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On some k-scoring rules for committee
elections: agreement and Condorcet Principle

Mostapha Diss · Eric Kamwa · Abdelmonaim Tlidi

17 May 2019

Abstract Given a collection of individual preferences on a set of candidates
and a desired number of winners, a multi-winner voting rule outputs
groups of winners, which we call committees. In this paper, we consider
five multi-winner voting rules widely studied in the literature of social
choice theory: the k-Plurality rule, the k-Borda rule, the k-Negative Plurality
rule, the Bloc rule, and the Chamberlin-Courant rule. The objective of
this paper is to provide a comparison of these multi-winner voting rules
according to many principles by taking into account a probabilistic approach
using the well-known Impartial Anonymous Culture (IAC) assumption. We
first evaluate the probability that each pair of the considered voting rules
selects the same unique committee in order to identify which multi-winner
rules are the most likely to agree for a given number of candidates and
a fixed target size of the committee. In this matter, our results show that
the Chamberlin-Courant rule and the k-Plurality rule on one side, and the
k-Borda rule and the Bloc rule on the other side, are the pairs of rules that
most agree in comparison to other pairs. Furthermore, we evaluate the prob-
ability of every multi-winner voting rule selecting the Condorcet committee
à la Gehrlein when it exists. The Condorcet committee à la Gehrlein is a
fixed-size committee such that every member defeats every non-member in
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pairwise comparisons. In addition, we compare the considered multi-winner
voting rules according to their ability (susceptibility) to select a committee
containing the Condorcet winner (loser) when one exists. Here, our results
tell us that in general, the k-Borda rule has the highest performance amongst
all the considered voting rules. Finally, we highlight that this paper is one
of the very rare contributions in the literature giving exact results under the
Impartial Anonymous Culture (IAC) condition for the case of four candidates.

Keywords: Voting, Committee, Borda, Condorcet, Scoring rules, Chamberlin-
Courant.
JEL Classification Number: D71, D72
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1 Introduction

A multi-winner voting rule or a committee selection rule outputs groups of win-
ners (candidates, alternatives, etc.) with a certain size, which we call commit-
tees, taking into account a collection of individual preferences, i.e., preference
profiles, on a given set of candidates. Since the pioneer works of Dodgson
(1884, 1876), Droop (1881), and Sterne (1871), the committee selection setting
has been of great interest in the late 80s for many researchers including politi-
cal scientists, economists, and computer scientists. This research subject is still
of interest in the recent literature. For instance, Brams and Brill (2018), Brams
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et al. (2019), Brill et al. (2018), Elkind et al. (2017), Faliszewski et al. (2018),
Kilgour (2018), Skowron et al. (2016) have recently examined the properties
of some voting rules in multi-winner contexts and studied a set of natural
properties against which these voting rules can be examined.

Obviously, the use of a given multi-winner voting rule must be consistent
with a specific objective to be pursued. This objective may be to draw up a
first list of candidates, i.e., shortlisting, that will be submitted afterwards to
deliberation in order to determine a final winner from this list, or to select
a given committee that accurately reflects the electorate. Consequently, as is
the case in the single-winner framework, there are also many multi-winner
voting rules based on different ideas and principles that have been designed
for the purpose of electing a fixed number of winners among a set of available
candidates.

One possibility is to use those voting rules which are built for the single-
winner setting using a scoring function, namely a function which associates
with each preference profile and a candidate a real number to be interpreted
as the score obtained by such a candidate for the considered preference pro-
file. In other words, according to this family of rules, each candidate gets
some points from each voter according to her position in the voter’s pref-
erence, and in the end the candidate with the highest aggregated score is
elected. Among these rules there are, for instance, the Borda rule, the Plurality
rule and the Negative Plurality rule. Obviously, since the scores allow all the
candidates to be ordered, the voting rule adapted to the multi-winner context
selects, for every preference profile, those candidates having the k greatest
aggregated scores, where k stands for the target size of the committee that
we aim to select. The study of the features of multi-winner voting rules in
this context has received increasing interest in the recent literature on social
choice theory. Without being exhaustive, the following papers deal with this
approach: Bock et al. (1998), Debord (1993), Diss and Doghmi (2016), Dum-
mett (1984), Elkind et al. (2017), Faliszewski et al. (2011, 2016, 2018), Kamwa
and Merlin (2015), Obraztsova et al. (2011), Skowron et al. (2016).

Another possibility that we might use is to build the choice from the pair-
wise comparisons in the spirit of the Condorcet Principle, which is perhaps
the most widely accepted desiderata for social choice theorists: if there is a
candidate (the Condorcet winner) who would defeat every other candidate in a
pairwise race, then that candidate should be the winner of the election. First,
we can take for instance the approach of Gehrlein (1985) where we want to
select a committee such that any member wins against any committee non-
member in pairwise majority comparisons. This is known in the literature as
the k-Condorcet set or the Condorcet committee à la Gehrlein. We might also be
concerned about the possibility of selecting a subset of candidates such that
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no candidate in this subset can be defeated by any candidate from outside the
subset on the basis of pairwise majority comparisons. This also comes from
Gehrlein (1985) and is known in the literature as the weak k-Condorcet set à la
Gehrlein (see for instance Barberà and Coelho, 2008). The reader will easily
understand that these two concepts are simple generalizations of the well-
known concepts of the strong Condorcet winner and the weak Condorcet winner1

to the committee selection setting.

Obviously, there are many other contributions where various multi-
winner systems are used with different types of individual preferences and
votes. The reader may refer for instance to the works of Aziz et al. (2017),
Barberà and Coelho (2008), Brams (2008), Brams et al. (2005, 2006), Elkind et
al. (2011), Fishburn (1981), Kamwa (2017), Kamwa and Merlin (2018), Kaymak
and Sanver (2003), Kilgour (2010), Kilgour and Marshall (2012), Ratliff (2003),
among others.

Scholars have conducted many comparative studies of single-winner vot-
ing rules according to various principles. An overview of research in this mat-
ter will be provided later in the paper. In the present work, we extend this
research to the multi-winner setting by comparing five well-known multi-
winner rules which have attracted a considerable amount of attention in the
recent literature of social choice theory. Several reasons justify the choice of
our multi-winner voting rules. The common thread in all the rules that we
focus on is that they are based on scoring functions. More exactly, we aim to
compare the k-Plurality rule, the k-Borda rule, the k-Negative Plurality rule, the
Bloc rule, and the Chamberlin-Courant rule (defined later), according to well-
defined principles. These principles include (1) the ability of every pair of the
considered multi-winner voting rules to select the same and unique commit-
tee of a given size; (2) the ability of every voting method to select a com-
mittee corresponding to the Condorcet committee à la Gehrlein when such
a committee exists; (3) the ability of every rule to select the Condorcet win-
ner among the chosen committee members in the class of elections for which
the Condorcet winner exists; and (4) the sensitivity of every voting system to
select the Condorcet loser when one exists. Recall that a Condorcet loser is
a candidate who loses in a direct pairwise comparison to every other candi-
date. It is worthwhile noting that from the famous debate between Dodgson
(1884, 1876) and the Society for Proportional Representation, it emerged that
when electing committees, the Condorcet Principle cannot be totally ignored
as it seems inconceivable to elect committees with dominated members. The

1 A strong Condorcet winner is a candidate that a majority of voters rank higher than every
other candidate. A weak Condorcet winner is a candidate that no majority of voters rank below
any other candidate. Throughout the paper, when we write Condorcet winner we mean strong
Condorcet winner, unless we specifically write weak.
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present paper makes a contribution to this debate through the discussion of
three items (2-4) which deal with Condorcet’s idea.

We focus in this paper on elections with large electorates, where voters
have linear orders on the candidates as their preference profiles. In addition,
for technical reasons (described later) we only deal with elections where the
number of candidates m is included in the set {3, 4, 5, 6} with a target size
k of the committee defined such as 1 ≤ k ≤ m − 1. In order to deal with
the comparison of the five multi-winner rules according to the four princi-
ples described above, our study requires information about how voters cast
their votes. Notice that it is difficult to obtain enough information about voter
preference profiles particularly in elections involving large electorates. As a
consequence, in this paper we follow a theoretical approach by making a
well-known assumption about how voters might behave in the election pro-
cess. More exactly, all our comparisons are conducted using a probabilistic
approach by assuming that the preference profiles of voters follow the widely
used hypothesis of the Impartial Anonymous Culture (IAC). We emphasize that
this paper is one of the rare contributions in the literature giving exact results
under the Impartial Anonymous Culture (IAC) condition for the case of four
candidates. To the best of our knowledge, the only papers in this category
are: Bruns et al. (2019), Bubboloni et al. (2018), Diss and Doghmi (2016), and
El Ouafdi et al. (2018).

Our first finding (item 1) is that, if the preference profiles of voters are
allowed to meet the IAC condition, then the agreement between voting pro-
cedures is observed with non negligible probabilities. Our comparisons of the
considered multi-winner rules according to the Condorcet Principle (items 2-
4) show that in general the k-Borda rule displays superior performance in
comparison to the other multi-winner rules. Moreover, we find that the k-
Negative Plurality rule often exhibits extremely poor performance and is not
a viable option for consideration on the basis of the considered Condorcet
Principles.

The rest of the paper is structured as follows: Section 2 is devoted to basic
notations, definitions as well as the methodology of calculations. Section 3

presents our results and Section 4 concludes the paper.

2 Background notions

2.1 Individual preferences

Let N = {1, . . . , n} be a set of n ≥ 3 voters and A = {a, b, c, . . . } the set of m ≥
3 candidates. We consider the framework in which each voter is assumed to
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have a linear order on the set of candidates from the most desirable candidate
to the least desirable one. Notice that a linear order is a binary relation that is
transitive, complete and antisymmetric. In addition, each voter is assumed to
act according to her true preferences which clearly means that the setting of
this paper does not support strategic voting. We denote by π the preference
profile of voters which identifies the specific linear ranking that each voter has
on the candidates. In the sequel, we will simply write, abc . . . to denote that
candidate a is ranked ahead of candidate b who is ranked ahead of c and so
on. In this context, with m candidates, there are m! possible strict rankings
and a voting situation is defined by the vector ñ = (n1, ..., nt, ..., nm!) such
that ∑m!

t=1 nt = n. The notation nt refers to the number of voters endowed
with each of the m! linear orders. For each pair of candidates a, b ∈ A, we
denote by nab the number of voters who rank candidate a before candidate b.
If nab > nba, we will say that candidate a is majority preferred to candidate b
and we denote it by aMb. A candidate is said to be a Condorcet winner if she
wins in all of her pairwise elections. In other words, the Condorcet winner is a
when aMb for every candidate b 6= a in the set of candidates A. Furthermore,
a candidate is said to be a Condorcet loser if she is ranked below any other
candidate by a majority of voters. In other words, a is a Condorcet loser when
bMa for every candidate b 6= a in the set of candidates A. It is well known
that a Condorcet winner and a Condorcet loser do not exist in every voting
scenario. In addition, many voting rules are not Condorcet-consistent which
means that, even when there is a Condorcet winner, such a candidate may
lose and conversely, when there is a Condorcet loser, such a candidate may
win.

As our framework is that of multi-winner elections, we denote by k
(k < m) the number of candidates to be elected. In addition, we denote by
C(k, m) the set of all possible committees of size k for m candidates and we
define |C(k, m)| as the cardinality of this set. A committee C ∈ C(k, m) is a
Condorcet committee à la Gehrlein if each element in this committee beats each
element outside it in terms of a pairwise majority comparison. Formally, this
means that ∀a ∈ C and ∀b ∈ A \ C, aMb is verified. As mentioned above, the
Condorcet committee à la. Gehrlein has been suggested in order to avoid com-
mittees with dominated member(s). Nonetheless, the Condorcet committee à
la Gehrlein does not always exist. That is the reason why other extensions of
this concept have been suggested in the literature. The reader is referred to
Barberà and Coelho (2008), Kamwa (2017), Ratliff (2003) for more informa-
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tion on these notions.2 Finally, it is important to stress that when a Condorcet
committee à la Gehrlein exists, then it always includes the Condorcet winner
and never contains the Condorcet loser.

2.2 Multi-winner voting rules

A multi-winner voting rule maps the preferences of all voters in N to a sub-
set of A, which consequently specifies the composition of the committee.
A scoring rule is a voting system that gives points to candidates in accor-
dance with the position they occupy in voters’ rankings. The total number of
points received by a candidate defines her score under the considered rule.
Formally, a scoring rule can be expressed by a sequence of real numbers
s = (s1, s2, . . . , sm) such that s1 ≥ s2 ≥ · · · ≥ sm and s1 > sm. Each of the
n voters ranks the candidates assigning s1 points to the one ranked first, s2

points to the one ranked second, and so on until sm, the number of points
assigned to the candidate ranked last. In single-winner elections, the winner
is the candidate with the highest score summed over all voters. Naturally, in
multi-winner elections, a subset of k winners or the elected committee of size
k is composed by the k candidates with the k highest scores.

We examine five multi-winner voting rules. As mentioned before, the
first reason for considering these voting rules is because they are based on
the general scoring protocol. The second reason is because the study of the
characteristics and properties of these multi-winner scoring methods has
generated the most extensive body of research in the recent literature (e.g.,
Diss and Doghmi, 2016, Elkind et al., 2017, Faliszewski et al., 2011, 2016, 2018,
Kamwa and Merlin, 2015, Obraztsova et al., 2011, Skowron et al., 2016) in
comparison with other multi-winner voting rules. The multi-winner scoring
rules considered in this paper are the following:

k-Plurality: Under the Plurality rule the vector of scores is given by
s = (1, 0, . . . , 0), i.e., the Plurality score of a candidate is the total number
of voters who rank this candidate at the top of their rankings. Under the
k-Plurality, the same vector is used and this rule returns the k candidates
with the k highest Plurality scores. Notice that the k-Plurality rule is also
called Single Non-transferable Vote (e.g., Elkind et al., 2017).

2 Notice that the Condorcet committee à la Fishburn (Fishburn, 1981) has also been suggested
in the literature in order to avoid dominated committees. In this framework, it is assumed
that the voters have preferences over committees that satisfy certain conditions, and Fishburn
(1981) defines a Condorcet committee as a committee that is preferred to every other committee
by a majority of voters. Kamwa and Merlin (2018), Kaymak and Sanver (2003) have tried to
bridge the two concepts through preference extensions. Finally, we should mention that other
approaches are also taken into consideration by Elkind et al. (2015), Ratliff (2006) and Brams
et al. (2006) in order to compare sets of candidates.
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k-Borda: This rule selects the k candidates with the k highest Borda
scores. The Borda rule gives m − j points to a candidate each time she
is ranked j-th, i.e., s = (m − 1, m − 2, . . . , 1, 0), and the Borda score of a
candidate is the sum of the points received.

k-Negative Plurality: Also called the k-Antiplurality rule, this rule re-
turns the k candidates with the k lowest number of last places in the voters’
rankings. In other words, the vector of score that is used here corresponds to
s = (1, 1, . . . , 1, 0).

Bloc: This rule returns the k candidates with the highest k-approval
scores. The k-approval score of a candidate is equal to the number of
voters who rank this candidate among their k top ranked candidates, i.e.,
s = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0). Notice first that Bloc is equivalent to k−Plurality and

k−Negative Plurality when k = 1 and k = m− 1, respectively. Furthermore,
notice that the Bloc rule is also called Limited Voting (e.g., Kamwa and Merlin,
2015) or Constant Scoring Rule (e.g., Gehrlein, 1985).

Chamberlin-Courant: Under this rule we fix a scoring vector of length
m, and each voter’s score for a given committee is defined as the score that
she assigns to her most preferred candidate in that committee; the goal is
then to find a committee that maximizes the joint scores of all voters. Notice
that in line with Chamberlin and Courant (1983), in this paper we consider
the most often used vector of scores which is the one defined by Borda, i.e.,
s = (m− 1, m− 2, . . . , 1, 0). Formally, let rix be the rank of candidate x in voter
i’s ranking and w(rix) = m− rix the corresponding Borda weight. We denote
by Nx(C, π) the set of voters for which the representative in committee C
is candidate x for profile π. In other words, for the corresponding profile
π, candidate x is the most preferred in the committee C for all voters in
Nx(C, π). According to Chamberlin and Courant (1983), the Chamberlin-
Courant rule selects the committee which maximizes the representativeness
value:

α(C, π) = ∑
x∈C

∑
i∈Nx(C,π)

w(rix) (1)

The Chamberlin-Courant rule is equivalent to the Borda rule for k = 1 (Cham-
berlin and Courant, 1983) and to the k-Plurality rule for k = m− 1 (Kamwa
and Merlin, 2014). It is important to stress here that this paper only deals
with the utilitarian approach of the Chamberlin-Courant rule which is de-
scribed in (1). Besides this approach, there are other ways of calculating the
representativeness value. The reader is referred to Betzler et al. (2013) who
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suggested the egalitarian variants of the Chamberlin-Courant rule. For more
details on the other variant and the links between both versions, the reader
is referred to the papers of Betzler et al. (2013), Elkind et al. (2017), Procac-
cia et al. (2008), Skowron et al. (2013a, 2015). Notice that both the utilitarian
and the egalitarian approaches are very hard to manage (Elkind et al., 2017).
In other words, finding the outcome(s) under the Chamberlin-Courant rule
can be computationally intractable particularly when the number of candi-
dates and the size of the committee to be elected increase. This drawback
may compromise the use of this rule in real elections with a huge number
of candidates, to the benefit of alternative multi-winner voting rules. As a
consequence, Lu and Boutilier (2011) have proposed some algorithms for ap-
proximating the Chamberlin-Courant rule. For their own purposes, Potthoff
and Brams (1998) showed that integer programming can be used in order
to determine the winners under the Chamberlin-Courant rule. Nevertheless,
as pointed out by Procaccia et al. (2008), the integer programming does not
overcome the complexity of the Chamberlin-Courant rule.

In order to illustrate the different notions presented above, we provide the
following example.

Example 1. Consider a profile π with n = 22 individuals voting on the set A =

{a, b, c, d} of m = 4 candidates. The preference of every individual i is described as
follows:

Voters i = 1, . . . , 4 i = 5, . . . , 8 i = 9, . . . , 12
Rankings abcd adcb cbda

Voters i = 13, . . . , 16 i = 17, . . . , 22
Rankings bcda dbca

The scores of the candidates under the Plurality rule, the Negative Plurality rule, the
Borda rule, and the Bloc rule (with k = 2) are calculated as follows:

a b c d
The Plurality rule 8 4 4 6
The Negative Plurality rule 8 18 22 18
The Borda rule 24 40 34 34
The Bloc rule (k = 2) 8 18 8 10

After all computations assuming that k = 2, the scores of the 6 = |(C(k = 2, m = 4)|
possible committees under the Chamberlin-Courant rule are: α({a, b}, π) = 56
; α({a, c}, π) = α({a, d}, π) = α({c, d}, π) = 50 ; α({b, d}, π) = 54 ;
α({b, c}, π) = 48. In other words, if the target size of the elected committee is
k = 2, the Chamberlin-Courant rule selects {a, b} whereas the 2-Plurality rule
chooses {a, d}; the committees {b, c} and {c, d} tie for the 2-Negative Plurality;
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the committees {b, c} and {b, d} tie for the 2-Borda rule; finally, the Bloc rule selects
the committee {b, d}. Notice that {b, c} is the Condorcet committee à la Gehrlein
because bMa, bMd, cMa, and cMd. Furthermore, candidate b is the Condorcet win-
ner because bMa, bMc, and bMd, whereas candidate d is the Condorcet loser because
aMd, bMd, and cMd.

2.3 Methodology

Before giving our results, we describe the methodology applied in order to
calculate our probabilities. To achieve this goal, we assume that all voting
situations ñ = (n1, ..., nt, ..., nm!) with n = ∑m!

t=1 nt for specified n and m are
equally likely to be observed. This is called in the literature the Impartial
Anonymous Culture (IAC) condition. Introduced by Gehrlein and Fishburn
(1976) in social choice literature, the IAC assumption is one of the most widely
used assumptions in the literature when computing the likelihood of voting
events. For further details on the IAC and other assumptions, we refer the
reader to Gehrlein and Lepelley (2017, 2011).

Obtaining the probability of an electoral event under the IAC assumption
is accomplished by the computation of two elements. The first one is the total
number of voting situations ñ = (n1, ..., nt, ..., nm!); it is well known that for
n voters and m candidates the total number of voting situations ñ is explic-
itly given by the binomial coefficient (n+m!−1

m!−1 ). The second element that has
to be calculated is the number of voting situations associated with the corre-
sponding electoral event that we need to evaluate, which can be reduced to
a finite system of linear constraints with rational coefficients. Furthermore, it
is well known that the calculations of the limiting probability, as the num-
ber of voters tends to infinity, under the IAC condition, are simply reduced
to the computation of volumes of convex polytopes. In other words, for our
purpose in this paper, every probability requires the calculation of two vol-
umes of certain polytopes of dimension m!. For this, our volumes are found
with the use of the algorithm Convex which is a MAPLE package for convex
geometry written by Franz (2016). This package works with the same general
procedure that was implemented in Cervone et al. (2005) and recently used
in other studies, e.g., Diss and Doghmi (2016), Diss and Gehrlein (2015, 2012),
Gehrlein et al. (2015) and Moyouwou and Tchantcho (2017). This technique is
used in this paper in order to obtain all our exact results for m = 3 and m = 4,
except for the probabilities displayed in Table 11 for which we used Normaliz
(Bruns et al., 2017, 2019) which works with the same procedure as Convex.
However, the two methods are not efficient when, as in this paper, the num-
ber of candidates is equal to 5 and 6. Unfortunately, the computation times
with four candidates range from seconds to a few days or even weeks on a
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fast machine, particularly for the calculations involving the Borda score (i.e.,
under the k-Borda and the Chamberlin-Courant rules). In other words, our
calculations for m = 3 and m = 4 cannot be expanded to m = 5 and m = 6
since the computations need relatively high memory when the number of
candidates increases, and consequently our computer hardware does not al-
low the calculation of the volumes associated with these cases in a reasonable
time.3

For this reason, computer simulations are used to evaluate our probabili-
ties for m = 5 and m = 6. We describe in the following the applied methodol-
ogy. Let us consider as an example the probability for which the Chamberlin-
Courant rule and the k-Plurality rule both select the same unique committee
for a specific pair (k, m). In the beginning, we randomly generate a voting
situation of length m! with a number of voters n tending to infinity. For this
purpose, we consider a number of voters equal to 100, 000. In the second step,
we check whether the conditions for which the Chamberlin-Courant rule and
the k-Plurality rule agree on the same and unique committee are fulfilled or
not. These two steps are iterated 1, 000, 000 times to obtain the number of
voting situations for which the Chamberlin-Courant rule and the k-Plurality
rule agree. Finally, the probability of agreement is calculated as the quotient
of the number previously obtained in the latest step over the total number
of simulated voting situations, i.e., 1, 000, 000. Notice that, we can also gen-
erate simulations with more than 100, 000 voters and more than 1, 000, 000
iterations. We have ignored this option since small differences are observed
between our probabilities and those obtained with high parameters.

We provide in the Appendix some codes to illustrate how the different
probabilities given in this paper are calculated. The detail of the other codes
are available upon simple request from the authors.

3 The only volumes that we can provide are the ones describing the region which includes
all the voting situations ñ = (n1, . . . , nt, . . . , nm!). Indeed, any voting situation ñ can be rewrit-
ten as p̃ = (p1, . . . , pt, . . . , pm!) such that ∑m!

t=1 pt = 1 and pt =
nt
n ≥ 0 denoting the proportion

of the n voters with the associated tth linear ordering in a given election with large electorates.
Then, the set of all voting situations p̃ corresponds to an (m! − 1)-dimensional simplex. Ob-
serving that the edges of the simplex are all equal to

√
2 and using known geometric formulas,

the volume of the IAC region for m candidates is given by:

Volume(IAC, m) =

√
m!

(m!− 1)!
=

m!3/2

m!!
.
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3 Results

3.1 The selection of the same unique committee

The question of how different the outcomes of two voting rules can be when
applied on the same preference profile has been widely answered in the lit-
erature when the aim is to select a single winner from the preferences of
an entire population. In this literature, earlier studies teach us that the ex-
istence of the Condorcet winner indirectly reveals something about the dis-
crepancies of voting procedures. In order to achieve this end, many studies
in the literature have focused on the likelihood that different voting proce-
dures tend to always elect the Condorcet winner when such a candidate ex-
ists. For instance, Gehrlein (1999) examines the likelihood that scoring rules
and scoring elimination rules4 tend to always elect the Condorcet winner in
three-candidate elections. For more results, we also refer the reader to Fish-
burn (1977), Gehrlein and Fishburn (1978a), Klamler (2004, 2003), Mathur
and Bhattacharyya (2017), Merlin et al. (2000), Ratliff (2002, 2001), Regenwet-
ter and Grofman (1998), who also analyze the question of selecting the same
winner (Condorcet winner) under various voting rules. Other studies analyze
the choices in contexts where there is no Condorcet winner (e.g., Merlin et al.,
2000, Nurmi, 1988, 1987). These studies mainly teach us that the agreement
between different voting rules is not insignificant.

Our first contribution in this paper is then to extend the literature ana-
lyzing the agreement between voting procedures to the multi-winner context.
We will particularly investigate the situation where each pair of the consid-
ered multi-winner voting rules selects the same unique committee. For this
purpose, we explore the cases for m = 3, 4, 5, 6 and all possible values of k
with a number of voters tending to infinity. Our first finding is that, if the
preference profiles of voters are allowed to follow the IAC condition, then
even in the multi-winner setting the agreement between voting procedures is
observed with non-negligible probability.

As stated above, the Chamberlin-Courant rule is equivalent to the Borda
rule for k = 1 and to the k-Plurality rule for k = m − 1. In addition, the
Bloc rule is equivalent to the k−Plurality rule and the k−Negative Plurality
rule when k = 1 and k = m − 1, respectively. To our knowledge, except
for these values, there are no other values of k and m such that a pair of
the considered multi-winner voting rules always agrees on the same unique
committee. Consequently, our first objective in this section is to find how

4 Scoring elimination rules, also called multistage elimination scoring rules, give points to candi-
dates according to their rank in voters’ preference orders and then eliminate the candidate(s)
with the lowest number of points.
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often the outcome of a given pair of the considered multi-winner voting rules
coincides on the same unique committee for any pair (k, m). The symmetry of
IAC with respect to candidates requires that the probability of only one case
has to be found and then we multiply this result by the number of possible
committees given by |C(k = 2, m = 4)| in order to find the total probability
of agreement. For example, with m = 4 and k = 2, we first calculate the
probability that two given multi-winner voting rules both select the same
unique committee {a, b} and then we multiply this probability by 6 = |C(k =

2, m = 4)|, to take into account the fact that other possible committees than
{a, b} can also be the winner under the two voting rules.

The results of our computations are provided in Tables (1) to (10). Several
lessons may be drawn from these probabilities. First, for a given m, we observe
that the probability of the agreement between any pair of multi-winner voting
rules exhibits the same behavior, i.e., it first decreases and then increases as
k increases. This means that the probability of the agreement is significantly
high when the target size of the committee k is sufficiently small (around 1) or
sufficiently high (around m− 1). Our intuition regarding this remark is related
to the fact that the value of |C(k, m)| is small5 when k is close to 1 or m− 1,
which makes the agreement more probable for these values of k than the other
values. Second, it is quite natural that for a given size k of the committee the
probability of the agreement tends to decrease as the number of candidates m
increases. This fact generally holds under each pair of rules. For instance, with
k = 2, the probability of agreement between the Chamberlin-Courant rule and
the k-Plurality rule decreases from 0.7223 for m = 4 to 0.5232 for m = 5 and
then to 0.3868 for m = 6. Third, we highlight the fact that the Chamberlin-
Courant rule and the k-Plurality rule on one side and the k-Borda rule and
the Bloc rule on the other side are the pairs of rules that agree the most in
comparison to other pairs. More precisely, the k-Plurality rule tends in sum
to dominate the other rules in terms of the agreement with the Chamberlin-
Courant rule whereas the k-Negative Plurality rule performs the worst; on
the other hand, the k-Borda rule tends to dominate the other rules in terms of
its agreement with the Bloc rule whereas the k-Plurality appears to exhibit a
much poorer performance. Finally, our probabilities show that the agreement
that we investigate in this paper is observed with non-negligible probability
for any pair of multi-winner voting rules. In other words, we want to highlight
in this section the fact that many multi-winner voting rules are quite similar,
particularly for some values of m and k.

It would have been interesting to find the probability of other types of
agreements. Indeed, in addition to our probability (say Pr1), a second possi-
bility (say Pr2) could be the probability for which a first multi-winner voting

5 For instance, |C(k = 1, m = 5)| = |C(k = 4, m = 5)| = 5 and |C(k = 2, m = 5)| = |C(k =
3, m = 5)| = 10.
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rule selects only one committee and that this committee is included in the
outcome set of a second multi-winner voting rule that may contain more than
one committee. It is obvious that for any pair of rules, Pr2 is equal to Pr1 plus
the probability of the cases for which the first rule selects only one committee
(e.g., {a, b}) and that the second rule chooses two or more committees (e.g.,
{a, b} and {b, c}). A third possibility (say Pr3) could be to evaluate for any
pair of rules the probability under which the first rule selects one or more
committees and that these committees are included in the outcome set of the
second rule. In other words, the set of winning committees under a first rule
is included in the one of a second rule. Again, it is obvious that Pr3 is equal
to Pr2 plus the probability of the cases for which the first rule selects two of
more committees (e.g., {a, b} and {b, c}) and that the second rule chooses the
committees selected by the first rule plus (or not) other possible committees
with the same size (e.g., {a, b}, {b, c}, and {a, c}). Obviously, the probability
Pr1 analyses the cases where the rules are decisive (also called resolute); the
probability Pr2 assumes that only one rule is decisive whereas the second
rule is not; and Pr3 supposes that the two considered rules are not decisive.
It could be relevant to distinguish the cases where the rules are decisive from
those where they are not, because breaking ties may lead to more complex
problems: the choice of the tie-breaking rule is not entirely neutral because it
can be used for strategic manipulation purposes as recently pointed out by
Aziz al. (2013), Mattei et al. (2014) and Obraztsova et al. (2011). However, as
the size of the electorate tends to be large, which is our concern in this paper,
the result Pr1 = Pr2 = Pr3 holds. Why? To obtain Pr1, for instance, our poly-
topes are only described by strict inequalities, whereas under Pr2 and Pr3 we
need weak inequalities. Furthermore, we know that when n increases signif-
icantly, these weak inequalities fall to make room for strict inequalities and
we recover Pr1. As noticed above, the calculations of the limiting probabil-
ity under the IAC condition are simply reduced to computations of volumes
of convex polytopes. Discounting ties has no impact because the volume of
a region is the same regardless of whether the region includes its bounding
hyperplanes or not, and it is exactly the points lying on these bounding hy-
perplanes that correspond to the ties (included in the voting situations of Pr2

and Pr3 but not in Pr1). For more details, we refer the reader to footnote (3)
in Cervone et al. (2005).

Let us also admit that apart from Pr1 (and eventually Pr2 and Pr3), other
interesting types of probabilities can be considered. As one can see, Pr1 ad-
dresses the agreement by only assuming an overlap of the outcome sets that
focuses on the committees as a whole. One can go further and imagine the
agreement in terms of members; in other words, one would determine the
probability that a given candidate elected with a first rule will also be chosen
by a second rule with (or without) the same value of k. It could be worth
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exploring the agreement in this way but the discussion of this case and other
possibilities of agreement is beyond the scope of this section.

Table 1: Agreement between
Chamberlin-Courant and k-
Plurality

m→ 3 4 5 6

k ↓
1 0.8241 0.6775 0.5668 0.4812

2 1 0.7223 0.5232 0.3868

3 −− 1 0.6503 0.4355

4 −− −− 1 0.6050

5 −− −− −− 1

Table 2: Agreement between
Chamberlin-Courant and k-Borda

m→ 3 4 5 6

k ↓
1 1 1 1 1

2 0.6872 0.5732 0.5064 0.4713

3 −− 0.5829 0.4181 0.3282

4 −− −− 0.5155 0.3229

5 −− −− −− 0.4594

Table 3: Agreement between
Chamberlin-Courant and Bloc

m→ 3 4 5 6

k ↓
1 0.8241 0.6775 0.5668 0.4812

2 0.5231 0.4537 0.4665 0.4435

3 −− 0.3754 0.2525 0.2271

4 −− −− 0.2926 0.1566

5 −− −− −− 0.2387

Table 4: Agreement between
Chamberlin-Courant and k-
Negative Plurality

m→ 3 4 5 6

k ↓
1 0.6872 0.5829 0.5143 0.4573

2 0.5231 0.3173 0.2172 0.1593

3 −− 0.3754 0.1806 0.1031

4 −− −− 0.2926 0.1172

5 −− −− −− 0.2387

Table 5: Agreement between k-
Plurality and k-Borda

m→ 3 4 5 6

k ↓
1 0.8241 0.6775 0.5668 0.4812

2 0.6872 0.5397 0.4124 0.3148

3 −− 0.5829 0.3953 0.2705

4 −− −− 0.5155 0.3050

5 −− −− −− 0.4594

Table 6: Agreement between k-
Plurality and Bloc

m→ 3 4 5 6

k ↓
1 1 1 1 1

2 0.5231 0.3967 0.3374 0.2962

3 −− 0.3754 0.2297 0.1610

4 −− −− 0.2926 0.1447

5 −− −− −− 0.2387
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Table 7: Agreement between k-
Plurality and k-Negative Plurality

m→ 3 4 5 6

k ↓
1 0.5231 0.3754 0.2937 0.2361

2 0.5231 0.2839 0.1704 0.1093

3 −− 0.3754 0.1677 0.0878

4 −− −− 0.2926 0.1120

5 −− −− −− 0.2387

Table 8: Agreement between k-
Borda and Bloc

m→ 3 4 5 6

k ↓
1 0.8241 0.6775 0.5668 0.4812

2 0.8241 0.6944 0.5768 0.4769

3 −− 0.7368 0.5781 0.5060

4 −− −− 0.5648 0.4755

5 −− −− −− 0.4818

Table 9: Agreement between k-
Borda and k-Negative Plurality

m→ 3 4 5 6

k ↓
1 0.6872 0.5829 0.5143 0.4573

2 0.8241 0.5397 0.3938 0.3050

3 −− 0.7368 0.4108 0.2751

4 −− −− 0.5648 0.3152

5 −− −− −− 0.4818

Table 10: Agreement between Bloc
and k-Negative Plurality

m→ 3 4 5 6

k ↓
1 0.5231 0.3754 0.2937 0.2361

2 1 0.3967 0.2285 0.1420

3 −− 1 0.3334 0.1645

4 −− −− 1 0.2986

5 −− −− −− 1

The previous results showed that any pair of the different multi-winner
voting rules we presented may end with the same results for many voting
situations. In this section, we focus on the probability for which all these
multi-winner voting methods agree for a given pair (k, m). We focus again
on the case of large electorates. Our results are displayed in Table (11). We
can make some major observations based upon this table. The first remark is
that the probabilities follow the same behavior observed in Tables (1) to (10)
when we increase the number of candidates m or the size of the committee k.
In other words, when the number of candidates increases and the size of the
committee remains constant then the probability of the agreement decreases.
In addition, if we increase the size of the committee while maintaining a
constant number of candidates, the probability of the agreement will first
increase and then it will decrease. The second remark is that our results show
that the probability of the agreement is not negligible particularly when the
size of the committee k is equal to 1 or m− 1. There is a significant chance of
an agreement occurring between the different multi-winner voting rules we
presented; while this probability is around 52% for m = 3, the probability of
the agreement is expected to reach 25% for m = 5 and 20% for m = 6 when
k is equal to 1 or m− 1, respectively. We arrive at our final observation: the
probability of the agreement is the same for k = 1 and k = m− 1 regardless
of the number of candidates.
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Table 11: Agreement between all the considered multi-winner voting rules

m→ 3 4 5 6

k ↓
1 0.5231 0.3550 0.2585 0.1930

2 0.5231 0.1503 0.0685 0.0341

3 −− 0.3550 0.0637 0.0198

4 −− −− 0.2568 0.0333

5 −− −− −− 0.1942

3.2 The selection of the Condorcet committee à la Gehrlein when it exists

We continue here the comparison between the multi-winner voting rules that
we consider in this paper by evaluating the probability for each rule that it
will select the Condorcet committee à la Gehrlein when it exists. In other
words, we aim to analyse the Condorcet committee efficiency of each multi-
winner voting rule. We focus again here on the case of large electorates and a
number of candidates m in the set {3, 4, 5, 6}.

Notice that there is a large literature in social choice theory devoted exclu-
sively to the Condorcet efficiency of single-winner voting rules. The Condorcet
efficiency of a voting procedure is defined as the conditional probability that
it will elect the Condorcet winner, given that a Condorcet winner exists. A
detailed survey of early research on the Condorcet efficiency of voting rules
can in particular be found in the recent books by Gehrlein and Lepelley (2017,
2011). However, it is striking how little attention has been paid to the Con-
dorcet committee efficiency of multi-winner voting rules. To our knowledge,
the only papers concerned with such a question are Gehrlein (1985) and Diss
and Doghmi (2016).

We denote respectively by CCEk−P
IAC∞(k, m), CCEk−NP

IAC∞(k, m),
CCEk−B

IAC∞(k, m), CCEB
IAC∞(k, m) and CCECCR

IAC∞(k, m) the limiting Con-
dorcet committee efficiency of the k-Plurality rule, the k-Negative Plurality
rule, the k-Borda rule, the Bloc rule, and the Chamberlin-Courant rule under
the IAC condition as n → ∞. Tables (12) to (16) provide our results. Notice
that Tables (13) to (16) are drawn from Diss and Doghmi (2016). In other
words, our findings in this section are set down in Table (12) which provides
the Condorcet committee efficiency of the Chamberlin-Courant rule for
various values of m and k.

First, it is obvious from these tables that, for a given k, the Condorcet
committee efficiency falls as m rises. Moreover, for a given m, we observe
that the Condorcet committee efficiency of the Chamberlin-Courant rule, the
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k−Negative Plurality rule, the k−Plurality rule, and the k−Borda rule exhibit
the same behaviour, i.e., it first decreases and then increases as the target
size of the committee k increases. For instance, for m = 5, the Condorcet
committee efficiency of the Chamberlin-Courant rule varies from 0.8537 for
k = 1 to 0.4378 for k = 3 and then it reaches 0.5106 for k = 4; for m = 6 this
probability varies from 0.8458 for k = 1 to 0.3574 for k = 4 and then it reaches
0.4731 for k = 5. However, this conclusion is not the same for the Bloc rule
since its Condorcet committee efficiency first increases and then decreases as
k increases.

Second, as already noticed by Diss and Doghmi (2016), the k-Borda rule
tends to perform better than the other k-scoring rules with more than an
80% Condorcet efficiency rate; it is followed by the Bloc rule. The k-Plurality
rule performs the worst. Comparing our results to those of Diss and Doghmi
(2016), it comes out that the Chamberlin-Courant rule does not perform better
than the k-Borda rule and the Bloc rule (except for k = 1); however, it performs
better than the k-Plurality rule. We notice that for k ≤ bm

2 c, the Chamberlin-
Courant rule performs better than the k-Negative Plurality rule and for k >

bm
2 c we get the reverse, where b c stands for the integer part of the number.

To summarize, our findings on Condorcet committee efficiency tell us that
this rule can lead, most of the time, to committees with dominated members
than the k-Borda rule and the Bloc rule.

Third, we recall some relationships that were developed in Gehrlein (1985)
under the Impartial Culture (IC)6 assumption and then generalized to IAC
in Diss and Doghmi (2016). In particular, CCEk−P

IAC∞
(k, m) is the same as

CCEk−NP
IAC∞

(m − k, m). Moreover, for Bloc, it is found that CCEB
IAC∞

(k, m) =

CCEB
IAC∞

(m− k, m) and CCEk−B
IAC∞

(k, m) = CCEk−B
IAC∞

(m− k, m). Those relation-
ships are not only true for m = 4 candidates but also for m = 5 and m = 6. The
small differences that we find for m = 5 and m = 6 are due to the fact that our
results here are not exact but they are obtained using computer simulations,
i.e., it is just due to the fact that the calculations are approximations. Conse-
quently, the results in Tables (12) to (16) contain some information that allows
us to check the margin of error of our simulation method for m = 5 and m =

6. More exactly, our results indicate a maximum error of about 0.0138, which
corresponds to CCEk−B

IAC∞
(4, 6)− CCEk−B

IAC∞
(2, 6) = 0.8372− 0.8234 = 0.0138.

6 IC is also a well-known model in the literature of Social Choice Theory (Guilbaud, 1952).
This condition considers the set of all preference profiles as a sample space. Recall that a
voter preference profile is a collection of individual preferences expressed for every individual
taking part in the vote. When strict preferences over the set of m candidates are assumed, the IC
assumption assumes that each voter is equally likely to pick any of the m! preferences. Notice
that individual voter’s preferences are not anonymous under the IC condition while they
are under the IAC assumption. In addition, in the IC model, the votes are totally independent
whereas under IAC the votes are correlated in a specific way. So, moving from IC to IAC allows
us to evaluate the impact of introducing some degree of homogeneity in voters’ preferences
on the probability of paradoxes.
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Table 12: CCECCR
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.9111 0.8706 0.8580 0.8457

2 0.6296 0.5642 0.5398 0.5182

3 −− 0.5516 0.4378 0.3757

4 −− −− 0.5100 0.3574

5 −− −− −− 0.4701

Table 13: CCEk−P
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.8815 0.7426 0.6143 0.5207

2 0.6296 0.5427 0.4476 0.3638

3 −− 0.5516 0.4199 0.3380

4 −− −− 0.5100 0.3322

5 −− −− −− 0.4701

Table 14: CCEk−NP
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.6296 0.5516 0.5104 0.4696

2 0.8815 0.5427 0.4267 0.3529

3 −− 0.7426 0.4521 0.3211

4 −− −− 0.6140 0.3642

5 −− −− −− 0.5183

Table 15: CCEk−B
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.9111 0.8706 0.8580 0.8457

2 0.9111 0.8598 0.8286 0.8234

3 −− 0.8706 0.8348 0.8172

4 −− −− 0.8587 0.8372

5 −− −− −− 0.8477

Table 16: CCEB
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.8815 0.7426 0.6143 0.5207

2 0.8815 0.7468 0.6210 0.5386

3 −− 0.7426 0.6337 0.5715

4 −− −− 0.6140 0.5330

5 −− −− −− 0.5183

3.3 The selection of the Condorcet winner when one exists

It is interesting to investigate the selection of the Condorcet winner when
it exists as a member of the selected committee. For this issue, our results
are displayed in Tables (17) to (21) where CWk−P

IAC∞(k, m), CWk−NP
IAC∞ (k, m),

CWk−B
IAC∞(k, m), CWB

IAC∞(k, m) and CWCCR
IAC∞(k, m) denote the limiting proba-

bility under IAC as n → ∞ that the k-Plurality rule, the k-Negative Plurality
rule, the k-Borda rule, the Bloc rule, and the Chamberlin-Courant rule will
respectively select the Condorcet winner when it exists for a given pair (k, m).
We draw some interesting observations from these tables. First, for each of
the five multi-winner voting rules and a fixed number m of competing candi-
dates, the probability of selecting the Condorcet winner when it exists always
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increases as the target size k of the committee increases from 1 to m− 1. This
result is expected because as the subset of candidates that has to be elected
becomes larger the chance of the rule picking the Condorcet winner in this
subset also increases. Second, it is worth mentioning that the k-Borda rule
selects the Condorcet winner with certainty when k = m− 1. The reason is
that the Condorcet winner is never bottom ranked in the Borda ranking (see
e.g., Fishburn and Gehrlein, 1976, Saari, 2000) and therefore the Condorcet
winner is always selected by the k-Borda rule among the candidates ranked
in the m− 1 first positions. Third, for a given size k, the probability of every
multi-winner rule selecting the Condorcet winner tends to decrease as the
number m of competing candidates increases. Finally, our results show that
the use of the k-Borda rule significantly increases the probability of selecting
the Condorcet winner when it exists, whereas the k-Plurality rule is the worst
scenario according to this criteria. In other words, the replacement of the k-
Borda rule with any of the other considered multi-winner rules significantly
increases the risk of not electing the Condorcet winner as a member of the
selected committee.

Table 17: CWCCR
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.9111 0.8706 0.8580 0.8457

2 0.9685 0.9324 0.9012 0.8803

3 −− 0.9762 0.9457 0.9175

4 −− −− 0.9808 0.9556

5 −− −− −− 0.9839

Table 18: CWk−B
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.9111 0.8706 0.8580 0.8457

2 1 0.9962 0.9910 0.9875

3 −− 1 0.9998 0.9994

4 −− −− 1 0.9999

5 −− −− −− 1

Table 19: CWk−P
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.8815 0.7426 0.6143 0.5207

2 0.9685 0.9117 0.8334 0.7510

3 −− 0.9762 0.9335 0.8763

4 −− −− 0.9808 0.9459

5 −− −− −− 0.9839

Table 20: CWB
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.8815 0.7426 0.6143 0.5207

2 0.9704 0.9551 0.9199 0.8728

3 −− 0.9773 0.9762 0.9709

4 −− −− 0.9818 0.9856

5 −− −− −− 0.9847
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Table 21: CWk−NP
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.6296 0.5516 0.5104 0.4696

2 0.9704 0.8450 0.7764 0.7179

3 −− 0.9773 0.9175 0.8625

4 −− −− 0.9818 0.9427

5 −− −− −− 0.9847

3.4 The selection of the Condorcet loser when one exists

Note that, in single-winner elections, when the Condorcet loser is selected,
this is referred to be an occurrence of the strong Borda paradox (see e.g., Diss
and Doghmi, 2016, Diss and Gehrlein, 2012, Gehrlein and Lepelley, 2010,
Kamwa and Valognes, 2017). It is well known that the Condorcet loser is
never top-ranked in the Borda ranking (see e.g., Fishburn and Gehrlein, 1976,
Saari, 2000). It is also well established that this outcome can occur with the
Plurality rule and many other voting rules (see e.g., Felsenthal and Maoz,
1988, Gehrlein and Fishburn, 1978b, Gehrlein and Lepelley, 1998, Lepelley,
1993, Moyouwou and Tchantcho, 2017, Plassmann and Tideman, 2014). These
studies have been conducted using either computer simulations or analytical
computations under many assumptions regarding voters’ preferences.

Our attention is drawn specifically in this section to evaluating the proba-
bility of selecting the Condorcet loser when it exists among the set of winners
when a group of voters takes on the task of selecting a given number of can-
didates from a set of available candidates. Our results are displayed in Tables
(22) to (26) where CLk−P

IAC∞(k, m), CLk−NP
IAC∞(k, m), CLk−B

IAC∞(k, m), CLB
IAC∞(k, m)

and CLCCR
IAC∞(k, m) denote the limiting probability under IAC as n → ∞ that

the k-Plurality rule, the k-Negative Plurality rule, the k-Borda rule, the Bloc
rule, and the Chamberlin-Courant rule will respectively select the Condorcet
loser when it exists for a given pair (k, m). Some observations can be drawn
from these tables. First, for a fixed number of competing candidates m, the
probability of selecting the Condorcet loser tends to decrease as the size k
of the committee increases. Second, for a fixed k, the probability of selecting
the Condorcet loser tends to increase as the number of competing candidates
m increases. Finally, we can point out that for every pair (k, m), the selection
of the Condorcet loser under the k-Borda rule is relatively much less likely
to be detected compared to the other rules. Overall, this probability only ex-
ceeds 15% for the pair (k = 5, m = 6) under the k-Borda rule whereas it
reaches 50% under the other rules. Finally, it is concluded that the use of



22 Diss et al.

rules like k-Plurality will clearly tend to maximize the likelihood of select-
ing the Condorcet loser among the set of winning candidates. Notice that in
single-winner elections it has been established that the probabilities of select-
ing the Condorcet loser are maximized for voting rules like the Plurality rule
and the Negative Plurality rule. The k-Plurality rule seems to be a bad choice
not only in the single-winner case but also in the multi-winner scenario.

Table 22: CLCCR
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0 0 0 0

2 0.3704 0.1307 0.0416 0.0138

3 −− 0.4484 0.2006 0.0946

4 −− −− 0.4935 0.2586

5 −− −− −− 0.5260

Table 23: CLk−B
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0 0 0 0

2 0.0889 0.0038 0.0001 0.0000

3 −− 0.1294 0.0087 0.0003

4 −− −− 0.1462 0.0125

5 −− −− −− 0.1528

Table 24: CLk−P
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.0296 0.0227 0.0183 0.0147

2 0.3704 0.1549 0.0824 0.0565

3 −− 0.4484 0.2249 0.1379

4 −− −− 0.4935 0.2799

5 −− −− −− 0.5260

Table 25: CLB
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.0296 0.0227 0.0183 0.0147

2 0.1185 0.0449 0.0229 0.0145

3 −− 0.2574 0.0808 0.0254

4 −− −− 0.3843 0.1279

5 −− −− −− 0.4798

Table 26: CLk−NP
IAC∞

(k, m)

m→ 3 4 5 6

k ↓
1 0.0315 0.0238 0.0199 0.0159

2 0.1185 0.0883 0.0675 0.0529

3 −− 0.2574 0.1670 0.1231

4 −− −− 0.3843 0.2491

5 −− −− −− 0.4798

4 Concluding remarks

The aim of this paper was to determine how often the outcome of vari-
ous multi-winner voting rules might coincide for the selection of a same
unique committee of a given size. We focused on five well-studied rules:



On some k-scoring rules for committee elections 23

the Chamberlin-Courant rule, the k-Plurality rule, the k-Borda rule, the k-
Negative Plurality rule and the Bloc rule. We focused on voting situations
with m = 3, 4, 5, 6 candidates and committees of size 1 < k < m − 1. Some
results are very clear from the calculated values of our probabilities. Over the
range of scenarios that have been considered in this paper, we found that in
most of the cases one should expect to observe an agreement between any pair
of the considered multi-winner rules, with greater probability in the asymp-
totic case as the number of voters tends to infinity. We also drew an interesting
comparison between every multi-winner rule on the basis of their propensity
to follow certain principles based on the Condorcet idea. One of the possibil-
ities was, for instance, to examine the election of the Condorcet committee à
la Gehrlein when it exists which guarantees a committee with undominated
members. The selection of the Condorcet winner/loser, when it exists, among
the members of the elected committee, was also examined in this paper. We
have been able to show that in general the k-Borda rule performs better than
the four other multi-winner voting rules, whereas the k-Plurality rule and the
k-Negative Plurality rule seem to be the worst scenarios.

Since we have studied the particular case of scoring rules, the extension
of these results to multistage elimination scoring rules or other variants of
Chamberlin-Courant’s rule remains open. More particularly, a similar anal-
ysis can be achieved with the well-known Single Transferable Vote (STV). The
most studied variant of STV in the multi-winner setting works as follows:
Each voter has a single vote that is initially allocated to her most-preferred
candidate. In each round, votes are aggregated and if there is a candidate, say
a, whose Plurality score is greater than the well-known Droop quota q which
is fixed before the election, the following procedure is used: First, candidate
a is selected in the winning committee; second, the q votes where a is ranked
first are deleted; and finally candidate a is removed from all the remaining
votes. If each candidate’s Plurality score is less than q, the candidate with
the lowest Plurality score is eliminated from all votes. This procedure is re-
peated until the election of the target committee. It would be very interesting
to study the probability of the agreement between this rule and the five multi-
winner voting rules that we have considered in this paper, but discussion of
this rule and other multistage elimination scoring rules is beyond the scope
of this paper. Notice, finally, that results for more than six candidates would
have allowed us to draw more accurate conclusions. However, obtaining such
results runs up against the limits of probability calculations under the IAC
assumption, even with computer simulations.
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5 Appendix

Recall that the Convex code (MAPLE) has been used to obtain the results for 3
and 4 candidates, except for the probabilities displayed in Table 11 for which
we used Normaliz. All our results for 5 and 6 candidates have been obtained
using computer simulations (MATLAB). We provide the three codes in the
following sections. In order to illustrate our calculations, some useful com-
ments are given in the codes. For further information, the reader is referred
to the original papers listed in Section 2.3.

5.1 Use of Convex

To illustrate the use of Convex, suppose that we want to calculate the probabil-
ity of the agreement between the k-Plurality rule and the k-Negative Plurality
rule for the pair (k = 3, m = 4).

> Convex;
% Volume computation of the region describing the IAC region: Vol(

P1)
> P1:= intersection(
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]>=0,
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]=1);
> Vol(P1):= volume(maximal(P1));
P1 := POLYTOPE (24 ,23 ,24 ,24)
Vol(P1):=(1/12926008369442488320000)*sqrt (6)
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% Volume computation of the region describing the event ‘‘the
committee {abc} is selected by both the k-Plurality rule and
the k-Negative Plurality rule": Vol(P2)

> P2:= intersection(
[1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1]>=0,
[0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1]>=0,
[1,0,1,0,0,0,1,0,1,-1,0,-1,1,0,1,-1,0,-1,0,0,0,-1,0,-1]>=0,
[1,0,1,-1,0,-1,1,0,1,0,0,0,1,-1,1,0,-1,0,0,-1,0,0,-1,0]>=0,
[1,-1,1,0,-1,0,1,-1,1,0,-1,0,1,0,1,0,0,0,-1,0,-1,0,0,0]>=0,
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]>=0,
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]>=0,
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]=1);

> Vol(P2) := volume(maximal(P2));
[Large output of more than 1000000 nodes]

Vol(P2):=(15875407238759135126079628124063/
2186295503375148070710553139157057879807098880000000000)*sqrt (6)

% Probability that the k-Plurality rule and the k-Negative
Plurality rule both select {a,b,c} under IAC

> Pr := Vol(P2)/Vol(P1);
0.093859978

Since there are 4 possible committees of size 3, the probability that the k-
Plurality rule and the k-Negative Plurality rule agree for the pair (k = 3, m =

4) is simply: 4× 0.093859978 = 0.3754399101.
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5.2 Use of Normaliz

To illustrate the use of Normaliz , suppose that we want to find the probability
of the agreement between all the considered multi-winner rules for the pair
(k = 1, m = 4). It is useful here to recall that for k = 1, the Bloc rule and
the k-Borda rule are respectively equivalent to the k-Plurality rule and the
Chamberlin-Courant rule. Thus, the conditions under which a certain can-
didate, say a, is the winner under all the considered multi-winner rules are
reduced to 9 linear inequalities (instead of 15) described in the Normaliz code
below. Note that in Normaliz , the whole region of IAC is described by a lattice
normalized volume in which the unit simplex has volume 1.

amb_space 24
inequalities 9
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1
0 0 0 1 0 1 0 0 0 -1 0 -1 0 1 0 -1 1 -1 0 1 0 -1 1 -1
0 1 0 0 1 0 0 1 0 -1 1 -1 0 0 0 -1 0 -1 1 0 1 -1 0 -1
1 0 1 0 0 0 1 0 1 -1 0 -1 1 0 1 -1 0 -1 0 0 0 -1 0 -1
1 1 2 3 2 3 -1 -1 -2 -3 -2 -3 1 2 -1 -2 1 -1 1 2 -1 -2 1 -1
2 3 1 1 3 2 1 2 -1 -2 1 -1 -1 -1 -2 -3 -2 -3 2 1 1 -1 -1 -2
3 2 3 2 1 1 2 1 1 -1 -1 -2 2 1 1 -1 -1 -2 -1 -1 -2 -3 -2 -3
nonnegative
total_degree
Volume
NoExtRaysOutput
NoSuppHypsOutput
LongLong

From the output file we obtain the quantity:

40254334661594944999516613727134267811246877285639692518937903495838
173587583306142359878417990551662794200657170698732533964913719/
45360458859825161543332672223332509816310721805850279417940389781743
1660021108817019215985271109017554953926420906115072000000000000
= 0.0887432263108

Since there are 4 candidates, the probability that all the considered multi-
winner rules agree for the pair (k = 1, m = 4) is: 4 × 0.0887432263108 =

0.354972905.
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5.3 Use of computer simulations: MATLAB code

To illustrate the use of computer simulations, suppose that we want to esti-
mate the probability of the agreement between the k-Plurality rule and the
k-Borda rule for the pair (k = 1, m = 5).

format long
m =5; % The number of candidates
n = 100000; % The number of voters
s = 1000000; % The number of iterations
% In the next step , we generate a random voting situation under

the IAC condition
[ln , cn]=size(n)
for nn=1:cn
N1 = zeros(1,s);
rand(’seed’ ,0);
fact = factorial(m);

for i=1:s
M = zeros (1,fact);
MM = rand(1,(fact -1));
MM= sort(MM);
MM=[0 MM 1];
for pi=1: fact

M(1,pi)=MM(1,pi+1)-MM(1,pi);
end;
M;
M=n(1,nn)*M;
M= floor(M);
gap=n(1,nn)-sum(M);
if gap >0
for zi=1:gap

draw = round (1+(fact -1)*rand());
M(1,draw)=M(1,draw)+1;

end
end

% The score of candidate a under the k-Plurality rule
Pa=M(1)+M(2)+M(3)+M(4)+M(5)+M(6)+M(7)+M(8)+M(9)+M(10)+M(11)+M(12)+

M(13)+M(14)+M(15)+M(16)+M(17)+M(18)+M(19)+M(20)+M(21)+M(22)+M
(23)+M(24);

% The score of candidate b under the k-Plurality rule
Pb=M(25)+M(26)+M(27)+M(28)+M(29)+M(30)+M(31)+M(32)+M(33)+M(34)+M

(35)+M(36)+M(37)+M(38)+M(39)+M(40)+M(41)+M(42)+M(43)+M(44)+M
(45)+M(46)+M(47)+M(48);

% The score of candidate c under the k-Plurality rule
Pc=M(49)+M(50)+M(51)+M(52)+M(53)+M(54)+M(55)+M(56)+M(57)+M(58)+M

(59)+M(60)+M(61)+M(62)+M(63)+M(64)+M(65)+M(66)+M(67)+M(68)+M
(69)+M(70)+M(71)+M(72);

% The score of candidate d under the k-Plurality rule
Pd=M(73)+M(74)+M(75)+M(76)+M(77)+M(78)+M(79)+M(80)+M(81)+M(82)+M

(83)+M(84)+M(85)+M(86)+M(87)+M(88)+M(89)+M(90)+M(91)+M(92)+M
(93)+M(94)+M(95)+M(96);
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%The score of candidate e under the k-Plurality rule
Pe=M(97)+M(98)+M(99)+M(100)+M(101)+M(102)+M(103)+M(104)+M(105)+M

(106)+M(107)+M(108)+M(109)+M(110)+M(111)+M(112)+M(113)+M(114)+
M(115)+M(116)+M(117)+M(118)+M(119)+M(120);

% The score of candidate a under the k-Borda rule
Ba=4*M(1)+4*M(2) +4*M(3) +4*M(4)+4*M(5) +4*M(6) +4*M(7)+4*M(8) +4*M(9)

+4*M(10) +4*M(11) +4*M(12) +4*M(13) +4*M(14) +4*M(15) +4*M(16) +4*M
(17) +4*M(18) +4*M(19) +4*M(20) +4*M(21) +4*M(22) +4*M(23) +4*M(24)
+3*M(25) +3*M(26) +3*M(27) +3*M(28) +3*M(29) +3*M(30) +2*M(31) +2*M
(32)+M(33)+M(35) +2*M(37) +2*M(38)+M(39)+M(41) +2*M(43) +2*M(44)+M
(45)+M(47) +3*M(49) +3*M(50) +3*M(51) +3*M(52) +3*M(53) +3*M(54) +2*M
(55) +2*M(56)+M(57)+M(59) +2*M(61) +2*M(62)+M(63)+M(65) +2*M(67)
+2*M(68)+M(69)+M(71) +3*M(73) +3*M(74) +3*M(75) +3*M(76) +3*M(77)
+3*M(78) +2*M(79) +2*M(80)+M(81)+M(83) +2*M(85) +2*M(86)+M(87)+M
(89) +2*M(91) +2*M(92)+M(93)+M(95) +3*M(97) +3*M(98) +3*M(99) +3*M
(100) +3*M(101) +3*M(102) +2*M(103) +2*M(104)+M(105)+M(107) +2*M
(109) +2*M(110)+M(111)+M(113) +2*M(115) +2*M(116)+M(117)+M(119);

% The score of candidate b under the k-Borda rule
Bb=3*M(1)+3*M(2) +3*M(3) +3*M(4)+3*M(5) +3*M(6) +2*M(7)+2*M(8)+M(9)+M

(11) +2*M(13) +2*M(14)+M(15)+M(17) +2*M(19) +2*M(20)+M(21)+M(23)
+4*M(25) +4*M(26) +4*M(27) +4*M(28) +4*M(29) +4*M(30) +4*M(31) +4*M
(32) +4*M(33) +4*M(34) +4*M(35) +4*M(36) +4*M(37) +4*M(38) +4*M(39)
+4*M(40) +4*M(41) +4*M(42) +4*M(43) +4*M(44) +4*M(45) +4*M(46) +4*M
(47) +4*M(48) +2*M(49) +2*M(50)+M(51)+M(53) +3*M(55) +3*M(56) +3*M
(57) +3*M(58) +3*M(59) +3*M(60)+M(61) +2*M(63) +2*M(64)+M(66)+M(67)
+2*M(69) +2*M(70)+M(72) +2*M(73) +2*M(74)+M(75)+M(77) +3*M(79) +3*M
(80) +3*M(81) +3*M(82) +3*M(83) +3*M(84)+M(85) +2*M(87) +2*M(88)+M
(90)+M(91) +2*M(93) +2*M(94)+M(96) +2*M(97) +2*M(98)+M(99)+M(101)
+3*M(103) +3*M(104) +3*M(105) +3*M(106) +3*M(107) +3*M(108)+M(109)
+2*M(111) +2*M(112)+M(114)+M(115) +2*M(117) +2*M(118)+M(120);

% The score of candidate c under the k-Borda rule
Bc=2*M(1)+2*M(2)+M(3)+M(5)+3*M(7)+3*M(8) +3*M(9)+3*M(10) +3*M(11) +3*

M(12)+M(13) +2*M(15) +2*M(16)+M(18)+M(19) +2*M(21) +2*M(22)+M(24)
+2*M(25) +2*M(26)+M(27)+M(29) +3*M(31) +3*M(32) +3*M(33) +3*M(34)
+3*M(35) +3*M(36)+M(37) +2*M(39) +2*M(40)+M(42)+M(43) +2*M(45) +2*M
(46)+M(48) +4*M(49) +4*M(50) +4*M(51) +4*M(52) +4*M(53) +4*M(54) +4*M
(55) +4*M(56) +4*M(57) +4*M(58) +4*M(59) +4*M(60) +4*M(61) +4*M(62)
+4*M(63) +4*M(64) +4*M(65) +4*M(66) +4*M(67) +4*M(68) +4*M(69) +4*M
(70) +4*M(71) +4*M(72)+M(73) +2*M(75) +2*M(76)+M(78)+M(79) +2*M(81)
+2*M(82)+M(84) +3*M(85) +3*M(86) +3*M(87) +3*M(88) +3*M(89) +3*M(90)
+M(92)+M(94) +2*M(95) +2*M(96)+M(97) +2*M(99) +2*M(100)+M(102)+M
(103) +2*M(105) +2*M(106)+M(108) +3*M(109) +3*M(110) +3*M(111) +3*M
(112) +3*M(113) +3*M(114)+M(116)+M(118) +2*M(119) +2*M(120);

% The score of candidate d under the k-Borda rule
Bd=M(1)+2*M(3)+2*M(4)+M(6)+M(7)+2*M(9) +2*M(10)+M(12) +3*M(13) +3*M

(14) +3*M(15) +3*M(16) +3*M(17) +3*M(18)+M(20)+M(22) +2*M(23) +2*M
(24)+M(25) +2*M(27) +2*M(28)+M(30)+M(31) +2*M(33) +2*M(34)+M(36)
+3*M(37) +3*M(38) +3*M(39) +3*M(40) +3*M(41) +3*M(42)+M(44)+M(46)
+2*M(47) +2*M(48)+M(49) +2*M(51) +2*M(52)+M(54)+M(55) +2*M(57) +2*M
(58)+M(60) +3*M(61) +3*M(62) +3*M(63) +3*M(64) +3*M(65) +3*M(66)+M
(68)+M(70) +2*M(71) +2*M(72) +4*M(73) +4*M(74) +4*M(75) +4*M(76) +4*M
(77) +4*M(78) +4*M(79) +4*M(80) +4*M(81) +4*M(82) +4*M(83) +4*M(84)
+4*M(85) +4*M(86) +4*M(87) +4*M(88) +4*M(89) +4*M(90) +4*M(91) +4*M
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(92) +4*M(93) +4*M(94) +4*M(95) +4*M(96)+M(98)+M(100) +2*M(101) +2*M
(102)+M(104)+M(106) +2*M(107) +2*M(108)+M(110)+M(112) +2*M(113)
+2*M(114) +3*M(115) +3*M(116) +3*M(117) +3*M(118) +3*M(119) +3*M
(120);

% The score of candidate e under the k-Borda rule
Be=M(2)+M(4)+2*M(5) +2*M(6)+M(8)+M(10) +2*M(11) +2*M(12)+M(14)+M(16)

+2*M(17) +2*M(18) +3*M(19) +3*M(20) +3*M(21) +3*M(22) +3*M(23) +3*M
(24)+M(26)+M(28) +2*M(29) +2*M(30)+M(32)+M(34) +2*M(35) +2*M(36)+M
(38)+M(40) +2*M(41) +2*M(42) +3*M(43) +3*M(44) +3*M(45) +3*M(46) +3*M
(47) +3*M(48)+M(50)+M(52) +2*M(53) +2*M(54)+M(56)+M(58) +2*M(59)
+2*M(60)+M(62)+M(64) +2*M(65) +2*M(66) +3*M(67) +3*M(68) +3*M(69)
+3*M(70) +3*M(71) +3*M(72)+M(74)+M(76) +2*M(77) +2*M(78)+M(80)+M
(82) +2*M(83) +2*M(84)+M(86)+M(88) +2*M(89) +2*M(90) +3*M(91) +3*M
(92) +3*M(93) +3*M(94) +3*M(95) +3*M(96) +4*M(97) +4*M(98) +4*M(99)
+4*M(100) +4*M(101) +4*M(102) +4*M(103) +4*M(104) +4*M(105) +4*M
(106) +4*M(107) +4*M(108) +4*M(109) +4*M(110) +4*M(111) +4*M(112) +4*
M(113) +4*M(114) +4*M(115) +4*M(116) +4*M(117) +4*M(118) +4*M(119)
+4*M(120);

% The conditions under which the k-Plurality rule and the k-Borda
rule both select the candidate a
if (Pa>Pb&&Pa >Pc&&Pa>Pd&&Pa>Pe&&Ba >Bb&&Ba>Bc&&Ba>Bd&&Ba >Be)

outN1= 1;
else

outN1= 0;
end;
N1(:,i)=outN1;

end;
% The probability of the agreement between the k-Plurality rule

and the k-Borda rule for the pair (k=1,m=5)
Pr(k-P=k-B, m=5, k=1)=5*sum(N1)/s;
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