientific topics, not everyone has mastered the resulting
concepts17–19, especially since scientific questions are embedded
in a complex social and political context.20,21 Thus, when
individuals’ conceptions are far from scientific ones (i.e., those
generally accepted by the scientific community), choices and
actions can have major consequences in everyday life.22 The

seismic disaster that occurred in 2010 near Port-au-Prince, the
capital of Haiti, is a good example. The high seismic hazard was
well known by scientific experts, but, because of cognitive barriers,
they did not succeed in raising awareness among decision makers.
Indeed, the precise time of occurrence of an earthquake remains
impossible to predict. Furthermore, their recurrence interval can
be longer than a human lifespan. Before 2010, the last Haitian
strong earthquake occurred in 1887, and no major event had
taken place near Port-au-Prince, since 1770. Losing memory of a
crisis, at the individual or societal level, makes it difficult for a
related risk culture to develop, especially if the population is not
familiar with the relevant scientific concepts (earthquakes
periodicity at plate boundaries in that case). Seismic risk
mitigation in such geological context therefore requires long-
term policy (building codes, education, training, and spatial
planning). Conversely, some other natural threats have a weaker
intensity but are seasonally recurrent. The time scales between the
probabilities of occurrence of different natural hazards and their
maximum potential magnitude call for mathematical assessments
(in particular, probabilities and logarithmic scale laws).
Without the proper scientific knowledge, a risk of periodic

moderate-intensity event (like damaging floods) can be perceived
as more dangerous than a risk of episodic high intensity event
(like strong magnitude earthquakes), leading to a lack of
preparation and poor crisis management. In Haiti, despite the
seismologists’ warnings, governmental efforts for natural risks
mitigation had been focused on repetitive and predictable threats
(hurricanes, floods), leaving the country and the population
unprepared for a seismic catastrophe.23

The correct scientific information, although available—and even
provided—is then not always considered in the decision-making
process. Instead, simplistic answers to complicated problems are
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accepted without really differentiating scientific explanations from
nonscientific explanations.17,22,24 Yet, population resilience
depends on a good perception of risk (natural disasters, health,
drug-resistant bacteria, chemical incidents, pesticide residues in
food, climate change, and shale gas exploitation…) which
conditions safety behaviors.18,25–27

However, scientifically well-instructed people do not necessary
make the best individual choices for the welfare and protection of
society. For example, parents with high functional, communica-
tive, and critical health literacy are paradoxically more likely not to
vaccinate their children.28

So, despite the will to make each citizen familiar with science
since the late 1950s,29,30 true science literacy remains difficult to
achieve and individual conceptions hard to change.19,30–33

To mitigate the vulnerability of society to misunderstandings,
misinterpretations, or misinformation, without oversimplifying the
complex or overcomplicating the simple, it appears important to
study the parameters that influence the individual decision-
making processes and impede a meaningful scientific literacy.
These factors are to be found in the specific context of each
person. As a matter of fact, everyone interacts with his
environment, and the links one weaves daily with each element
of it influence his own way of seeing, thinking and understanding
the world around him. These links, being influential, are then
referred as interactions.
Recent research in neuroscience has shown that all the

information taken from the environment is processed at the
neural circuitry level. Relative decisions are then made based on a
selective inhibitory control that enables or prevents the acquisi-
tion of scientific conceptions. As a consequence, when exposed to
new and crucial information, individuals can interpret it with their
own pre-existing conceptual framework, and this information is
likely to reinforce the pre-existing conceptions, be rejected or be
questioned.34

Context dependent interactions appear therefore to have an
important impact on the learning process. That is why, to take a
step forward, in this article we propose the principles of a
synthetic learning model based on these interactions in the sole
objective of improving science literacy. Quite apart from the
classical transformist tradition of conceptual change, this
approach focuses on the learning context rather than on
conceptions themselves. The purpose is to act on brain inhibition
processes by identifying precisely the individuals’ environmental
factors that influence their conceptions and impede scientific
learning.

LEARNING WITHOUT CHANGING OUR CONCEPTIONS?
Conceptions we have developed from our daily experiences form
an effective cognitive processing system to help us think and react
quickly, avoid threats, and value the ideas of our groups in many
situations in our real lives.35 However, in light of scientific
understanding, a recent phenomenon in human evolution,29,36

these kinds of conceptions can create real obstacles. In this case,
they need to be replaced with more scientific conceptions that
agree with up-to-date scientific findings. But, it is known since a
long time that people do not overcome easily these cognitive
obstacles, even when faced with new information.37,38

As a matter of fact, when this requires simple additions to
knowledge or enrichment to already existing knowledge, over-
coming erroneous conceptions is easy. But if a conflict emerges
between the learned and the to-be-learned concepts, then it
involves a radical conceptual change.39 In this process, all our
conceptions that depart from scientific ones become misconcep-
tions that need replacing, and cognitive conflict feeds this
change.40

As a major challenge, study of conceptual change, of which
theory is sometimes cited as an authority argument, self-justified

by its famous historical foundations,41 has become an interna-
tional necessity and results in several learning models.42,43

Nonetheless, activating direct cognitive conflict to learn new
scientific concepts is controversial.44 Especially because individual
conceptions, automated and well-established, are resistant to
change, even after instruction, and persist as distractions against
counter-intuitive scientific conceptions.45 Historical view of chan-
ging radically conceptions through classical instruction tends to
show limits in efficiency, calling for a learning paradigm shift.
We then use the term “alternative conceptions”46 rather than

“misconceptions”, since the aim is not to replace them with
scientific ones but to refine them. Hence, acquisition of scientific
conceptions results in increased inclinations that lead to correct
scientific answers and scientific reasoning. This process controls
the spontaneous tendency to use our original conceptions. Using
functional magnetic resonance imaging, the existence of such a
regulation has actually been demonstrated in neuroscience
through the imaging of active brain areas in the prefrontal and
anterior cingulate cortex.45,47 These areas are effectively asso-
ciated with an inhibitory control of alternative conceptions.48

When activated during a given learning situation, they control
other posterior brain regions that are associated with previous (i.e.,
alternative) conceptions and inhibit their activation.49 Inhibited,
the pre-existing conceptual framework does not interfere with
new data and learning is made possible. However, overcoming the
conflict between new data and previous alternative conceptions is
a demanding and time-consuming process. It depends on the
efficiency of inhibitory control mechanisms and especially the
individual level of expertize.49 As a matter of fact, when such
conflict is unresolved, the brain areas associated with error
detection, conflict monitoring, effortful processing and working
memory tend to show increased level of activity.45 In that case, the
new data is likely rejected, learning does not easily occur,
conceptual change appears difficult to achieve and the alternative
conceptions persist.
Therefore, the individual conceptual system is a conflictual, but

dynamic and evolving system, marked by the coexistence of
scientific conceptions and persisting alternative conceptions,
more or less inhibited according to the individual’s expertize.50

Similar ideas have also been evocated by radical constructivism
theoricists51 and, then, largely extended by neuroconstructivists.52

The educational challenge then lies in the design of the
adequate teaching and learning scenarios accordingly, in order to
avoid investing considerable time reteaching concepts that are
not mastered even after instruction.53–56

TAKING A FRESH LOOK AT OUR LEARNING CONTEXT
We all construct our own experience of the world in a specific
context. This latter designates each element with which we
interact specifically, such as the people around us, media, teaching
and learning resources, or our living environment. These elements
are named “contextual elements”. Thus, each individual selects the
appropriate answers from his alternative and/or scientific concep-
tions that depend upon his specific context.
Within this specific context, people often attribute the origin of

their alternative conceptions to school, but also to the media.57 It
is clear that alternative conceptions can be conveyed in class-
rooms.58 Teachers may hold alternative conceptions in different
areas: science content,59 science learning, students’ difficulties and
conceptions,60 the nature of science.61 Thus, students’ alternative
conceptions can sometimes echo their teacher’s understanding.
To understand their teaching and to characterize its impact on
each student in the classroom, it appears essential to describe the
teacher’s contextual interacting. As a matter of fact, when
teacher’s and student’s contexts are concomitantly known, their
relative interactions are more apprehensible. The design of a
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specific learning and teaching environment, based upon targeted
evolution of each context, is then possible.
Media resources are another context element to consider.

Indeed, in an increasingly visual society, science fiction films, for
example, which blur reality and fiction, can convey misunder-
standings that alter the public’s critical analysis and corroborate
common alternative conceptions.62 This can constitute a real
obstacle to the development of citizens’ scientific literacy and
accelerate the perpetuation of alternative conceptions.22,24,63

Studying the specific media habits of students is therefore
essential. It helps us understand the nature and result of
interactions that they maintain with the media resources they
consult so we can act upon them.

In the same way, teaching and learning resources such as
textbooks are another element of context to consider. Many
studies show that textbooks convey and reinforce alternative
conceptions in various scientific fields.64–66 Analyzing interactions
between teaching or learning resources and students will yield
extra data to better define each individual context.
In addition, every individual is necessarily inscribed within his

everyday natural environment and can easily observe common-
places, landscapes, weather, biotopes, and outcrops. Therefore,
through interactions within this physical environment, each one
experiments with the field by moving through it to reveal multiple
perspectives. Their specific sensory-motor field experience deter-
mines their perceptions and their interpretations of what they

i i

i i

i i

i i

ii

i i i

i

i

i

i

i

i

i

i

i i i i ii

i i i i i i

i

i i i i iii i

i i
i i i

i i i i i i

i i
i i i

i i i i i i
Sciences instructors

Students

Relatives

Context elements :
physical environment
media resources
learning and teaching resources
beliefs
idioms
Interindividual interactions
Context  interactions

Intraindividual interactions

i

zo
om

- Intraindividual interactions

student

Classroom interactions system

Fig. 1 Individual and class learning model based on interactions

Using context to learn
A Renouard and Y Mazabraud

3

Published in partnership with The University of Queensland npj Science of Learning (2018)  10 



observe.67 It is then obvious that studying the interactions
between individuals and their living environment is also essential.
It reveals other factors influencing alternative conceptions to act
on.
Nonetheless, people are not only integrated into a physical

environment, but also live and work together to see, understand,
and represent the world in a social environment. Therefore, family
members, friends or peer-to-peer interactions can convey
metaphors, images of past experiences, epistemological commit-
ments, metaphysical beliefs, and knowledge that are involved in
the establishment of an individual’s alternative and/or scientific
conceptions. Thus, social (people surrounding)68,69 and cultural
(beliefs, languages)70 interactions are also fundamental to the
emergence of alternative conceptions.
The contextual elements, associated with the intra- and the

inter-individual interactions, as well as the idioms used for
communication, constitute each individual context. Hence, the
assembly of all the people collaborating with each other forms a
dense nexus that constitutes the learning environment’s frame-
work. When such environment is modeled, an intricately inter-
connected structure of individual contexts is effectively
enlightened (Fig. 1). From the personal to the population level,
this network of links becomes increasingly complex. Among them,

the existence of parents to children and teachers to students’
connections support the idea of an intergenerational transmission
of alternative conceptions.

INHIBITING ALTERNATIVE CONCEPTIONS BY DESTABILIZING
THE STRONGEST INTERACTIONS?
Interactions between individuals and contextual elements are
then the preferred targets for any learning action. As they are at
the heart of the system and structure all the frame, they appear
essential for the limitation of alternative conceptions’ transmis-
sion. Indeed, impacting on them allows renewing the relationship
between an individual and his surroundings, up to the scale of an
entire society. However, as everyone interacts more or less deeply
with his contextual elements, it is first necessary to identify the
strongest interactions, namely the most stable and resistant, that
hinder scientific conceptions acquisition. Because of human
variance, not everyone will have the same kind of interactions.
Parameters that define an interaction, and that may vary, are its
nature (human-human, human-object, technological, verbal, peer-
to-peer, or hierarchical relationship), as well as its intensity
(relative importance in the construction of knowledge), its stability
(associated with old and reinforced habits/knowledge versus new,
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sentimental value or emotional attachment, degree of trust and
esteem of people involved) and its resistance (ability or reluctance
to change under external forcing, whether conscious or uncon-
scious). The relative quantification of these parameters, by specific
criteria that need to be chosen for each study, allows discriminat-
ing strong interactions from weak.
Second, we aim to establish individual students’ type of profiles

in the light of those strongest interactions. Finally, we seek to
trigger the evolution of the interactions by designing a targeted
scenario according to the students’ profiles. Rather than on the
conceptions themselves, educational attention here consequently
focusses on the interactions, like the student’s media habits or the
teacher-student trust relationship or the involvement of parents in
the schooling for example. As a matter of fact, the idea is to favor
scientific learning by stimulating efficiently brain inhibitory
processing. To do so, action strategies may be carried out to
weaken specifically interactions that are considered to be blocking
the inhibition procedure, and, to strengthen the ones that are
promoting it (Fig. 2).
Such promising actions may be developed at various levels. A

single teacher in his classroom may adapt his teaching to newly
surveyed students, for example with more fieldwork or textbook
critical analysis. Depending on their personal profiles, differen-
tiated instruction can be easily designed and students assigned
specific exercises or tasks in a group project. In a whole academic
student pool, or at national level, the studies’ outcomes may be
useful to university developers for adapting curricula to the
local population. As a matter of fact, the number of identified
types of student profiles (see examples in fig. 2) and their
percentage within the whole studied population, as well as their
repartition, define an atlas that may be taken into account to
either change the curriculum or to design temporary pedagogical
projects.
This kind of atlas requires either an entry for each individual or

for a statistically representative group of individuals selected
within the population under study.
A continuous census of individual profiles can constitute a rich

database that would also allow studying educational discrepan-
cies relative to other parameters such as the location of the
schools or the socio-economical, cultural and linguistic environ-
ment of the students. Depending on the size of the population,
the necessary data for establishing profiles can be collected by
interviews or Multiple Choice Questions for instance. Large
population shall be surveyed via online questionnaires, authoriz-
ing automated data processing and common profiles character-
ization. On the other side, small size sample studies can rather
favor semi-guided interviews for the generation of individual
profiles. In all cases, the dataset shall enable the quantification, in
a chosen grid, of the interactions between the subject and the
various parameters of his environment.

CONCLUSION
Many common alternative conceptions in science are very present
in the population, especially if the social environment of the
individual outside the classroom is devoid of scientific knowledge.
In this way, the study of synthetic learning models based on
interactions should be conducted in early schooling to create the
possibility of very early action and therefore a better chance of
success. Indeed, under these conditions, alternative conceptions
will be transmitted more rarely, implying that fewer alternative
conceptions will be conveyed to the university and in adulthood.
Nevertheless, as the interactions between students and contextual
elements are evolving through time, this synthetic model can be
established at any point of schooling and at different stages of the
student’s life. It can be therefore readjusted and evolved by
redefining finely targeted action strategies to apply.

Moreover, interaction-centered studies in favor of inhibition of
alternative conceptions for more scientific ones, benefits not only
to the students but to society in general. Among the individuals
that we scientifically literate, there are future engineers, teachers,
science journalists, writers of textbooks or other resources,
decision makers, and future parents. So, in the light of interactions
networks, all these people may positively influence, directly or
indirectly, every other member of the society.
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