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Condorcet efficiency of general weighted
scoring rules under IAC: indifference and
abstention
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Abstract In an election, individuals may sometimes abstain or report pref-
erences that include ties among candidates. How abstention or ties within
individual preferences impact the performances of voting rules is a natural
question addressed in the literature. We reconsider this question with respect
to one of the main characteristics of a voting rule: its Condorcet efficiency;
that is the conditional probability that the rule selects a Condorcet winner
assuming that one exists. We explore the impact of both ties and abstention
on the Condorcet efficiency of the whole class of weighted scoring rules in
three-candidate elections under the Impartial Anonymous Culture assump-
tion. It appears in general that the possibility of indifference or abstention
increases or decreases the Condorcet efficiency of weighted scoring rules de-
pending of the rule in consideration or the probability distribution on the set
of observable voting situations.
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1 Introduction

The simplest representation of a voting environment includes a set of voters,
a set of candidates, a list of admissible individual preferences and a rule that
aggregates each possible configuration of voters’ preferences into a social out-
come. In this context, a profile is defined as a sequence of preferences of all
the individuals taking part in the vote. The performance of a voting rule is
then measured by its propensity to avoid counterintuitive results or to pro-
duce desirable electoral outcomes. For example, there may exist a candidate
that is preferred to any other candidate by a majority of voters, a Condorcet
winner ; Condorcet (1875) advocated that when a Condorcet winner exists,
he/she should be the outcome of any reasonable rule. But undertaking in
practice all pairwise majority comparisons for a giving profile of individual
preferences is very demanding as the total number of voters or of candidates
increases. An earlier alternative suggested by Borda (1781) consists in as-
signing an amount of points to each candidate each time he/she is ranked
at a given position by a voter. For example with three candidates, 1 point
is affected to each candidate for each first place in an individual ranking, λ
points for each second place where 0 ≤ λ ≤ 1 and no point for a last position.
The winner is then a candidate who is rewarded the maximum number of
points in total. However, all such weighted scoring rules may fail to select a
Condorcet winner. Since then, the ability of a weighted scoring rule to se-
lect a Condorcet winner has been the subject of an abundant literature that
aims at measuring the desirability of a voting rule with respect to its Con-
dorcet efficiency; that is the conditional probability that the rule will select
a Condorcet winner assuming that one exists.

Cervone et al. (2005) investigated in three-candidate elections which (one-
shot) weighted scoring rule exhibits the maximum Condorcet efficiency un-
der the Impartial Anonymous Culture (IAC). First explored by Gehrlein
and Fishburn (1976), the IAC assumption amounts in assuming that all
anonymous profiles of individual preferences are equally probable. Cervone
et al. (2005) showed that when individual preferences are linear orders, the
weighted scoring rule that performs the most in selecting a Condorcet win-
ner is a rule that lays between the Plurality rule (λ = 0) and the Borda
rule (λ = 0.5). In this paper, we address a similar question when individual
preferences are weak orders (some voters may be indifferent between two or
more candidates); or when some voters may abstain (they freely decide to
not participate in the election).

The possibility that voter indifference may be observable has already been
considered by some other authors; see for example, Diss et al. (2010), Gehrlein
and Lepelley (2015), Kamwa (2019b), or Merlin and Valognes (2004) among
others. More precisely, we propose an IAC counterpart of Gehrlein and Val-
ognes (2001) who considered the same topic when we assume that each voter
uniformly picks his/her preference out of a predefined set of weak orders.
This is known as an Impartial Culture (IC) like probability distribution over
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the set of all configurations of voters’ preferences. Here, two extreme cases
are explored. We first consider only concerned voters, i.e., voters with a strict
preferences on at least a pair of candidates. We determine the exact Condorcet
efficiency of each possible weighted scoring rule under the IAC assumption in
three-candidate elections when the total number of voters tends to infinity. It
appears that when we move from a weighted scoring rule with linear orders
to its extended version on weak orders, the Condorcet efficiency increases for
all weights λ ranged from 0 up to approximately 0.3765; but decreases for all
weights ranged from 0.3765 to 1. Another information is that the maximum
Condorcet efficiency in three-candidate elections under the IAC assumption is
now observed for a new weight, approximately 0.4139, which is distinct from
the optimal one provided by Cervone et al. (2005) which is approximately
0.3723. Finally, the maximum Condorcet efficiency is now equal to 0.9265
which is slightly greater than 0.9255 the one obtained with linear orders.

The possibility of observing some voters abstaining is also explored. We
follow the recent framework of Gehrlein and Lepelley (2019, 2017). The au-
thors measured the impact of indifference on voting rules with respect to
the participating rate under both IC and IAC assumptions. We explore some
new and extreme cases assuming that the participation rate is unknown and
may be of any size. Three cases are considered: global abstention when vot-
ers from all possible types may abstain; self-confident abstention when only
voters who prefer a Condorcet winner by self-confidence abstain - this may
presumably be the case when a Condorcet winner exists and is acclaimed by
almost all polls; and pessimistic abstention when only voters who prefer any
other candidate to a Condorcet winner by discouragement abstain - this may
be the case when some voters think their favorite candidate is lagged behind
their less preferred candidate. In the global abstention setting, we would have
expected a very low Condorcet efficiency of every weighted scoring rule. But
we observe an honorable performance since some weighted scoring rules still
record more than 60% of voting situations in which the Condorcet winner is
selected after some voters abstain. The two other cases of abstention impact
differently on the performances of weighted scoring rules. All those aspects
are commented and discussed later in the paper.

The rest of the paper is organized as follows: Section 2 underlines some
key points of our investigations that differ from previous works. In Section 3,
we provide for three-candidate election, the exact Condorcet efficiency of any
weighted scoring rule as the total number of voters tends to infinity. Section 4
highlights some abstention patterns and the Condorcet efficiency of weighted
scoring rules on those restricted domains. Section 5 concludes with a general
comment of our investigations.
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2 The scope

Consider a three-candidate election with n voters (n ≥ 2) and assume that
an individual preference is a weak order (complete and transitive binary re-
lations) over candidates A, B and C. In addition, each voter is assumed to
act according to his/her true preferences, which means that the strategic
vote is not taken into consideration in our paper. There are thirteen possible
types of preferences according to how candidates are ranked with or without
indifference:

A � B � C (x1)
A � C � B (x2)
B � A � C (x3)
B � C � A (x4)
C � A � B (x5)
C � B � A (x6)

A � (B ∼ C) (x7)
B � (A ∼ C ) (x8)
C � (A ∼ B) (x9)
(A ∼ B) � C (x10)
(A ∼ C) � B (x11)
(B ∼ C) � A (x12)

(A ∼ B ∼ C) (x13)

In the notation A � B � C (x1), A � B � C refers to the preference type
of all voters who prefer A to B, A to C, and B to C; and x1 is the proportion
of such voters; that is the ratio n1

n where n1 is the total number of voters
who report A � B � C. Similarly, a voter endowed with the preference type
A � (B ∼ C) prefers A to B, A to C and is indifferent between B and C. The
proportion of all such voters is x7. The collection x = (x1, x2, ..., x13) will be
called a voting situation when the thirteen terms xj sum to 1. Voters having
the preference type (A ∼ B ∼ C) will be called unconcerned voters since each
such voter is indifferent to the election of any of the three candidates. In case
there are some evidences that allow each voter to have a strict ranking of the
three competing candidates, only the first six preference types are observable.
A voting situation will then be reduced to the 6-tuple x = (x1, x2, ..., x6) by
setting x7 = x8 = ... = x13 = 0. This is the assumption taken into account
by Cervone et al. (2005).

Indifference or abstention are possible factors that may justify alternative
investigations. Given indifference, we carry our investigations under two dif-
ferent but usual settings. When all voters are concerned voters who may still
be indifferent between at most two candidates, we identify a voting situation
as the 12-tuple x = (x1, x2, ..., x12) assuming that x13 = 0. This is also the set-
ting taken into consideration by Gehrlein (1983). We also consider the mixed
case where unconcerned and concerned voters are involved. In this later case,
only voting situations x = (x1, x2, ..., x12, x13) such that 0 ≤ x13 < 1 are con-
sidered (the extreme case x13 = 1 leaves place to no objective differentiation
among the three candidates). This is the setting developed by Gehrlein and
Valognes (2001).

When indifference vanishes, some voters may abstain and a voting scenario
is now a twofold vector (x, y) where x = (x1, x2, ..., x6) is the initial voting
situation and y = (y1, y2, ..., y6) indicates the proportion yj of voters who
abstain among the voters having preference of type j. Note that 0 ≤ yj ≤ xj
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and y1 + y2 + ... + y6 < 1 (the extreme case y1 + y2 + ... + y6 = 1 is of no
interest). The impact of abstention on voting procedures was also studied in
Gehrlein and Fishburn (1978, 1979) and recently by Gehrlein and Lepelley
(2019, 2017). We provide two extreme cases: (i) when all voters who abstain
have the same top ranked candidate (who is perceived as having no chance
to win); and (ii) when all voters who abstain have the same bottom ranked
candidate.

In each of the preference settings we consider, our analysis is restricted
on the set of voting situations that capture all the possible configurations of
individual preferences. We denote by D this set and we assume for each case
the uniform probability distribution over D: all voting situations in D are
equally probable to be observed. This is known as an Impartial Anonymous
Culture assumption over D and will be referred to as IACD. Given λ ∈ [0, 1],
the vector w = (1, λ, 0) will be called the scoring vector. The weighted scoring
rule on D is denoted by Fλ and assigns xjw (j, k) points to a candidate, say
C, each time voters having type j rank C at the kth position given a voting
situation x; where w (j, k) = wk in case preference of type j corresponds to a
linear order (j = 1, 2, ..., 6 and k = 1, 2, 3); w (j, 1) = (1+λ)

2 and w (j, 2) = 0
if voters of type j are indifferent between their two first ranked candidates
(j = 7, 8, 9); w (j, 1) = 1 and w (j, 2) = λ

2 if voters of type j are indifferent
between their two bottom-ranked candidates (j = 9, 10, 11); and w (j, 1) =
(1+λ)

3 if j = 13. Obviously, the candidate who records the maximum sum of
points wins.

A candidate X majority defeats another candidate Y in a pairwise com-
parison if there are more voters who strictly prefer X to Y than the voters
who strictly prefer Y to X. A Condorcet winner is a candidate who defeats
any other candidate in a pairwise majority voting. When a Condorcet winner
exists, he/she is clearly a desirable election winner since he/she is immune
from the defiance of any majority of voters. It is well known that for a given
weighted scoring rule Fλ, we may find some voting situation x at which a
candidate, say C, is a Condorcet winner while Fλ (x) 6= C. Courtin et al.
(2015a) shows that this failure may be overcome in three-candidate elections
by strengthening the size of the majority in favor of the Condorcet winner up
to a threshold; see also Courtin et al. (2015b) for a more general framework.

In general, the Condorcet efficiency of the rule Fλ, given a domain D of
observable voting situations with n voters and a probability distribution PD
over D, is the conditional probability CE (λ, PD, n) that the rule will select
a Condorcet winner assuming that one exists. In particular, under the IAC
assumption, the limit CE (λ, IACD,∞) of CE (λ, IACD, n) as n tends to
infinity is the ratio vol(DCW,λ)

vol(DCW ) where DCW denotes the polytope of all voting
situations in D at which a Condorcet winner exists1 while DCW,λ is the poly-
tope of all voting situations in D at which a Condorcet winner exists and is
the winner for rule Fλ; for more details and a rich panel of related topics in-

1 i.e., the polytope defined by the linear system characterizing these voting situations.
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terested readers are referred to the books by Gehrlein (2006) or Gehrlein and
Lepelley (2017, 2011). By symmetry, to evaluate CE (λ, IACD,∞), we can
replace DCW by DCW,A the subset of DCW at which A is the Condorcet win-
ner and DCW,λ by DCW,λ,A the subset of DCW,λ at which A is the Condorcet
winner and is selected by the voting rule Fλ.

3 Condorcet efficiency of weighted scoring rules when
indifference are observable

Giving a weight λ ∈ [0, 1], we determine here the Condorcet efficiency of the
weighted scoring rule associated with λ when some voters may be indifferent
between two candidates.

3.1 With no unconcerned voters

When no voter is unconcerned and none of them abstains, the corresponding
domain of observable voting situations is denoted by D and consists of all
12-tuple x = (x1, x2, ..., x12) such that

12∑
j=1

xj = 1 and xj ≥ 0 for all j ∈ {1, 2, ..., 12} . (1)

In this case, candidate A is a Condorcet winner at x if A beats B and A
beats C in a pairwise majority voting:

x3 + x4 + x6 + x8 + x12 − x1 − x2 − x5 − x7 − x11 < 0 (2)

x4 + x5 + x6 + x9 + x12 − x1 − x2 − x3 − x7 − x10 < 0 (3)

Therefore, the set DCW,A of all voting situations in D at which A is the
Condorcet winner is the 11-dimensional polytope defined by (1), (2), and (3).
The volume of DCW,A as well as all other subsequent volumes in this paper
will be computed using the method presented in Moyouwou and Tchantcho
(2017). Alternative methods are also available from Cervone et al. (2005)
or Lepelley et al. (2008). We may also combine available packages such as
Convex for convex geometry by Franz (2017) for a Maple implementation or
well-established algorithms such as Normaliz by Bruns et al. (2017, 2019)
and Bruns and Ichim (2010). These techniques have also recently been used
under different forms by Bubboloni et al. (2019), Diss and Doghmi (2016),
Diss et al. (2018), Diss and Gehrlein (2012, 2015), Kamwa (2019a), Kamwa
and Moyouwou (2019), Lepelley et al. (2018a,b), and Lepelley and Smaoui
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(2019), among others. Up to a scaling constant that depends only on the
dimension of D,

vol (D) = 1
11! and vol (DCW ) = 3vol (DCW,A) = 8821

367873 228 800 (4)

Then, the probability that a Condorcet winner exists under the assumption
IACD is vol(DCW )

vol(D) ≈ 0.95714. As compared to the probability 0.9375 from
Gehrlein and Fishburn (1976) of observing a Condorcet winner when individ-
ual preferences are linear orders, this confirms the observation by Gehrlein
and Valognes (2001) that the possibility of indifference increases the proba-
bility that a Condorcet winner exists. Now candidate A is the winner for rule
Fλ at x when the score of A is greater than both the score of B and the score
of C; that is

(λ−1) (x1 − x3)−x2+x4−λ (x5 − x6)+λ− 2
2 (x7 − x8)−1 + λ

2 (x11 − x12) < 0
(5)

−x1+x6+(λ−1) (x2 − x5)−λ (x3 − x4)+λ− 2
2 (x7 − x9)−1 + λ

2 (x10 − x12) < 0
(6)

The subsetDCW,A,λ ofDCW,A that consists of all voting situations in which
A is the Condorcet winner and at the same time is selected by Fλ at x is the
polytope described by the constraints at (1), (2), (3), (5), and (6). Its volume
is computed as a function of λ in order to derive the Condorcet efficiency
CE (λ, IACD,∞) = vol(DCW,A,λ)

vol(DCW,A) when the total number of voters tends to
infinity. The corresponding formula is completely unreadably and is relegated
in the Appendix. Numerical values of this function are reported in Table 1
and its graph appears in Figure 1. The value of CE (λ, IACD,∞) provided
in Table 1 corresponds to some values of λ = d1 + d2 the first decimal (d1) of
which is indicated in the first column and its second decimal (d2) in the first
row. Moreover, the maximum of CE (λ, IACD,∞) is for a unique value λ∗ of λ
between 1

3 and 1
2 . The exact value of λ∗ is unreachable due to the untractable

expressions of CE (λ, IACD,∞) and of its first derivative. An approximation
up to four decimal places gives λ∗ ≈ 0.4139 with CE (λ∗, IACD,∞) ≈ 0.9265.

When no voter is indifferent between any pair of candidates, the function
of the Condorcet efficiency of all weighted scoring rules with three candidates
under the IAC assumption comes from Cervone et al. (2005, Theorem 2). Its
graph is also represented in Figure 1. From this result, it appears that the
rule that maximizes the Condorcet efficiency among weighted scoring rules
corresponds to a value λ0 of the weight λ such that 2λ0−1 ≈ −0.25544; that
is λ0 ≈ 0.37228. It follows that if we are looking for the optimal weighted
scoring rule with respect to Condorcet efficiency under the IAC assumptions
described above, the appropriate value of the weight λ differs when we admit
indifference or only considers linear orders. With indifference, our results
show that the optimal rule is nearer to the Borda rule (λ = 0.5) than it is
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Table 1 IAC based Condorcet efficiency of weighted scoring rules when indifference is
observable
λ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.8575 0.8596 0.8618 0.8640 0.8662 0.8683 0.8705 0.8727 0.8749 0.8770
0.1 0.8792 0.8814 0.8835 0.8856 0.8878 0.8899 0.8920 0.8941 0.8961 0.8981
0.2 0.9001 0.9021 0.9040 0.9059 0.9078 0.9095 0.9113 0.9130 0.9146 0.9161
0.3 0.9176 0.9190 0.9202 0.9214 0.9225 0.9235 0.9243 0.9251 0.9256 0.9261
0.4 0.9264 0.9265 0.9265 0.9263 0.9260 0.9254 0.9247 0.9238 0.9227 0.9214
0.5 0.9199 0.9182 0.9163 0.9143 0.9121 0.9097 0.9071 0.9044 0.9016 0.8986
0.6 0.8955 0.8923 0.8889 0.8855 0.8819 0.8783 0.8746 0.8708 0.8669 0.8630
0.7 0.8590 0.8549 0.8508 0.8466 0.8424 0.8382 0.8338 0.8295 0.8251 0.8207
0.8 0.8163 0.8119 0.8074 0.8029 0.7984 0.7939 0.7894 0.7849 0.7803 0.7758
0.9 0.7713 0.7668 0.7622 0.7577 0.7532 0.7487 0.7442 0.7397 0.7353 0.7308
1 0.7264 − − − − − − − − −

Fig. 1 IAC based Condorcet efficiency of weighted scoring rules with and
without indifference

with only linear orders. Finally it is worth noting from our results that the
maximal Condorcet efficiency among weighted scoring rules is approximately
0.9265. This value is greater than the maximal Condorcet efficiency among
weighted scoring rules with only linear orders which is approximately 0.9255
(Cervone et al., 2005, Theorem 2). Again, this is in accordance with earlier
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observations. However, the Condorcet efficiency of some weighted scoring
rules decreases from linear orders to weak orders as shown in Figure 1. More
exactly, the Condorcet efficiency is greater for linear orders than weak orders
for all weighted scoring rules from λ = 0 (the Plurality rule) up to λ ≈ 0.3765.
Globally, the extensions of classical weighted scoring rules that permit to
handle here possible indifference of voters results in improvements of the
Condorcet efficiency of weighted scoring rules for 1 ≥ λ > 0.3765 but not for
0 ≤ λ < 0.3765.

3.2 With possibly unconcerned voters

When some voters are completely indifferent about the selection of one of the
three candidates, the corresponding domain of observable voting situations
is denoted by D̃ and consists of all 13-tuple x = (x1, x2, ..., x13) such that

13∑
j=1

xj = 1 and xj ≥ 0 for all j ∈ {1, 2, ..., 13} . (7)

Such a voting situation is completely determined by the 12-tuple (x1, x2, ..., x12)
which satisfies

12∑
j=1

xj = t with t = 1− x13 > 0. (8)

More interestingly, the conditions that candidate A is the Condorcet winner
or the winner for the weighted scoring rule Fλ do not change since an uncon-
cerned voter does not favor any of the three candidates. By setting xj = tyj
for j = 1, 2, ..., 12, it follows that A is the Condorcet winner at x if and only
if y = (y1, y2, ..., y12) lays in DCW,A characterized by (1), (2) and (3). Simi-
larly A is the winner at x for Fλ if and only if y = (y1, y2, ..., y12) belongs to
DCW,λ,A. Due to this homothetic transformation, we can recover the volumes
of D̃CW,A and D̃CW,λ,A from the volumes of DCW,A and DCW,λ,A by noting
that t varies from 0 to 1. That is

vol
(
D̃CW,A

)
=
∫ 1

0
t11vol (DCW,A) dt = vol (DCW,A)

12 (9)

and
vol
(
D̃CW,λ,A

)
=
∫ 1

0
t11vol (DCW,λ,A) dt = vol (DCW,λ,A)

12 . (10)

Since the Condorcet efficiency of the weighted scoring rule Fλ over D̃ is the

ratio
vol
(
D̃CW,λ,A

)
vol
(
D̃CW,A

) , the equations (9) and (10) imply the following result.
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Proposition 1 For all λ ∈ [0, 1], the IAC based Condorcet efficiencies of the
weighted scoring rule associated with λ with or without unconcerned voters
coincide.

In other words, Proposition 1 shows that the presence of unconcerned
voters does not affect the Condorcet efficiency of weighted scoring rules under
the IAC assumption as the total number of voters tends to infinity. It is
clear that this is also the case for all other similar voting events that can be
described by linear constraints with null constant terms. However, this is not
necessary the case with other probability distributions such as the Impartial
Culture assumption; see Gehrlein and Valognes (2001) where the authors
include the possibility to have unconcerned voters.

4 Condorcet efficiency with abstention allowed

In this section, we assume that all voters are concerned voters, individual
preferences are linear orders and some voters may abstain. Out of the initial
proportion xj of voters of type j, we are now expecting that yj voters to
effectively take part to the election. A voting scenario is a twofold vector
(x, y) where x = (x1, x2, ..., x6) is a voting situation on linear orders and
y = (y1, y2, ..., y6) satisfies

0 ≤ yj ≤ xj for j = 1, 2, ..., 6. (11)

The question is, assuming that a candidate X is a Condorcet winner at x,
some voters abstain and y describes the proportion of voters from each type
who finally participate to the election, what is the probability that X will
be selected by a given weighted scoring rule? We evaluate this conditional
probability over three distinct domains.

Without loss of generality, we assume that A is the Condorcet winner (or
the popular candidate). We refer to the first domain as the global abstention:
voters from any type may abstain. The second domain is called self-confident
abstention: only voters who top ranked the popular candidate may abstain.
The third domain is called pessimistic abstention: only voters who prefer all
other candidates to the popular candidate may abstain.

4.1 Global abstention

In this setting, the set of voting scenarios is the set denoted by S that consists
of all couple (x, y) such that
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(S) :


x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0

x1 + x2 + x3 + x4 + x5 + x6 = 1
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0, y5 ≥ 0, y6 ≥ 0

x1 ≥ y1, x2 ≥ y2, x3 ≥ y3, x4 ≥ y4, x5 ≥ y5, x6 ≥ y6

(12)

This domain is an 11-dimensional polytope. We assume that all voting sce-
narios in S are equally probable to occur; and we refer to this probability
distribution as IACS . Now the subset SCW,A of S, that consists of all voting
scenarios (x, y) in which A is the Condorcet winner at x, is the polytope
characterized by the constraints at (12) and the following{

x3 + x4 + x5 − x1 − x2 − x5 < 0
x5 + x6 + x4 − x1 − x2 − x3 < 0 (13)

Its volume is vol (SCW,A) = 79
10218700800 . Since the volume of S is 1

11! , it fol-
lows that the probability that a Condorcet winner exists in S under the IACS
assumption is vol(SCW,A)

vol(S) = 0.30859 which gives the proportion of voting sit-
uations (x, y) having candidate A as a Condorcet winner when the number
of voters tends to infinity. Notice that using the symmetry of IAC-like as-
sumptions with regards to candidates, this means that 0.30859×3 = 0.92578
is the proportion of voting situations (x, y) having a Condorcet winner when
the number of voters tends to infinity. Finally, A is selected by the weighted
scoring rule associated with λ at y if and only if{

(λ− 1)y1 − y2 + (1− λ)y3 − λy5 + y4 + λy6 < 0
−y1 + (λ− 1)y2 − λy3 + λy4 + (1− λ)y5 + y6 < 0 (14)

The subset SCW,A,λ of S that consists of all voting scenarios (x, y) in which
A is the Condorcet winner at x and is selected in y is the polytope described
by the constraints at (12), (13) and (14). Its volume is computed in order
to derive the Condorcet efficiency CE (λ, IACS ,∞) = vol(SCW,A,λ)

vol(SCW,A) when the
total number of voters tends to infinity. The results of our calculations are
given as follows:

For 0 ≤ λ ≤ 1
2 , CE (λ, IACS ,∞) =

218700λ21 − 1174320λ20 − 4535142λ19 + 18714908λ18 + 151671536λ17

−508196052λ16 − 1757330525λ15 + 9181808848λ14 − 2416926066λ13

−55062774610λ12 + 116439091808λ11 − 3497495094λ10 − 342404967208λ9

+608347988900λ8 − 430343075808λ7 − 70310632700λ6 + 424083710296λ5

−414925509984λ4 + 222950616032λ3 − 72115069504λ2 + 13241739264λ
−1067873280


204768(1−λ)3(3λ−2)2(λ−2)4(−4+5λ)2(λ2+2λ−2)3(1+λ)
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For 1
2 ≤ λ ≤ 1, CE (λ, IACS ,∞) =

72900λ24 − 38460λ23 + 12014686λ22 − 284507414λ21 + 2137697548λ20

−7182774684λ19 + 9390687357λ18 + 4929800229λ17 − 18153355218λ16

−26293402260λ15 + 109425128388λ14 − 115472223994λ13 + 32683701680λ12

+26299843928λ11 − 23324433021λ10 + 2405339031λ9 + 6496354764λ8

−5222096538λ7 + 2209396698λ6 − 610438788λ5 + 115276342λ4

−14795282λ3 + 1234756λ2 − 60264λ+ 1296


204768λ5(5λ−1)2(2−λ)3(1+λ)4(−4λ+1+λ2)3(−1+3λ)

Numerical results of CE (λ, IACS ,∞) are reported in Table 2 and sketched
in Figure 2.

Table 2 Condorcet efficiency of weighted scoring rules with distinct abstention scenarios

λ
Self-confident Global Pessimistic

abstention abstention abstention
0 0.4979 0.6366 0.9722

0.1 0.5001 0.6427 0.9801
0.2 0.5018 0.6481 0.9865
0.3 0.5028 0.6522 0.9905
0.4 0.5029 0.6541 0.9906
0.5 0.5013 0.6521 0.9841
0.6 0.4970 0.6435 0.9662
0.7 0.4888 0.6268 0.9304
0.8 0.4765 0.6023 0.8744
0.9 0.4612 0.5718 0.8021
1 0.4443 0.5384 0.7209

4.2 Self-confident abstention

Assume now that individual preferences are linear orders and that only voters
of type ABC or ACB may abstain: due to some signals such as polls surveys,
some of these voters may be (erroneously or not) thinking that their favorite
candidate A is sufficiently popular and does not especially need their votes
to defeat B and C. With a similar notation as above, the corresponding set
of voting scenarios (x, y) is denoted by S∗ and is now 7-dimensional since
we should have yj = 0 for j = 3, 4, 5, 6. In the same way the set S∗CW,A
and S∗CW,A,λ are simply obtained, respectively, from SCW,A and SCW,A,λ by

setting yj = 0 for j = 3, 4, 5, 6. Finally CE (λ, IACS∗ ,∞) = vol(S∗CW,A,λ)
vol(S∗CW,A)

is obtained by performing a volume computation as before. Our results are
described as follows:
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Fig. 2 Condorcet efficiency of weighted scoring rules with distinct abstention scenarios

For 0 ≤ λ ≤ 1
2 , CE (λ, IACS∗ ,∞) = 34λ13 − 913λ12 − 3554λ11 + 36150λ10 + 15318λ9

−384783λ8 + 458022λ7 + 1030506λ6 − 2830398λ5

+1799251λ4 + 1181642λ3 − 2266676λ2 + 1182216λ− 216816


13608(−1+λ)3(λ2+2λ−2)2(2−λ)3(1+λ)

For 1
2 ≤ λ ≤ 1, CE (λ, IACS∗ ,∞) =

31350λ16 + 424085λ15 − 5998520λ14 + 19077007λ13

−5835650λ12 − 52134452λ11 + 46525702λ10 + 55349687λ9

−78736170λ8 + 26324586λ7 + 8272256λ6 − 10772558λ5

+4654654λ4 − 1146839λ3 + 169090λ2 − 13868λ+ 488


13608(−1+3λ)(−4λ+1+λ2)2(1+λ)3(5λ−1)2λ3(2−λ)

Numerical results of CE (λ, IACS∗ ,∞) are also reported in Table 2 and
sketched in Figure 2.
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4.3 Pessimistic abstention

Finally assume that individual preferences are linear orders and that only
voters of type BCA or CBA may abstain: they may be (erroneously or not)
feeling that B and C are lagged behind A; and that their votes are for no
use for both B and C. The corresponding set of voting scenarios (x, y) is
denoted by S ′ and is now 7-dimensional since we should have yj = 0 for
j = 1, 2, 3, 5. The sets S ′CW,A and S ′CW,A,λ are simply obtained, respectively,
from SCW,A and SCW,A,λ by setting yj = 0 for j = 1, 2, 3, 5. We then get
CE (λ, IACS′ ,∞) = vol(S′CW,A,λ)

vol(S′CW,A) which is obtained by performing the same
volume computations as before. Our results are given as follows:

For 0 ≤ λ ≤ 1
2 , CE (λ, IACS′ ,∞) =(

4950λ13 − 52095λ12 + 196780λ11 + 220080λ10 − 3901650λ9 + 12926745λ8 − 20918022λ7

+15291690λ6 + 4004808λ5 − 19395021λ4 + 18835758λ3 − 9447272λ2 + 2515488λ− 282240

)
567(−1+λ)3(2−λ)3(−4+5λ)2(3λ−2)2(1+λ)

For 1
2 ≤ λ ≤ 1, CE (λ, IACS′ ,∞) =(

1416λ11 + 27740λ10 − 30728λ9 − 73976λ8 + 29112λ7

+162704λ6 − 113362λ5 + 12585λ4 + 19471λ3 − 10835λ2 + 2195λ− 162

)
2268λ4(1+λ)3(2−λ)(−1+3λ)

Numerical results of CE (λ, IACS′ ,∞) are also displayed in Table 2 and
Figure 2.

Several lessons may be drawn from the probabilities corresponding to the
three scenarios taken into account. First, it can be seen clearly that the Con-
dorcet efficiency of the three considered scenarios exhibits the same behavior
since the three curves first increase and then decrease. Every Condorcet effi-
ciency stops rising and starts falling for a unique value λ∗ of λ that maximizes
the associated probability. An approximation up to four decimal places of
the value of λ∗ maximizing the Condorcet efficiency gives λ∗ ≈ 0.4074 with
CE (λ∗, IACS ,∞) ≈ 0.6542 for the global abstention domain, λ∗ ≈ 0.3567
with CE (λ∗, IACS′ ,∞) ≈ 0.5030 for the self-confident abstention scenario,
and λ∗ ≈ 0.3541 with CE (λ∗, IACS∗ ,∞) ≈ 0.9912 for the pessimistic ab-
stention case. Third, it can be noticed that on the one hand, the Condorcet
efficiency remains approximately stable with regards to the value of λ when
the setting of self-confident abstention is assumed. On the other hand, the
change in the Condorcet efficiency is more pronounced when the pessimistic
abstention domain is considered; its value steady declines particularly when
the value of λ exceeds 0.6. Finally, it is worth noting that all weighted scoring
rules in three-candidate elections have highest performance with respect to
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the Condorcet criterion when the pessimistic abstention domain is assumed;
the self-confident abstention domain being the worst scenario.

5 Conclusion

Given an arbitrary weighted scoring rule for three-candidate elections, the
aim of this paper has been to provide the exact limit of its Condorcet effi-
ciency as the total number of voters tends to infinity under some IAC-like
assumptions over some domains of voting situations. More exactly, we have
explored the impact of observing ties and abstention on the Condorcet effi-
ciency of the whole class of weighted scoring rules in three-candidate elections
under IAC-like assumptions. Some instructive observations have emerged.
First, it appears that the weighted scoring rules that maximizes the Con-
dorcet efficiency under IAC-type assumptions depends not only on the set
of observable individual preferences; but also on the behavior of voters in
the election such as abstention. Second, and more importantly, the issue of
which scoring rule tends to maximize the probability of selecting the Con-
dorcet winner, when there is one, is not the well known Borda rule. This
result has also been shown in previous studies that have been conducted in
other frameworks (see for instance, Cervone et al., 2005; Lepelley et al., 2000,
among others).

Many open questions still remain unanswered. First, since ties and ab-
stention have been envisaged separately in our framework, we believe that
studying the weighted scoring rules that maximize the Condorcet efficiency,
when both ties and abstention can be expressed at the same time by voters,
remains open. Second, the extension of our results to multistage elimination
scoring rules is also an important research direction. Under those voting rules,
candidates are assigned scores according to their rank in the preferences of
voters and then the candidate(s) with the lowest number of points are elimi-
nated in each round. In this connection, other well known voting rules widely
studied in the literature can also be considered. Third, it is important to
stress that the assumptions of IC and IAC have some subtle differences. For
instance, results under many frameworks in the literature suggest that the
Borda rule will maximize the limiting Condorcet efficiency with IC, but did
not with IAC. As a consequence, it seems that the ways under which the vot-
ers’ preferences are generated and their impact on the Condorcet efficiency
of weighted scoring rules in all the scenarios considered in our paper is an
important research direction to follow. Notice finally that analogous calcula-
tions would need to be done with more than three candidates, and it seems
that some new research techniques can make this possible. Results for more
than three candidates will allow to draw more accurate conclusions.
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Appendix: Condorcet efficiency of standard weighted
scoring rules for the case of indifference

For 0 ≤ λ ≤2−
√

3, CE (λ, IACD,∞) =

1820786 688 000λ48 − 69 241916 620 800λ47 + 1026 234629 521 920λ46 − 7284 934967 241 672λ45

+18 277 844939 772 940λ44 + 103 592 393347 371 022λ43 − 1238 479 837216 933 811λ42

+7114 690 023954 613 055λ41 − 32211 613 928453 148 729λ40 + 115639 088 574725 271 854λ39

−236512 647 125549 661 383λ38 − 286151 748 427342 093 501λ37 + 4058202 005 007340 429 561λ36

−14 318810 047 697903 565 096λ35 + 22 349727 410 670132 937 793λ34

+16 543371 732 429846 167 336λ33 − 175 555781 573 475047 887 373λ32

+437 422977 910 724619 504 115λ31 − 483 555379 875 364616 250 580λ30

−317 603525 246 580133 257 115λ29 + 2328 610974 249 100702 568 584λ28

−4632 327155 285 954449 646 038λ27 + 4727 751430 637 011253 403 199λ26

−109 245140 931 968759 805 205λ25 − 8885 273274 696 887352 596 075λ24

+17 706 774485 498 423664 071 476λ23 − 20 017 586527 878 097411 380 703λ22

+12 669 590811 026 864041 789 277λ21 + 1136 537775 705 418491 635 969λ20

−13 778 933630 365 017707 246 908λ19 + 18 799 513648 879 716877 033 827λ18

−15 254 787069 146 101371 272 038λ17 + 7332 765302 678 185241 972 369λ16

−332 383158 733 291688 576 093λ15 − 2996 814688 633 054810 513 310λ14

+3087 233061 146 579368 634 651λ13 − 1810 863957 041 637494 575 430λ12

+641 597719 780 426722 446 276λ11 − 56 116471 132 277234 004 088λ10

−95 214964 467 975593 883 012λ9 + 75 729086 200 343544 343 640λ8

−34 276146 412 782754 811 536λ7 + 11 054599 551 772653 125 472λ6

−2669971 755 905471 542 464λ5 + 484686 737 258602 283 136λ4

−64625 671 172236 822 272λ3 + 6001 143 093138 737 664λ2 − 347 714 765843 853 312λ
+9483 672291 729 408


 38 583 054

(
−4λ + λ2 + 2

)2
(7λ− 3)2

(
−5λ + λ2 + 2

)
(7λ− 4) (λ− 1)8 (λ + 1) (λ + 2)

× (2λ− 1)2 (2λ + 1) (2− λ)
(
λ2 + 1

)
(λ− 3) (λ− 4) (2λ− 3) (3λ− 2)2 (3λ + 2)

×
(
λ + λ2 − 1

)(
−λ + λ2 + 2

)(
2λ + λ2 − 1

)2
(λ− 6) (3λ− 4) (5λ− 2) (5λ− 3)2


For 2−

√
3 ≤ λ ≤ 1

3 , CE (λ, IACD,∞) =
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1820786 688 000λ48 − 74 704276 684 800λ47 + 1244 885099 512 320λ46

−10 804 581341 381 232λ45 + 47 323 169817 532 876λ44 − 11 896 189228 265 240λ43

−1295 427 558400 669 181λ42 + 10838 602 659769 641 280λ41 − 60932 746 397452 834 926λ40

+272298 567 692948 074 279λ39 − 919748 069 915040 272 996λ38

+1922729 976 378950 744 954λ37 − 107520 324 936731 831 476λ36

−16 046349 280 257649 212 608λ35 + 63 982392 803 835491 246 957λ34

−131 594022 183 132278 579 333λ33 + 102 985885 243 856862 063 807λ32

+263 130441 491 002792 978 434λ31 − 1120 118363 443 620345 250 056λ30

+2068 147541 140 171435 437 810λ29 − 1911 492390 661 346765 109 656λ28

−638 819581 233 742237 398 078λ27 + 5387 926806 763 347416 361 913λ26

−9728 147692 713 242728 280 400λ25 + 10 046 559510 469 985452 429 584λ24

−4901 586668 964 434084 114 939λ23 − 3110 900254 952 426440 166 384λ22

+9139 448775 320 162952 050 832λ21 − 10 021 137586 182 738207 585 316λ20

+6498 420889 415 942163 770 942λ19 − 1840 968960 234 262545 229 881λ18

−1178 787637 750 470723 251 707λ17 + 1930 389777 296 413710 058 071λ16

−1355 027846 210 208450 503 438λ15 + 571 078810 313 953333 722 844λ14

−103 122899 029 894401 764 380λ13 − 49 101913 858 193610 558 036λ12

+52 958716 465 121060 088 760λ11 − 26 428806 100 020453 419 248λ10

+9041586 474 056435 631 264λ9 − 2282625 313 621030 973 760λ8

+429966 791 749254 817 664λ7 − 59239 187 188309 597 440λ6 + 5669 413 681460 636 160λ5

−337 940 174689 744 896λ4 + 9462 296226 484 224λ3

+1113258 442 752λ2 − 36643 995 648λ + 573 308 928


( 38 583 054 (7λ− 4)λ3 (λ− 1)9 (λ + 1) (λ− 2) (λ + 2) (2λ− 1)2 (2λ + 1) (λ− 3) (4− λ)

(2λ− 3) (3λ− 2)2 (3λ + 2)
(
λ + λ2 − 1

)(
−λ + λ2 + 2

)(
2λ + λ2 − 1

)
(λ− 6)

(3λ− 4) (5λ− 2) (5λ− 3)2
(
−4λ + λ2 + 2

)2
(7λ− 3)2

(
−5λ + λ2 + 2

)
)

For 1
3 ≤ λ ≤

1
2 , CE (λ, IACD,∞) =

9289728000λ36 − 297619596000λ35 + 3377989143360λ34 − 13963337093844λ33

+3370375264444λ32 − 402215454286943λ31 + 8963866330410706λ30 − 69941639381396539λ29

+288643976788058119λ28 − 627477867299131010λ27 + 248517337184893361λ26

+2609323768109145402λ25 − 7932461061154644246λ24 + 10019745050192949855λ23

−1158379395278615758λ22 − 15662441259201903711λ21 + 25118070398698305635λ20

−21072798121128351708λ19 + 19280898166689692789λ18 − 31894466931214607084λ17

+42410957812210078536λ16 − 28745451043046875662λ15 − 1002323686662473050λ14

+19442887622216608928λ13 − 16497433408345540744λ12 + 5138910439439921036λ11

+1381560072929906496λ10 − 1869267824450225872λ9 + 648301094886938816λ8

−33718969352126832λ7 − 39306911200860128λ6 + 8546068707872128λ5 + 1061504521622784λ4

−556852979448576λ3 + 45154967560704λ2 + 2464451039232λ− 107254554624


(

38583054 (2− λ) (λ + 2) (2λ− 3) (−1 + λ)8 λ2 (1 + λ) (−3 + λ) (5λ + 1) (7λ− 4) (5λ− 3)2

(3λ− 4) (λ− 6) (1 + 3λ)
(
λ2 − 4λ + 2

)2 (
λ2 + λ− 1

)
(λ− 4) (2λ + 1) (3λ− 2) (2 + 3λ)

)
For 1

2 ≤ λ ≤
2
3 , CE (λ, IACD,∞) =



18 Mostapha Diss, Eric Kamwa, Issofa Moyouwou, and Hatem Smaoui



599298932736000λ43 − 24894797263257600λ42 + 321747726609561600λ41

−2460940238278107648λ40 + 15644469789077275008λ39 − 71043427323828455136λ38

+115060892883434995088λ37 + 582465500014126288756λ36 − 3460843041196876374588λ35

+5537814448809200666515λ34 + 8081840578573892819103λ33 − 46604545871578657603575λ32

+64323974809259448671634λ31 + 25765871448120618830351λ30 − 207163457256228192262959λ29

+284655633057587011364481λ28 − 103519599030222189252188λ27

−199154409908822765983565λ26 + 335884880646892989888899λ25 − 221784089193151064338067λ24

+26791602419781197740670λ23 + 76500190435038303873815λ22 − 71634510774411743501567λ21

+30495317238798878121765λ20 − 3503051930164397658360λ19 − 3862253035621582133922λ18

+2852085814734176360086λ17 − 1049312702815311771754λ16 + 237959024404663565076λ15

−36579576228179144954λ14 + 7873967213479742182λ13 − 2593795952554456134λ12

−280924365248561364λ11 + 878391638981584720λ10 − 478889908254439808λ9

+141550488288565984λ8 − 22652083592277440λ7 + 328316466849536λ6 + 790713386228736λ5

−212706949874688λ4 + 30558160300032λ3 − 2681179729920λ2 + 136280309760λ− 3105423360


( 38583054 (−1 + λ)2 λ8 (2λ− 3) (1 + λ) (−3 + λ) (5λ + 1) (3λ− 4) (λ− 6) (1 + 3λ) (λ− 4)

(2λ + 1) (2 + 3λ)
(
λ2 + 2λ− 1

)2

(5λ− 2)2 (4λ− 1)3 (λ− 2) (λ + 2) (−1 + 3λ)3
(
λ2 − 3λ + 1

)
(−3 + 8λ) (7λ− 3)2

)

For 2
3 ≤ λ ≤ 1, CE (λ, IACD,∞) =

50341110349824000λ53 − 1143202667456102400λ52 + 7217916749335756800λ51

−34673940480463736832λ50 + 685139054085135696384λ49

−7628653878370796352384λ48 + 35760527452538104680928λ47

−21444329157685241992056λ46 − 564610937326124535526968λ45

+2823055583916995625582970λ44 − 4896527490068264494983110λ43

−7786116812937700030681990λ42 + 62037058533532306175024075λ41

−142318716263463772744482147λ40 + 82378226897358021316912587λ39

+423869774526473167985740546λ38 − 1431119085114352349851417586λ37

+2114065260450619432591021068λ36 − 782761018910366605213795998λ35

−3665557112402327685220357888λ34 + 9738380253026331395580532754λ33

−13266369722048681013025587978λ32 + 10457018999081962154072364758λ31

−1601104779572709668337318232λ30 − 8583229481587012991716442476λ29

+14662789000331251552467633806λ28 − 14553236525078891871569897018λ27

+10197513563186020546902075854λ26 − 5063994764702656999570698641λ25

+1475784958290852263225596477λ24 + 150395038438085270702579407λ23

−500692297156210203731473490λ22 + 360356751917040727163107406λ21

−169259472314848100587046748λ20 + 56500451258403497688241462λ19

−11762016210680671213151624λ18 − 129454800132931232190580λ17

+1395198996472301470596248λ16 − 719392290744137621324904λ15

+229407208897037257843552λ14 − 48721375615928156525712λ13

+5019213997220757059168λ12 + 901850049462101175680λ11

−570630537012716250880λ10 + 145064253910526063872λ9

−21483823004236570112λ8 + 1132069178749464576λ7 + 317788368055607296λ6

−101765096940740608λ5 + 15941551110832128λ4

−1610771917012992λ3 + 106787829841920λ2 − 4275313311744λ + 78989230080


 38583054

(
λ2 + 2λ− 1

)2
(λ− 2) (λ + 2)λ8 (2λ− 3) (1 + λ) (−3 + λ) (5λ + 1) (7λ− 4)

(1 + 3λ) (λ− 4) (2λ + 1)
(
λ2 − 4λ + 2

)2
(3λ− 1)3 (−1 + 2λ)2

(
λ2 + 3λ− 2

)
(5λ− 2)2

(8λ− 3) (7λ− 3)2
(
−λ + 2 + λ2

)(
λ2 − 3λ + 1

)
(9λ− 5)

(
λ2 − 2λ + 2

)
(4λ− 1)3 (3λ− 4)
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