S. J. Brams, The AMS nominating system is vulnerable to truncation of preferences, Notices of the American Mathematical Society, vol.29, pp.136-138, 1982.

F. Brandt, J. Hofbauer, and M. Strobel, Exploring the no-show paradox for Condorcet extensions using Ehrhart theory and computer simulations, 2018.

W. Bruns and B. Ichim, Normaliz, algorithms for affine monoids and rational cones, Journal of Algebra, vol.324, issue.5, pp.1098-1113, 2010.

W. Bruns, B. Ichim, and C. Söger, Computations of volumes and Ehrhart series in four candidates elections, Forthcoming in Annals of Operations Research, 2019.

W. Bruns, B. Ichim, T. Römer, R. Sieg, and C. Söger, Normaliz: Algorithms for rational cones and affine monoids, 2018.

B. Büeler, A. Enge, and K. Fukuda, Exact volume computation for polytopes: a practical study, Polytopes-combinatorics and computation, pp.131-154, 2000.

D. Cervone, W. V. Gehrlein, and W. Zwicker, Which scoring rule maximizes Condorcet efficiency under IAC?, Theory and Decision, vol.58, pp.145-185, 2005.

M. Diss and W. V. Gehrlein, The true impact of voting rule selection on Condorcet efficiency, Economics Bulletin, vol.35, issue.4, pp.2418-2426, 2015.
URL : https://hal.archives-ouvertes.fr/halshs-01231013

M. Diss and W. V. Gehrlein, Borda's paradox with weighted scoring rules, Social Choice and Welfare, vol.38, pp.121-136, 2012.

G. Doron and R. Kronick, Single Transferable Vote: An example of a Oerverse Social Choice Function, American Journal of Political Science, vol.21, issue.2, pp.303-311, 1977.

C. Duddy, Condorcet's principle and the strong no-show paradoxes, Theory and Decision, vol.77, issue.2, pp.275-285, 2013.

D. S. Felsenthal, Review of Paradoxes Afflicting Procedures for Electing a Single Candidate in Electoral Systems : Paradoxes, Assumptions, and Procedures, 2012.

P. C. Fishburn and S. J. Brams, Paradoxes of preferential voting, Mathematics Magazine, vol.56, pp.207-214, 1983.

P. C. Fishburn and S. J. Brams, Manipulability of voting by sincere truncation of preferences, Public Choice, vol.44, pp.397-410, 1984.

W. V. Gehrlein and P. C. Fishburn, The probability of the paradox of voting: A computable solution, Journal of Economic Theory, vol.13, pp.14-25, 1976.

W. V. Gehrlein and D. Lepelley, Elections, Voting Rules and Paradoxical Outcomes, 2017.

W. V. Gehrlein and D. Lepelley, Voting paradoxes and group coherence, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01243452

W. V. Gehrlein, D. Lepelley, and I. Moyouwou, Voters preference diversity, concepts of agreement and Condorcet's paradox, Quality and Quantity, vol.49, issue.6, pp.2345-2368, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452557

J. L. Jimeno, J. Pérez, and E. García, An extension of the Moulin No Show Paradox for voting correspondences, Social Choice and Welfare, vol.33, pp.343-359, 2009.

E. Kamwa, On the Likelihood of the Borda Effect, The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules, Group Decision and Negotiation, vol.28, issue.3, pp.519-541, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01786590

E. Kamwa, V. Merlin, and F. Top, Scoring Runoff Rules, Single-peaked Preferences and Paradoxes of Variable Electorate. Working paper, 2018.

E. Kamwa and F. Valognes, Scoring rules and preference restrictions: The strong Borda paradox revisited, Revue d'Economie Politique, vol.127, issue.3, pp.375-395, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01631180

J. Lawrence, Polytope volume computation, Mathematics of Computation, vol.57, pp.259-271, 0195.

K. Kuga and N. Hiroaki, Voter antagonism and the paradox of voting, Econometrica, vol.42, issue.6, pp.1045-1067, 1974.

D. Lepelley, F. Chantreuil, and S. Berg, The likelihood of monotonicity paradoxes in runoff elections, Mathematical Social Sciences, vol.31, issue.3, pp.133-146, 1996.

D. Lepelley, A. El-ouafdi, and H. Smaoui, Probabilities of electoral outcomes in four-candidate elections, 2018.

D. Lepelley, A. Louichi, and H. Smaoui, On Ehrhart polynomials and probability calculations in voting theory, Social Choice and Welfare, vol.30, pp.363-383, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01245310

D. Lepelley and B. Mbih, The vulnerability of four social choice functions to coalitional manipulation of preferences, Social Choice and Welfare, vol.11, pp.253-265, 1996.

D. Lepelley and V. Merlin, Scoring runoff paradoxes for variable electorates, Economic Theory, vol.14, issue.1, pp.53-80, 2001.

B. Mbih, S. Courtin, and I. Moyouwou, Susceptibility to coalitional strategic sponsoring The case of parliamentary agendas, Public Choice, vol.144, pp.133-151, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00914855

H. Moulin, Condorcet's principle implies the no show paradox, Journal of Economic Theory, vol.45, issue.1, pp.53-64, 1988.

I. Moyouwou and H. Tchantcho, Asymptotic vulnerability of positional voting rules to coalitional manipulation, Mathematical Social Sciences, vol.89, pp.70-82, 2015.

H. Nurmi, Voting Paradoxes and How to Deal with Them, 1999.

F. Plassmann and T. N. Tideman, How frequently do different voting rules encounter voting paradoxes in three-candidate elections?, Social Choice and Welfare, vol.42, issue.1, pp.31-75, 2013.

G. Pritchard and M. Wilson, Exact results on manipulability of positional voting rules, Social Choice and Welfare, vol.29, pp.487-513, 2007.

J. H. Smith, Aggregation of preferences with variable, Econometrica, vol.41, pp.1027-1041, 1973.