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Susceptibility to Manipulation by Sincere
Truncation : the Case of Scoring Rules and
Scoring Runoff Systems

Eric Kamwa and Issofa Moyouwou

Abstract A voting rule is said to be vulnerable to the truncation paradox if some
voter may favor the election of a more preferable outcome by listing only part of
his sincere ranking on the competing candidates than listing his entire preference
ranking on all the competing candidates (Brams, 1982, Fishburn and Brams, 1983).
For three-candidate elections and for large electorates, this paper provides under the
Impartial Anonymous Culture assumption (IAC), an evaluation of the likelihood of
the truncation paradox the whole family of the scoring rules and runoff scoring rules.

1 Introduction

During an election or a referendum, some people may choose not to vote. In case of a
high level of abstention, the legitimacy of the results of an electionmay be challenged.
The motivations of an abstainer may be dictated by various considerations among
which strategic behavior plays a central role. It is known since Doron and Kronick
(1977) and Fishburn and Brams (1983) that a voter may have better to abstain than
to vote since abstaining may result in the victory of a more preferable or desirable
candidate. This counterintuitive voting event is known in the literature as theNo-Show
paradox. Following Nurmi (1999), Felsenthal (2012), the few exceptions of voting
rules that are not vulnerable to the No-Show paradox include the Plurality rule, the
Borda rule and the Approval voting.1 According to Smith (1973), all the scoring
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runoff systems are sensitive to the No-show paradox. With at least four candidates,
Moulin (1988) showed that all the Condorcet consistent rules are vulnerable to the
No-Show paradox; see also Brandt et al. (2018), Duddy (2013) and Jimeno et al.
(2009). ACondorcet consistent voting rule always elects the Condorcet winner when
she exists. A Condorcet winner is a candidate that beats all the others in pairwise
majority contests.

For voting situations with three candidates, Lepelley andMerlin (2001) computed
the likelihood of theNo-show paradox for threewell-known scoring runoff rules; they
concluded that when the electorate tends to infinity, the likelihood2 of the No-show
paradox is equal to 2.14% for the Borda runoff, 5.40% for the Plurality runoff and
4.25% for the Antiplurality runoff.3 For their own, Kamwa et al. (2018) analyzed the
No-show paradox for three-candidate elections with single-peaked preferences. They
foundwhat follows: i) in three-candidate electionswith single-peaked preferences, all
the scoring runoff rules between the Borda runoff and the Antiplurality runoff are not
sensitive to the No-show paradox; ii) single-peakedness of preferences considerably
reduces the likelihood of the No-show paradox which remains considerable.

This is perhaps to counter the behavior of abstention that several states (for in-
stance, Bolivia, Belgium, Luxembourg and Romania) have decided to render voting
compulsory. Notwithstanding compulsory voting, some voters may manipulate the
vote by using a weak version of the abstention behavior called the “sincere trun-
cation”. The sincere truncation of preferences also called the truncation paradox,
was first introduced in the social choice literature by Brams (1982). Let us assume
a group of voters who are asked to rank (sincerely) a list of candidates from the
most preferred to the least preferred and that voters are allowed to submit incomplete
rankings; all the candidates not ranked or listed on a ballot are assumed to be less
preferred than all those who are ranked (Fishburn and Brams, 1983, 1984). A voting
rule is said to be vulnerable to the sincere truncation if there are some configurations
of ballots such that there is at least one voter who prefers the outcome obtained when
he submits a sincere but incomplete ranking (truncated ranking) to the outcome
obtained when he casts a complete sincere ranking.

A voting rule that is vulnerable to the No-Show paradox is also vulnerable to
the truncation paradox but the reverse is not necessary true (see Nurmi, 1999).
Almost all the well-known voting rules are vulnerable to the truncation paradox.
As a consequence of Moulin’s theorem, Fishburn and Brams (1984, p.402) showed
that all the Condorcet consistent rule are sensitive to the truncation paradox. In
order to have a non-exhaustive list of the voting rules vulnerable to the truncation
paradox, the reader may refer to Felsenthal (2012), Nurmi (1999) and Fishburn and
Brams (1984). The few exceptions are the Plurality rule, the Plurality runoff and the
Approval voting.

each time, he is ranked j-th in a voter’s ranking; the winner is the candidate with the largest total
number of points. Under the Approval voting, each voter can approve many candidates as he wants.
The winner is the candidate with the most number of approvals.
2 Under the impartial and anonymous culture (defined later).
3 The Plurality runoff, the Borda runoff and the Antiplurality runoff will be defined later.
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Is the truncation paradox a rare oddity or a generalized behavior? To our knowl-
edge, the only work that tried to evaluate the likelihood of the truncation paradox is
that of Plassmann and Tideman (1999); for three-candidate elections they focused
on some voting rules amongst others some Condorcet consistent rules, some scoring
rules (Borda, Antiplurality) and some iterative scoring rules (iterative Plurality, iter-
ative Antiplurality). They based their calculations on the spatial model for drawing
voting situations. In this paper, we do the same job for the whole family of scoring
rules and scoring runoff rules in three-candidate elections both under the universal
and the single-peaked domains. So, we characterize all the paradoxical situations and
then compute the exact likelihood of the paradox. We perform our analysis under the
assumption of Impartial Anonymous Culture (IAC) which is one of the well-known
assumptions often used for such a study. Under IAC, first introduced by Kuga and
Hiroaki (1974) and later developed by Gehrlein and Fishburn (1976), each voting
situation is assumed to be equally likely to occur. The likelihood of a given event is
calculated with respect to the ratio between the number of voting situations in which
the event is likely over the total number of possible voting situations. The number of
voting situations associated with a given event can be reduced to the solutions of a
finite system of linear constraints with rational coefficients. As recently pointed out
in the social choice literature, the appropriate mathematical tools to find these solu-
tions are the Ehrhart polynomials. The background of this notion and its connection
with the polytope theory can be found in Gehrlein and Lepelley (2017, 2011) and
Lepelley et al. (2008). This technique has been widely used in numerous studies
analyzing the probability of electoral events in the case of three-candidate elections
under the IAC assumption. In this paper, we will follow the technique initiated by
Cervone et al. (2005) for our computations. We will say some few words on this
technique in the appendices.

The rest of the paper is organized as follows: Section 2 is devoted to basic
definitions. In Section 3, given a three-candidate election where voters have strict
rankings, we characterize for all the one-shot and runoff scoring rule, all the voting
situations vulnerable to the truncation paradox and then we compute the limiting
probabilities. We do the same job in Section 4 by assuming that voters’ preferences
are single-peaked. Section 5 concludes.

2 Notation and definitions

2.1 Preferences

Let N be a set of n voters (n ≥ 2) and A a set of m candidates (m ≥ 3). Individual
preferences are linear orders, these are complete, asymmetric and transitive binary
relations on A. With m candidates, there are exactly m! linear orders P1, P2, , . . . ,Pm!
on A. A voting situation is an m!-tuple π = (n1,n2, ...,nt, ...,nm!) that indicates the
total number nt of voters casting each complete linear order Pt, t = 1,2, . . . ,m! in
such a way that

∑m!
t=1 nt = n. In the sequel, we consider three candidates a, b and
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c. In this case, we will simply write abc to denote the linear order on A according
to which a is strictly preferred to b, b is strictly preferred to c; and by transitivity a
is strictly preferred to c. Table 1 describes a voting situation with three candidates:
there are six preference types and for t = 1,2, . . . ,6, nt is the total number of voters
of type t.

Table 1 Voting situation and possible preferences types with three candidates
type 1: abc (n1) type 3: bac (n3) type 5: cab (n5)

type 2: acb (n2) type 4: bca (n4) type 6: cba (n6)

Given a, b ∈ A and a voting situation π , we denote by nab(π) (simply nab) the
total number of voters who rank strictly prefer a to b. If nab > nba, we say that
a majority dominates candidate b; or equivalently, a beats b in a pairwise majority
voting. In such a case, we will simply write aM(π)b. Similarly, nabc(π) is the total
number of voters in π who rank a first, b second and c last at π.

Possible actions of a voter include (i) ranking all candidates from the top ranked
candidate to the least preferred one; (ii) abstaining: no ranking is provided; or, (iii)
truncating: the voter submits an incomplete rankings. It is assumed that all the
candidates not ranked on a ballot are less preferred to all those who are ranked. With
three candidates, when a voter truncates, he just states his most preferred candidate.
For example with Table 1, if some voters of type 1 truncate, this leads to a new
voting situation π′ in which these voters only state a − − as their ranking. Note that
when some voters truncate, this does note alter the size of the electorate as it is the
case when some voters abstain.

2.2 Voting rules

Scoring rules are voting systems that give points to candidates according to the
position they have in voters’ ranking. For a given scoring rule, the total number
of points received by a candidate defines her score for this rule. The winner is the
candidate with the highest score. In general, withm ≥ 3 and complete strict rankings,
a scoring vector is an m-tuple w = (w1,w2, ...,wk, ...,wm) of real numbers such that
w1 ≥ w2 ≥ ... ≥ wk ≥ ... ≥ wm and w1 > wm. Given a voting situation π, each
candidate receives wk each time she is ranked k th by a voter. The score of a candidate
x ∈ A is the sum S(π,w, x) =

∑m!
t=1 ntwr(t ,x) where r(t, x) is the rank of candidate x

according to voters of type t.
For uniqueness, we use the normalized form (1, w2−wm

w1−wm
, ..., wk−wm

w1−wm
, ...,0) of each

scoring vector w. With three candidates, a normalized scoring vector has the shape
wλ = (1, λ,0) with 0 ≤ λ ≤ 1. For λ = 0, we obtain the Plurality rule; for λ = 1,
we have the Antiplurality rule and for λ = 1

2 , we get the Borda rule. From now on,
we will denote by S(π,λ, x), the score of candidate x when the scoring vector is
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wλ = (1, λ,0) and the voting situation is π. Table 2 gives the score of each candidate
in A = {a, b, c} given the voting situation of Table 1.

Table 2 Scores with three candidates

S(π, λ, a) = n1 + n2 + λ(n3 + n5)
S(π, λ, b) = n3 + n4 + λ(n1 + n6)
S(π, λ, c) = n5 + n6 + λ(n2 + n4)

In one shot voting, the winner is just the candidate with the largest score. Runoff
systems involve two rounds of voting: at the first round, the candidate with the
smallest score is eliminated; at the second round, a majority contest determines who
is the winner.

With three candidates, when a voter of type 1 with the ranking abc truncates and
submits a − −, candidate a receives 1 point in the new voting situation while both b
and c receive zero point. Similar considerations are made for other types. Note that
when some voters truncate their preferences, only the scores of candidates ranked
second by some of these voters are affected and diminish. Moreover, truncation is
only reachable at the first round under runoff systems.

Ties among candidates will be broken alphabetically, e.g. a wins all ties against
other candidates; while b wins all ties against c. Note that this special tie-breaking
rule does not affect our results as we only deal with voting situations where the total
number of voters tends to infinity. Let us now illustrate the truncation paradox for
the voting rules under consideration scoring in a three-candidate election.

2.3 Illustrating the truncation paradox

As stated above, among the scoring and the scoring runoff rules we focus on, only the
Plurality rule and the Plurality runoff are not vulnerable to the truncation paradox. So,
in our analysis of three-candidate elections, we will focus on λ ∈]0 1]. Now consider
the following sincere voting situation π with three candidates and 45 voters:

11 : abc 4 : acb 7 : bac 8 : bca 10 : cab 5 : cba

According to Table 2, the scores are the following:

S(π,λ,a) = 15 + 17λ; S(π,λ, b) = 15 + 16λ; S(π,λ, c) = 15 + 12λ

It comes that for all λ ∈]0 1], we get S(π,λ,a) > S(π,λ, b) > S(π,λ, c).

• The case of one-shot scoring rules.

As S(π,λ,a) > S(π,λ, b) > S(π,λ, c) for all λ ∈]0 1], candidate a is the winner.
Assume that two voters with bac (type 3) truncate. Then, the new scores are:
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S(π′, λ,a) = 15+15λ; S(π′, λ, b) = S(π,λ, b) = 15+16λ; S(π′, λ, c) = S(π,λ, c) = 15+12λ

Candidate a is no longer the winner since S(π′, λ, b) > S(π′, λ,a) > S(π′, λ, c); the
new winner is candidate b. Since the two voters of type 3 benefit from the truncation,
the truncation paradox can occur for all λ ∈]0 1].
• The case of runoff scoring rules.
Given that S(π,λ,a) > S(π,λ, b) > S(π,λ, c), candidate c is eliminated at the first
round. At the second round, candidate a wins with nab = 25 favorable votes against
nba = 20 votes in favor of b.

Assume that all the 5 voters with cba (type 6) truncate: they just state c − −. In
this case, the new scores are:

S(π′, λ,a) = 15 + 17λ; S(π′, λ, b) = 15 + 11λ; S(π′, λ, c) = 15 + 12λ

For all λ ∈]0 1], we get S(π′, λ,a) > S(π′, λ, c) > S(π′, λ, b): candidate b is eliminated
at the first round. Since nac = 22 and nca = 23, c wins the second round. So, by
truncating their true preferences, the five voters of type 6 obtain a better outcome:
the truncation paradox occurs.

3 The vulnerability of scoring runoff rules to the truncation
paradox in three-candidate elections

Prior to the determination of the likelihood of the truncation paradox, we need to
characterize all the voting situations under which this paradox is susceptible to occur.

3.1 The case of one-shot scoring rules

Consider a voting situation π = (n1,n2,n3,n4,n5,n6) on A = {a, b, c} and the one-shot
rule with 0 < λ ≤ 1. Let π

( [
Rj1,Rj2, ...

] )
stands for the voting situation obtained

from π when all type Rj1,Rj2, ... voters truncate their preferences. For example,
π [abc] differs from π only on the fact that at π [abc], candidate a receives 1 point
from each type 1 voter while the two other receive 0 point. Similarly, from π to
π [abc,acb] the only change that occurs is that all type 1 voters and all type 2 voters
now truncate their preferences to report a... For one-shot scoring rules, the following
result identifies all voting situations at which the truncation paradox is possible.

Proposition 1 Consider a voting situation π = (n1,n2,n3,n4,n5,n6) on A = {a, b, c},
the one-shot rule associated with 0 < λ ≤ 1 and a pair {x, y} of candidates with
A \ {x, y} = z.

If x is the election winner at π, then the truncation paradox is susceptible to occur
at π in favor of y if and only if y is the election winner at π ([yxz, yzx]).
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Proof See Appendix A. �

Remark 1 Given a voting situation with three candidates, only voters having the
same top-ranked candidate can effectively benefit from truncating preferences by
truly reporting their best candidate. For example, if a is the winning outcome, it
appears from Proposition 1 that truncating preferences may benefit either voters of
type 3 and type 4 with bac and bca respectively; or else voters of type 5 and type 6
with the orderings cab and cba respectively. This is in contrast with other strategic
misrepresentations of preferences which allow successful coordination among voters
who may report fake ranking with possibly a false best candidate - see Lepelley and
Mbih (1994), Pritchard and Wilson (2007) or Mbih et al. (2009).

Proposition 2 Consider a one-shot scoring rule Fλ, 0 < λ ≤ 1. As the total number
n of voters tends to infinity, the limit probability of observing a voting situation at
which the truncation paradox may occur is given by :

If 0 < λ ≤ 1
2 , P (Fλ,TP, I AC) =

(10λ13−37λ12−179λ11+1310λ10−1778λ9−6319λ8+26773λ7−25735λ6−67880λ5+259941λ4−408078λ3+356643λ2−166536λ+31833)λ

6(3+λ)2(3−2λ+λ2)
2
(λ−2)2(2λ−3)2(λ−1)(−3+5λ)

If 1
2 ≤ λ ≤ 1, P (Fλ,TP, I AC) =

2λ13+50λ12−194λ11−190λ10+2548λ9−5560λ8−662λ7+26915λ6−62174λ5+73636λ4−48132λ3+16425λ2−3564λ+324
12(3+λ)2(3−2λ+λ2)

2
(λ−2)2λ2(2λ−3)

Proof See Appendix B for details on computations. �

As the total number n of voters tends to infinity, it appears from Proposition 2,
that the limit probability of observing, under the IAC assumption, a voting situation
at which the truncation paradoxmay occur given a one-shot scoring rule Fλ increases
from 0 to 3

4 as the weight λ increases from 0 (the plurality rule) to 1 (the negative
plurality rule); for an overview of the behavior of P (Fλ,TP, I AC) , see Figure 1 or
Table 3 where we report some numerical evaluations.
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Fig. 1 Vulnerability of scoring rules to the truncation paradox

Table 3 Values of P (Fλ ,TP, I AC) and P(F′λ ,TP, I AC)

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P (Fλ ,TP, I AC) − 0.06334 0.1322 0.2067 0.2866 0.3710 0.4575 0.5423 0.6215 0.6916 0.7500
P

(
F′λ ,TP, I AC

)
− 0.04998 0.1032 0.1593 0.2172 0.2750 0.3300 0.3806 0.4257 0.4652 0.5000

3.2 The case of scoring runoff rules

Consider the voting situation π = (n1,n2,n3,n4,n5,n6) and a runoff rule with 0 < λ ≤
1. Assume that at π, z is eliminated at the first round and that x wins against y at the
second round. For simplicity, we say that x is the winner, y is the challenger and z is
the (first-round) loser. To see how the truncation paradox arises under a runoff rule,
recall that this paradox can be seen as a strategic behavior by some voters. Taking
into the account the specificity of runoff rules that combine both counting points at
the first round and majority voting at the second round, successful truncations of
preferences are either (i) in favor of the challenger when some voters by truncating
their rankings now make x losing at the first round and the loser being beating by the
challenger at the second round; or (ii) in favor of the loser who defeats the winner or
the challenger in the second round.
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Proposition 3 Consider a voting situation π = (n1,n2,n3,n4,n5,n6) on A = {a, b, c}
and a runoff rule with 0 < λ ≤ 1. Assume that x is the winner, y is the challenger
and z is the first-round loser.

1. The truncation paradox is susceptible to occur at π in favor of y if and only if y
wins the majority duel against z and x is the first-round loser at π ([yxz]).

2. The truncation paradox is susceptible to occur at π in favor of z if and only if (z
wins the majority duel against y and x is the first-round loser at π ([zxy])); or (z
wins the majority duel against x and y is the first-round loser at π ([zyx])).

Proof See Appendix C. �

In contrast with one-shot scoring rules, when the truncation paradox occurs
under a run-off rule with three candidates, it is always reachable by a coalition of
voters of the same type. As above, Proposition completely describes all the possible
scenarios that support possible occurrence of the truncation paradox given a voting
situation. These conditions lead us to some sets of linear constraints that characterize
all possible occurrences of the truncation paradox under a runoff rule. All those
details are available in Appendix D. Computing the volume of all the corresponding
polytopes give the following results :

Proposition 4 Consider the scoring runoff rule F ′λ associated with the scoring vector
wλ = (1, λ,0)with 0 < λ ≤ 1. As the total number n of voters tends to infinity, the limit
probability P

(
F ′λ,TP, I AC

)
of observing a voting situation at which the truncation

paradox may occur is given by :

If 0 ≤ λ ≤ 1
2 , P

(
F ′λ,TP, I AC

)
=

−
λ(996 096λ19−25 010 368λ18+286 101 152λ17−2000 804 220λ16+9664 972 152λ15−34 453 144 125λ14+94 322 255 778λ13)

96(λ−1)2(λ−2)2(2λ−3)2(4λ−3)2(5λ−3)2(−2λ+λ2+3)(−5λ+λ2+3)
2
(−4λ+2λ2+3)(−7λ+3λ2+3)

−
λ(−203 353 434 975λ12+350 716 379 871λ11−488 312 722 095λ10+551 142 449 552λ9−504 159 008 281λ8+372 136 194 567λ7)

96(λ−1)2(λ−2)2(2λ−3)2(4λ−3)2(5λ−3)2(−2λ+λ2+3)(−5λ+λ2+3)
2
(−4λ+2λ2+3)(−7λ+3λ2+3)

−
λ(−219 653 377 992λ6+102 140 474 607λ5−36 558 733 185λ4+9711 109 602λ3−1801 641 852λ2+208 222 083λ−11 278 359)

96(λ−1)2(λ−2)2(2λ−3)2(4λ−3)2(5λ−3)2(−2λ+λ2+3)(−5λ+λ2+3)
2
(−4λ+2λ2+3)(−7λ+3λ2+3)

If 1
2 ≤ λ ≤ 1,P

(
F ′λ,TP, I AC

)
=

132λ+9346λ2−55 961λ3+161 587λ4−283 660λ5+330 502λ6−265 921λ7+149 437λ8−57 766λ9+14 560λ10−2112λ11+128λ12−180
288λ3(λ−2)2(3−2λ)(−2λ+λ2+3)(−4λ+2λ2+3)

Proof See Appendix D for further details on the computation. �

The limit, as the total number n of voters tends to infinity, of the probability
of observing, under the IAC assumption, a voting situation at which the truncation
paradox may occur given the runoff scoring rule F ′λ increases from 0 to 0.5 as the
weight λ increases from 0 (the Plurality rule) to 1 (the Antiplurality rule). Moreover
each one-shot scoring rule is more vulnerable to the truncation paradox than its
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corresponding runoff rule. For an overview of the behavior of P
(
F ′λ,TP, I AC

)
, see

Figure 1 or Table 3 where some numerical evaluations are reported. Finally, while
the Plurality rule is not vulnerable to the truncation paradox but as a one-shot rule
or a runoff rule, the Antiplurality rule appears to be the most vulnerable rule among
the scoring rules with three candidates.

An analysis of the vulnerability of runoff scoring rules to profitable abstention in
three-candidate elections is available from Lepelley and Merlin (2001) for the main
scoring runoff rules, and from Kamwa et al. (2018) for the whole family of scoring
runoff rules. Comparing their probabilities on the No-show paradox with those we
obtain on the truncation paradox, it comes that the truncation paradox is always more
likely to occur than the No-show paradox for all 0 < λ ≤ 1. This is consistent with
the fact that the truncation paradox is a weak version of the No-show paradox.

4 The impact of single-peaked preferences

In their paper, Kamwa et al. (2018) showed that when preferences are single-peaked
in three-candidate elections, the No-show paradox never occurs with all the scoring
runoff located between the Borda runoff and the Antiplurality runoff, i.e., for all
λ ∈ [ 12 1]. It comes from their probability computations that the likelihood of
the No-show paradox is drastically reduced with single-peaked preferences. In this
section, we also want to check what happen with the truncation paradox when
preferences are single-peaked.

With three candidates, when preferences are single-peaked, there is one candidate
that is not bottom ranked. On A = {a, b, c}, we assume without loss of generality
that candidate c is never bottom ranked. Table 4 describes a voting situation with
three candidates and single-peaked preferences.

Table 4 Single-peaked preferences and scores on A = {a, b, c }

Preference types
n2 : acb n4 : bca
n5 : cab n6 : cba

First stage scores
S(π, λ, a)=n2 + λn5
S(π, λ, b)=n4 + λn6

S(π, λ, c)=n5 + n6 + λ(n2 + n4)

In the sequel we assume that only the four preference types in Table 4 are ob-
servable. Note that when candidate a wins in a voting situation, only voters of type
4 and 6 who strictly prefer b to a may truncate their rankings in order to favor the
election of b. Since candidate a is bottom ranked by all those voters, there is no
way left to favor candidate b by preference truncation. Similarly, when candidate b
wins in a one-shot rule, there is no opportunity to favor candidate a by preference
truncation. The conditions of Proposition 1 for one-shot scoring rules still apply for
viable sincere truncation of preference when preferences are single-peaked; except
for the restriction just outlined and reported in Proposition 5 below.



Susceptibility to Manipulation by Sincere Truncation 11

Proposition 5 Consider a voting situation on A = {a, b, c} with single-peaked pref-
erences such that candidate c is never bottom ranked in the individual preferences.
Assume that the voting rule is a one-shot scoring rule.

• When candidate a (or candidate b) is the election winner in π for λ ∈]0 1[, then
the truncation paradox is susceptible to occur in π only in favor of c.

• When candidate c is the election winner in π for λ ∈]0 1], it is possible to favor
a candidate in A \ {c} by sincere truncation of preferences.

Proof See Appendix E. �

In the same way, the conditions of Proposition 3 also identify all the scenarios
at which a run-off rule is vulnerable to the truncation paradox when individual
preferences are single-peaked except for the restriction provided in Proposition 6
below.

Proposition 6 Consider a voting situation on A = {a, b, c} with single-peaked pref-
erences such that candidate c is never bottom ranked in individual preferences.

i) Assume that candidate c is eliminated after the first run. In this case, the truncation
paradox can occur only in favor of candidate c; and only for all the scoring runoff
rules associated with λ ∈]0, 1

2 [.
ii) Assume that candidate a or b wins the second run versus candidate c. The

truncation paradox never occur for all the scoring runoff rules with λ ∈]0,1].
iii) Assume that candidate c wins the second run versus candidate a or b. The

truncation paradox can occur for all the scoring runoff rules such that λ ∈]0,1[.

Proof See Appendix F. �

What comes from this proposition is that single-peaked preferences do not evacu-
ate the truncation paradox in the same manner as they do with the No-show paradox;
as with the No-show paradox, they totally evacuate the truncation paradox for vot-
ing situations under which the never bottom ranked candidate loses at the second
stage. Table 5 gives in three-candidate elections with single-peaked preferences, all
the scoring run-off rules vulnerable to the truncation paradox and to the No-show
paradox for all the possible configurations: i) a wins the second stage versus b; ii) a
or b wins the second stage versus c and iii) c wins the second stage versus a or b.
The reader can then notice from Table 5 that the impact of single-peaked preferences
on the truncation paradox is not the same as on the Abstention paradox although the
first paradox is the weaker version of the second.

More interestingly, we observe some further behavior of one-shot scoring rules.
Note that in the general case, the probability that a one-shot scoring rule exhibits
the truncation paradox given that the winner is a given candidate is the same from a
candidate to another. But when preferences are single-peaked, results from computa-
tions provided in the next proposition and sketched in Figure 2 show that a one-shot
scoring rule is more vulnerable to the truncation paradox when the centrist candidate
c is elected than when the leftist candidate a or the rightist candidate b is elected.
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Table 5 Vulnerable scoring run-off rules with three candidates and single-peaked preferences

Second-round opponents a vs. b a or b wins vs. c c wins vs. a or b

Abstention? λ ∈ [0 1
2 [ - λ ∈]0 1

2 [

Truncation λ ∈]0 1
2 [ - λ ∈]0 1[

?From Kamwa et al. (2018)

Fig. 2 Single-peakedness: vulnerability of one-shot rules to the truncation paradox

In the next propositions, we report global probabilities we obtained by performing
the probability computation over all the possible scenarios for the truncation paradox
on the single-peaked domain. As expected, these probabilities are lower than thosewe
observe on the universal domain. However, these probabilities remain significantly
high.

Proposition 7 Consider the one-shot rule associated with the scoring vector wλ =
(1, λ,0) with 0 < λ ≤ 1. As the total number n of voters tends to infinity, the
limit probability P (Fλ,TP, I AC,SP) of observing a voting situation at which the
truncation paradox may occur is as follows :
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If 0 ≤ λ ≤ 1
2 , P (Fλ,TP, I AC,SP) =

λ (−94λ5−441λ4−30λ7+108λ6+1602λ3−2456λ2+1812λ−513+4λ8)
9(3−2λ)(λ−1)2(−2+λ)2(3+λ2−2λ)(λ+3)

If 1
2 ≤ λ ≤ 1, P (Fλ,TP, I AC,SP) = −65λ2−6λ4+38λ3+43λ−4λ5+2λ6−4

(λ−2)2(λ+3)(λ2−2λ+3)

Proposition 8 Consider the runoff rule associated with the scoring vector wλ =

(1, λ,0) with 0 < λ ≤ 1. As the total number n of voters tends to infinity, the
limit probability P

(
F ′λ,TP, I AC,SP

)
of observing a voting situation at which the

truncation paradox may occur is as follows :

If 0 ≤ λ ≤ 1
2 , P

(
F ′λ,TP, I AC,SP

)
=

λ (−110λ6+322λ5−64λ7+4374λ2+365λ4+22λ8+657−2684λ3−2850λ)
24(2−λ)(−3+λ)(−3+2λ)(λ−1)2(3+λ2−2λ)(λ+3)

If 1
2 ≤ λ ≤ 1, P

(
F ′λ,TP, I AC,SP

)
=
(λ−1)2(−λ3+2λ2+7λ−15+λ4)

4(2−λ)(λ2−2λ+3)(−3+2λ)(λ+3)

Vulnerabilities to the truncation paradox reported in Proposition 7 and Proposition
8 are computed using very similar arguments to the proofs of Proposition 3 and
Proposition 4 respectively. One simply needs to consider the possible scenarios
described in Proposition 5 and Proposition 6. These details are simply omitted.

With runoff scoring rules the effect of single-peaked preferences is completely
remarkable: it reduces the probability of truncation probability to less than 0.035 for
all the runoff scoring rules. Moreover, when the centrist candidate c is the winner,
the probability that a runoff scoring rule is very low and even null when the weight
λ lays between 0.5 and 1. What is also surprising is that the runoff version of the
Antiplurality rule is now immune to the truncation paradox. To see this, note that
when λ = 1 and candidate c is ranked last by no voter, candidate is always qualified
for the second round whether preferences are truncated by voters of type 2 (or type
4) or not. Figure 3 shows how single-peakedness curves downward the vulnerability
of runoff scoring rules to the truncation paradox.
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Fig. 3 Single-peakedness: vulnerability of runoff rules to the truncation paradox

Figure 4 is a comparative visualization of the vulnerability of both one-shot
scoring rules and runoff scoring rules to the truncation paradox when preferences
are single-peaked. It obviously highlights the fact that each one-shot scoring rule
is still more vulnerable to the truncation paradox than its runoff version even with
single-peaked preferences.
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Fig. 4 Single-peakedness: vulnerability of one-shot rules and runoff rules to the truncation paradox

5 Concluding remarks

Since Fishburn and Brams (1984), we know that almost all the well-known voting
rules are vulnerable to the truncation paradox except the Plurality rule, the Plu-
rality runoff and the Approval voting. In this paper, we have characterized all the
three-candidate voting situations under which the truncation paradox can occur for
scoring rules and scoring runoff rules under both the universal and the single-peaked
domains. Then, we have computed the limiting probability of the truncation para-
dox. By comparing our results to those obtained by Lepelley and Merlin (2001)
and Kamwa et al. (2018) concerning the likelihood of the Abstention paradox, we
concluded that the Abstention paradox is less likely to occur than the truncation
paradox. So, deciding to render voting compulsory in order to counter paradoxical
outcomes due to the behavior of abstention seems to be not a good choice at all.

With single-peaked preferences, we found that the occurrence of the truncation
paradox depends on the configuration of the second run: if the never-bottom ranked
candidate loses the second run versus one of the other candidates, the truncation
paradox never occurs; if this candidate is rushed out at the first stage, the truncation
paradox never occurs with all the scoring runoff located between the Borda runoff
and the Antiplurality runoff.
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Appendices

A. Proof of Proposition 1

Consider a voting situation π = (n1,n2,n3,n4,n5,n6) on A = {a, b, c}, the one-shot
rule associated with 0 < λ ≤ 1 and a pair {x, y} of candidates. Let z be the third
candidate.

Necessity. Assume that x is the election winner at π, and that the truncation
paradox is susceptible to occur in π in favor of y. Then by truncating their true
preferences, some coalition of voters, say S, favor the election of y. Moreover each
voter in S strictly prefers y to x. Since the truncation operation only affects the second
ranked candidates of each voter in S, then the preferences of each voter in S is yxz or
yzx. At the new voting situation π′, y wins. Note that |S | ≤ nyxz(π)+ nyzx(π). Then
from π′ to π ([yxz]), the score of y increases, the scores of both x and z decrease.
Hence y also wins in π ([yxz, yzx]).

SufficiencyAssume that x is the electionwinner at πwhile ywins in π ([yxz, yzx]).
Clearly, the truncation paradox is susceptible to occur in π in favor of y since all
voters who truncate their preferences in π ([yxz, yzx]) prefers y to x.

B. Computation details for Proposition 2

Let Tx denote the set of all voting situations at which x is the election winner while
the truncation paradox is susceptible to occur; and Txy the subset of Tx that consists
of all voting situations at which truncating preferences may favor the election of y.
Note for example that

Ta = Tab ∪ Tac and |Ta | = |Tab | + |Tac | − |Tab ∩ Tac | .

By Proposition 1, π ∈ Tab if and only if S(π,λ,a) ≥ S(π,λ, b), S(π,λ,a) ≥
S(π,λ, c), S(π [bac, bca] , λ, b) > S(π [bac, bca] , λ,a) and S(π [bac, bca] , λ, b) ≥
S(π [bac, bca] , λ, c). Equivalently,

π ∈ Tab ⇐⇒


(λ − 1)n1 − n2 + (1 − λ)n3 + n4 − λn5 + λn6 ≤ 0
−n1 + (λ − 1)n2 − λn3 + λn4 + (1 − λ)n5 + n6 ≤ 0
(1 − λ)n1 + n2 − n3 − n4 + λn5 − λn6 < 0
−λn1 + λn2 − n3 − n4 + n5 + (1 − λ) n6 ≤ 0

Clearly, each of the six possible setsTxy with x, y ∈ A can be similarly described by
a set of four linear constraints aswithTab above.As n tends to infinity, vol

(
Pxy

)
is the

5 -dimensional volume of the polytope Pxy obtained from the characterization ofTxy

by replacing each nj by pj =
n j

n . Note that some inequalities in the characterization
of Pxy may be strict.We simply ignore this while evaluating vol

(
Pxy

)
by considering

the closure of Pxy obtained from the characterization of Pxy by turning each strict
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inequality (<) to its larger form (≤); by doing so, we simply move from Pxy to
its closure without changing the volume. Taking into account that Ta, Tb and Tc

are disjoint sets of voting situations; and since by symmetries, all the six possible
Txy generates polytopes of equal volume, the limit probability P (Fλ,TP, I AC) of
observing, under the IAC assumption, a voting situation at which the truncation
paradox may occur is

P(F,TP, I AC) =
vol(Pa) + vol(Pb) + vol(Pc)

vol(P)
= 720vol (Pab)−360vol (Pab ∩ Pac)

where P is the simplex P = {(p1, p2, . . . , p6) :
∑6

t=1 pj = 1 with pj ≥ 0, j =
1,2, . . . ,6}. Given 0 < λ ≤ 1, computing vol (Pab) and vol (Pab ∩ Pac), one ob-
tains the result of Proposition 1. All volume computations performed in this paper use
the same technique as in Cervone et al. (2005). 4 Roughly, one needs for example to
determine all vertices of the given polytope and then triangulate the set of those ver-
tices into simplices. More details are presented in Moyouwou and Tchantcho (2015)
and Gehrlein and Lepelley (2011); further illustrations are available in Gehrlein et
al. (2015) or more recently in Lepelley et al. (2018). A Maple procedure is also
available from authors upon request. Of course, there is an abundant literature on
volume computations with very efficient algorithms and packages as for Büeler et
al. (2000) and Lawrence (1991) for a Maple users or Bruns and Ichim (2010) and
Bruns et al. (2019, 2018).

C. Proof of Proposition 3

Consider a voting situation π = (n1,n2,n3,n4,n5,n6) on A = {a, b, c} and the runoff
rule associated with 0 < λ ≤ 1. Assume that x is the winner, y is the challenger and
z is the first-round loser.

1. Necessity. First assume that the truncation paradox is susceptible to occur at π
in favor of y. Then by truncating their true preferences, some coalition of voters,
say S, diminish the score of x in such a way that x is now ruled out at the first
round and y wins against z at the second round. Each voter in S strictly prefers
y to x. The truncation operation by such a voter is only intended to diminish the
score of x at the first round. Thus the preferences of each voter in S is yxz. In the
new voting situation π′, y wins. Since from π′ to π ([yxz]), the score of y does
not decrease, the score of x does not increase, the score of z is unchanged and the
second round duel is not affected by the truncation operation, then y also wins in
π ([yxz]) against z at the second round.

4 This technique was recently used in many research papers such as in Diss and Gehrlein (2015,
2012), Gehrlein et al. (2015), Kamwa et al. (2018), Kamwa and Valognes (2017), Moyouwou and
Tchantcho (2015) and Kamwa (2019) among others.
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SufficiencyAssume that y wins the majority duel against z and x is the first-round
loser at π ([yxz]). Then under the corresponding runoff rule, y wins in π ([yxz])
against z at the second round. Hence, the truncation paradox occurs.

2. Necessity.Assume that the truncation paradox is susceptible to occur at π in favor
of z. By truncating their true preferences, members of some coalition, say S, favor
the election of z they strictly prefer to x. In the new voting situation π′, z wins the
majority duel against x or against y. First suppose that z wins in π′ against x at
the second round. Then y is the first-round loser at π′. Moreover, voters in S all
strictly prefer z to x; and the truncation operation is intended, at the first round
in π′, to diminish the score of y. Thus the preference of each voter in S is zyx.
Hence |S | ≤ nzyx(π). Therefore, in π ([zyx]), z also wins against x and y is the
first round loser. Finally, suppose that z wins in π′ against y at the second round.
Then x is the first-round loser at π′. Voters in S all strictly prefer z to y; and the
truncation operation is intended, at the first round in π′, to diminish the score of
x. The preference of each voter in S is then zxy. This implies that |S | ≤ nzxy(π).
In π ([zyx]), z also wins against y and x is the first round loser.
Sufficiency Assume that z wins the majority duel against y and x is the first-
round loser in π ([zxy]). Then under the corresponding runoff rule, z wins in
π ([zxy]) against y at the second round. In the same way, suppose that z wins the
majority duel against x and y is the first-round loser in π ([zyx]). Then under the
corresponding runoff rule, z wins in π ([zyx]) against x at the second round. In
both cases, the truncation paradox occurs.

D- Computations details for Proposition 4

Given 0 < λ ≤ 1, let Rxy denote the set of all voting situations at which the truncation
paradox is susceptible to occur in favor of some candidate u under the runoff rule
associated with the weight λ while x and y are respectively the election winner and
the challenger. Let z be the first-round loser at each voting situation in Rxy . Denote
by Rxyy the subset of Rxy that consists of all voting situations at which truncating
preferences may favor the election of y; by Rxyz the subset of Rxy that consists of all
voting situations at which truncating preferences may favor the election of z against
x at the second round; and by R′xyz the subset of Rxy that consists of all voting
situations at which truncating preferences may favor the election of z against y at the
second round. Then by Proposition 3

Rab = Rabb ∪ Rabc ∪ R′abc .

Note that Rabb and Rabc are disjoint sets of voting situations since y wins the
majority duel against z at each voting situation in Rabb while the converse holds at
each voting situation in Rabc . Therefore

|Rab | = |Rabb | + |Rabc | +
��R′abc �� − ��Rabb ∩ R′abc

�� − ��Rabc ∩ R′abc
�� .
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Note that by Proposition 3, Rabb , Rabc and R′
abc

are each defined by some set
of linear constraints. Therefore the probability that the corresponding runoff rule
exhibits the truncation paradox is derived by computing the volume of the polytopes
Pabb , Pabc and P′

abc
associated to Rabb , Rabc and R′

abc
respectively.More precisely,

by considering the six possible sets Rxy for all two ordered pairs (x, y) from {a, b, c}
and taking in the account possible symmetries, the limit probability P (Fλ,TP, I AC)
of observing, under the IAC assumption, a voting situation wit three candidates at
which the truncation paradox may occur is

Pr(F ′,TP, I AC) = 720
[
vol (Pabb)+vol (Pabc)+vol

(
P′abc

)
−vol

(
Pabb ∩ P′abc

)
−vol

(
Pabc ∩ P′abc

) ]

E. Proof of Proposition 5

Assume that preferences are single-peaked in such a way that candidate c is botom
ranked by no voters. When candidate a is elected, voters who prefer b to a are of
type 4 or type 6. But these voters do not affect the score of candidate a by a sincere
truncation of their preferences. Thus candidate b can not be elected by sincere
truncation of preferences. Similarly, when candidate b is elected, there no way for
voters who strictly prefer a to b to favor the election of a by simply truncating their
rankings. Therefore, truncation paradox may only occur in favor of c when a (or b)
is the winner of a one-shot scoring rule and preferences are single-peaked.

F. Proof of Proposition 6

i) Let us assume that candidate a wins versus candidate b5 with λ ∈ [ 12 ,1]. Note we
should have S(π,λ, c) ≤ S(π,λ,a) and S(π,λ, c) ≤ S(π,λ, b). It follows that

S(π,λ, c) −
S(π,λ,a) + S(π,λ,a)

2
=

2 − λ
2
(x5 + x6) +

2λ − 1
2
(x4 + x2) ≤ 0.

This occurs if and only if λ = 1
2 and x5 = x6 = 0. In this case, the three candidates

all tie and there is no way for profitable truncation of preferences.
Now suppose that λ ∈]0, 1

2 [ and show that the paradox can occur for all λ in this
interval. Let us assume a voting situation where n2 = n5 = α and n3 = n4 + 1 = z
with z = d 2

λ − 3e + 1 and α = b 2z−1
1−2λ c − 1 for λ ∈]0, 1

2 [. The scores are :
S(π,λ,a) = α + λz, S(π,λ, b) = α + λ(z − 1) and S(π,λ, c) = 2z − 1 + 2λα. It
follows that S(π,λ,a) > S(π,λ, b), S(π,λ, b) > S(π,λ, c). Candidate c is eliminated
and candidate a wins the second run since aM(π)b. Assume that all the voters

5 The symmetric to the case “candidate b wins the second stage versus a” is handled in a similar
way.
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of type 3 truncate. The new scores are : S(π′, λ,a) = α, S(π′, λ, b) = S(π,λ, b)
and S(π′, λ, c) = S(π,λ, c). We still have S(π,λ, b) > S(π,λ, c). Let us show that
S(π,λ, c) − S(π′, λ,a).

S(π,λ, c) − S(π′, λ,a) = 2z − 1 − (1 − 2λ)x

= 2z − 1 − (1 − 2λ)
(⌊

2z − 1
1 − 2λ

⌋
− 1

)
= 2z − 1 − (1 − 2λ)

⌊
2z − 1
1 − 2λ

⌋
+ (1 − 2λ)

For all λ ∈]0, 1
2 [, we have z > 1; so, 2z > 1 and 2z − 1 > 0. Also, (1 − 2λ) > 0

and we know that (1 − 2λ)b 2z−1
1−2λ c ≤ 2z − 1. Thus, S(π,λ, c) − S(π′, λ,a) > 0. So,

candidate a is eliminated. Since x + 2z − 1 > α, cM(π′)b: candidate c is the new
winner. Thus, by sincere truncation o ther rankings, voters of type 3 have favored
their best candidate.

ii) Assume that candidate a wins the second stage versus c.6 This means that aMc
through x2 ≥ x4 + x5 + x6 and thus x2 ≥

1
2 . Note that only voters of type 5 have

an incentive to manipulate and the possibility to affect the score of a by sincere
truncation of their rankings in favor of c. But by any truncation from π to a new
voting situation π′, we still have S(π′, λ,a) ≥ 1

2 and S(π,λ, b) = x4 + λx6 ≤

x4 + x5 + x6 ≤
1
2 . Therefore candidate c still attains the second run and wins the

election against c.
iii) Let us assume that candidate c wins the second stage versus a Let us first consider

λ = 1. Evidently, candidate c wins. If she wins versus candidate a, this means that
S(π,λ,a) > S(π,λ, b)which is equivalent to n2+n5 > n4+n6 (i). Candidate bwill
become the new winner after voters of type 4 truncate if S(π,λ, b) > S(π′, λ, c)
(ii); and that bM(π′)a (iii). This last requirement is equivalent to n4+n6 > n2+n5
which contradicts (i): voters of type 4 cannot manipulate for λ = 1. If voters of
type 2 truncate, nothing will happen since the new score of candidate c although
diminished by λn2 will still greater than that of candidate b: voters of type 2
cannot manipulate for λ = 1. Thus, the truncation paradox is not possible for
λ = 1. To prove that it can happen for λ ∈]0 1[, one can consider a profile such
that n2 = 3, n4 = 2 n5 = 1 and n6 = 1.
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