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Abstract. Only a few facts are known regarding the approximability of
optimization CSPs with respect to the differential approximation mea-
sure, which compares the gain of a given solution over the worst solution
value to the instance diameter. Notably, the question whether k CSP—q
is approximable within any constant factor is open in case when ¢ > 3
or k > 4. Given three integers k > 2, p > k and ¢ > p, we analyse the
expansion of a precise reduction from k CSP—q to k CSP—p. We intro-
duce a family of combinatorial designs from which we deduce a lower
bound of 1/(q — p + k/2)* for this expansion. When p = k = 2, this
implies together with the result of Nesterov as regards 2 CSP—2 [?] that
for all constant integers q > 2, 2CSP—q is approximable within factor

2-7/2)/(g 1)

Keywords: Differential approximation - Optimization constraint satis-
faction problems - Combinatorial designs

1 Introduction

1.1 Optimization Constraint Satisfaction Problems

Thereafter, given a positive integer N, we use notation [N] to refer to the discrete
interval {1,..., N}. Optimization Constraint Satisfaction Problems (CSPs) over
an alphabet X' consider a set {x1,...,z,} of variables and a set {C1,...,Cp,} of
constraints, where the variables have domain X, and the constraints consist of
(non constant) predicates applied to tuples of variables. Most often, a positive
weight is associated with each constraint C;. The goal is then to optimize over
X" an objective function of the form

Sty wiCi = 33 wiPi(w ) = 300 wiPi(wiy, - )

where for all i € [m], P, : X% — {0,1}, J; = (i1,...,ix,) C [n], and w; > 0.
CSPs are specified by the functions that may occur in their constraints. For
example, the Satisfiability Problem (Sat) is the boolean CSP where constraints
are disjunctive clauses. In Lin—q, variables have domain Z,, and a constraint is
a linear equation modulo ¢. In this paper, given two universal constant integers
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q,k > 2, we restrict to the case when X' has size ¢ (we thus assume w.l.0.g. that
Y = [q]), and each constraint depends on at most k of the variables. Moreover,
we allow the functions that occur in the constraints to take rational values. We
denote by k CSP—q the corresponding unconstrained optimization problem. 3

k CSP —q most often becomes harder as k or g grows. On the one hand, given
two integers h, k with k > h > 2, hCSP—q is a special case of k CSP—q. On the
other hand, given two integers p, ¢ with ¢ > p > 2, any surjective map from [g] to
[p] can be used to convert a function on [p]* to a function on [¢]*. The alphabet
size more accurately has a logarithmic impact on the constraint arity. Namely,
let x = [log,q]. Then any surjective map from [p]* to [g] similarly allows to
interpret a function on [¢]* as a function on [p]**. As k CSP—q is NP —hard
even in case when ¢ = k = 2 [?], a major issue as regards k CSP—q consists in
charactering its approzrimation degree.

1.2 Their Differential Approximability

Approximation algorithms aim at providing within polynomial time solution
values proved to be relatively close to the optimum value, where the proximity
to the optimum value is evaluated according to a specific measure. In this paper,
we consider the differential approximation measure (see [?] for an introduction).
Given an instance I of an optimization (generalized) CSP, we denote by v(Z,.)
its objective function, by opt(I) and wor(I) respectively the optimum and the
worst solution values on I. Then the differential ratio reached at a given solution
x on [ is the ratio:
v(I,z) — wor(l)
opt(I) — wor([)

Given p €]0,1], we say that = is p-approzimate when this ratio is at least p.
Equivalently, x is p-approximate if either the goal on I is to maximize and
v(I,z) > p xopt(I) + (1 — p) x wor(I), or the goal on I is to minimize and
v(I,x) < pxopt(l)+(1—p)xwor(I). Given an optimization CSP IT, a polynomial
time algorithm A is a p-approzimation algorithm for IT if A returns on every
instance of II a solution with differential ratio at least p. We say that II is
approzimable within factor p whenever such an algorithm exists.

Only a few facts are known regarding the approximability of k CSP—q within
a constant differential factor. The restrictions of MinSat and MaxSat to un-
weighted instances (i.e., to instances in which weights w; all are equal to 1) are
not approximable within any constant factor unless P = NP [?]. For 2 CSP—2,
the semidefinite programming based algorithm of Goemans and Williamson [?]
produces solutions with expected differential ratio at least 2 — w/2 > 0.429 [?],
and the algorithm can be derandomized [?]. In between, the question whether
k CSP —q is approximable within any constant factor remains open for all integers
k>2,q>2such that ¢ >3 or k > 4.

3 CSPs in which constraints can take non-boolean values are often called generalized
CSPs in the literature. However, a constraint P;(zs,) can be rewritten as the com-
bination vk, Pi(v) X (zs; = v) of constraints. Thus when k and g are universal
constants, we may indifferently consider functions with boolean or rational values.
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1.3 Outline

A common way to exhibit new approximability lower and upper bounds for a
given optimization problem consists in reducing to or from another optimization
problem for which approximability bounds are known:

Definition 1. An optimization CSP II D-reduces to another optimization CSP
IT" if one can derive from any p-approximation algorithm A for II' a v x p-
approzimation algorithm for II, where v is some positive quantity. When this
occurs, vy is called the expansion of the reduction.

For example, it is not hard to see that the approximability bound of 2 — 7 /2
for 2 CSP —2 somehow extends by reduction to 3 CSP—2:

Proposition 1. If E2Lin—2 is approzimable within factor p, then 3 CSP—2 is
approximable within factor p/2.

Proof (sketch). Let I be an instance of 3 CSP—2. First, interpret I as an instance
J of 3Lin—2 use the discrete Fourier transform. Then consider instance H of
2Lin—2 that is obtained from J by removing its constraints with odd arity.
Any pair z € {0,1}", 2 = (1 — 21,...,1 — x,,) of solutions satisfy v(I,z) =
v(J,2)+N(I) and v(J,z)+v(J, Z) = 2v(H,x)+N'(I), where N(I) and N'(I) are
two quantities that only depend on I. If the goal on [ is to maximize, then the
latter equality notably implies inequalities 2 x opt(H) > opt(J)+wor(J)— N'(I)
and 2 x wor(H) > 2 x wor(J) — N'(I). Otherwise, the converse inequalities hold.
In both cases, we deduce from these inequalities that, provided that x is p-
approximate on H, a solution z or Z that performs the best objective value on
J is p/2-approximate on J and thus, on I. a

We address the question whether given three integers k > 2, p > 2 and q > p,
k CSP—q D-reduces to k CSP—p. We more specifically study the expansion of
a specific reduction that basically consists in restricting a given instance I of
k CSP—q to solution sets of the form T where T is a p-cardinality subset of [g].
The analysis we propose, though, requires to restrict to the case when p > k.

In the next section, we introduce a family of combinatorial designs (Definition
2) that provides some lower bound (g, p, k) for the expansion of the reduction
(Theorem 1). Section 3 is then dedicated to the exhibition of such combinatorial
designs. Using a recursive construction for the case when p = k (Theorem 2), we
show that 1/(q — p + k/2)* is a proper lower bound of for v(q, p, k). Therefore,
we obtain the following conditional approximation result:

Corollary 1. Given any three integers k > 2, p > k and q¢ > p, kCSP—q D-
reduces to k CSP—p with an expansion of 1/(q—p+k/2)* on the approzimation
guarantee. The reduction involves O(gP) instances of k CSP—p.

The question whether k CSP—q is approximable within some constant factor
consequently reduces to the consideration of integers k, g such that k& > ¢ > 2.
Most importantly, it follows from Nesterov’s result as regards 2 CSP—2 (we more
specifically refer to Theorem 2.3, Theorem 3.3 and Corollary 3.4 of [?]) that for
all integers ¢ > 2, 2 CSP—q is approximable within a constant factor:
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Corollary 2. For all integers q > 2, 2CSP—q is approximable within factor

(2-m/2)/(g - 1)

2 Reducing the Alphabet Size of a CSP Instance

Let k > 2, p > 2 and g > p be three integers, and I be an instance of k CSP—q.
Thereafter, Pp([q]) refers to the set of the p-cardinality subsets of [g].

Given S = (S1,...,5,) € Pp(lg])™, any set {mg; : S; = [p||j € [n]} of bijec-
tions allows to interpret the restriction of I to solutions in S as an instance of
k CSP—p. A natural way to derive approximate solutions on I from a hypotheti-
cal algorithm A for k CSP —p therefore consists in restricting I to solution subsets
S € Pp(lg])™. The standard approximation measure evaluates the performance
of a given solution z by the ratio v(I,x)/opt(l). In [?], the authors study the
randomized reduction that consists in picking S € P,([¢])"™ uniformely at ran-
dom, and then using A to compute a solution x € S. They show that, provided
that the goal on I is to maximize and I is such that w;P; > 0,7 € [m], the ex-
pected value of max,eg{v(I,z)} over all S € P,([g])" is at least (p/q)* x opt([).
Accordingly, picking S € P,([¢g])™ uniformely at random, and then computing a
solution z € S with value at least p x max,cg{v(I,x)}, one gets a solution with
expected value at least (p/q)*p x opt(I). The reduction therefore preserves the
expected standard ratio up to a multiplicative factor of (p/q).

Given T € Pp([q]), let I(T) refer to the restriction of I to solution set T™.
Then similarly to [?], we analyse the reduction that consists in using A to com-
pute for all ' € P,([¢]) an approximate solution z(7") on I(T'), and then return-
ing a solution z(T') that performs the best objective value.

2.1 Seeking Symmetries in the Solution Set

We may assume w.l.0.g. that the goal on I is to maximize (as otherwise, rather
than I, consider instance I’ obtained from I by substituing for each constraint
P;(z;,) constraint —P;(xy,)). When this occurs, the extremal values on I and
on subinstances I(T') trivially satisfy:

opt(I) = opt(I(T)) = wor(I(T)) = wor(I), TeP(ld) (1)
Now assume that for all T' € P,([q]), we are given a solution z(T") € T™ that is
p-approximate on I(T"). Then for all T* € P,([q]), we have:
maxrep, () 101, 2(T))} > v(Il, z(T"))
> p x opt(I(T*)) + (1 = p) x wor(I(T"))
> pxopt(I(T7)) + (1 = p) x wor(I) by (1) (2)
Eventually assume that 7™ is a set in P,([g]) that contains a solution with
optimal value over {T"|T € P,([q])}. Then provided that opt(I(T*)) is o-
approximate on I, one gets a connection with opt(I(7T)):
maxrep, (q) {01, 2(T))} — wor(l) > p x (opt(I(T*)) — wor([)) (2)
> px 6 x (opt(I) — wor(I)) (3)
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Hence, if we are able to compare — in a differential approximation manner
— opt(I(T*)) to opt(I), then we can deduce from approximate solutions of
subinstances I(7T") approximate solutions of I. We thus shall seek a lower bound
for the differential ratio reached on I at opt(I(7™)).

Let z* be a solution with optimum value on I. Then one way to obtain such

a lower bound consists in exhibiting two solution multisets X = (x!, ..., zf) and
Y = (y',...,y") of the same size R that satisfy the following conditions:
X AT |T € Pp(la))} (4)
R* £ |{re[R]|y. =2"]} > 1 ()
{r € [R]|a7, = v} = {r € [R] |y}, = v}, vE g, i€ [m] (6)

Requirements (4), (5) and (6) respectively ensure that X exclusively considers
solutions of subinstances I(T"), z* occurs at least once in Y, and each constraint
Pi(zz,) of I is evaluated on the same collection of |.J;|-tuples over solution mul-
tisets X and ). Requirement (6) thus ensures that the sum of solution values
over X and Y are identical. Provided that such a pair (X,)) exists, we have:

opt(I(T*)) > 3% {v(I,27)}/R by definition of T*, and (4)

=% {v(I,y")}/R by (6)
> R* x opt(I)/R+ (R— R*) x wor(I)/R by (5) (7)

Thus opt(I(T*)) is R*/R-approximate on I. Therefore, one shall seek such pairs
of solution multisets on which the ratio R*/R is as hight as possible.

This is precisely what we do, and this is why we restrict our analysis to the
case when k < p. Indeed, e.g. assume that J; = (1,...,k) and (z7,...,2}) =
(1,...,k). Then by (6) and (5), X shall contain at least R* > 0 solutions x"
with («f,...,2}) = (1,...,k). If £ > p, then such solutions violate condition
(4). Hence, from now on, we assume ¢ > p > k.

2.2 Partition-Based Solution Multisets

Solution z* induces a partition of [n] into ¢ — possibly empty — subsets de-
pending on the ¢ possible values taken by its coordinates. Given ¢ € [q], we
denote by V. the set of indices j € [n] such that 2} = c.

We restrict our solution multisets to vectors @ that satisfy =7 = xj, = x; =
xp, J,h € [n]. Tt is thus possible to identify X and Y with two arrays ¥ and ¢
with ¢ columns, coefficients in [¢], and the same number R of rows. Each row
W, = (¥}L,...,W9) of ¥ gives rise in X to the vector of [¢]" that satisfies for every
¢ € [q] that its coordinates with index in V, all are equal to ¥¢. ) is derived
from @ in the exact same way. Formally, we define 7.« : [¢q]? — [¢]™ by

T (W), = (Uey - -, Ue), c € [q]

and X, Y by X = (7« (@) |r € [R]) and Y = (72~ (P;) | € [R]). Given i € [m],
let ¢;1,...,¢;n, refer to the distinct values taken by the coordinates of x* with
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Table 1. Pairs of arrays that achieve (4, 3,2) and (5, 3, 2).

7(4,3,2) = 2/6 = 1/3 7(5,3,2) = 1/6
vtvt et et ol 9? 9° 9t vt vt et et o 97 9P ot 9P
11 3 4 113 3 1 2 4 4 4 1 2 3 45
1 2 1 4 1 21 3 1 3 3 3 5 1 3 4 3 4
12 3 3 1 2 3 4 2 2 3 25 2 2 4 2 4
1 2 3 3 1 2 3 4 2 3 4 2 4 2 3 3 25
4 1 1 3 4 11 4 4 4 3 4 5 4 4 3 3 5
4 2 3 4 4 2 3 3 4 4 4 3 4 4 4 4 4 4
index in J;, and let H; = (¢;1,. .., ¢ p,). Then solution multisets X' and Y meet

requirements (4), (5) and (6) of Section 2.1 iff arrays ¥ and @ satisfy:

{@, ... o} <p,r€[R]
R £|{re[Rl|®, =(L,...,q)}| > 1
{r € [R| %" = v}| = [{r € [R]| ] = v}|, v € [ ™], i € [m] (

8)
9)
0)

=~

Hence, if we are aware of such a pair of arrays, then we know by (7) that
opt(I(T*)) is R*/R-approximate. These observations suggest to introduce the
following families I'(R, R*, q, p, k) of combinatorial designs and their associated
numbers (g, p, k) (see Table 1 for an illustration):

Definition 2. Let k > 2, p > k and q > p be three integers. Then given any
two integers R > 1, R* € [R], we define I'(R, R*,q,p, k) as the (possibly empty)
set of pairs (W, P) of arrays with R rows, q columns, and coefficients in a set
Y ={o1,...,04} of q symbols, that satisfy the following:

1. the components of each row of W take at most p distinct values;

2. (01,...,04) occurs R* times as a row in P;
3. for all J = {c1,...,ck} C [q] with |J| = k, subarrays W’ = (¥c1,... W)
and @7 = (&1, ... &) coincide up to the ordering of their rows.

Furthermore, we define v(q, p, k) as the greatest number vy € [0, 1] for which there
exist two natural numbers R, R* such that R*/R =~ and I'(R, R*,q,p, k) # 0.

Since cardinalities |H;| may be at most min{q, k} = k, by requirement 3. of
Definition 2, a pair (¥, ®) € I'(R, R*,q,p, k) does satisfy (10) regardless of the
precise instance I of k CSP—q and the precise solution z* of I we consider. By
(7), this implies that v(q, p, k) is a proper lower bound for the differential ratio
reached on T at opt(I(T*)). We thus have established the following:

Lemma 1. For all integers k > 2, p > k and q > p, on any instance of
k CSP—q, solutions that perform the best objective value among those whose
coordinates take at most p distinct values are y(q, p, k)-approzimate.

To conclude, according to inequality (3), Lemma 1 also establishes that
~(q, p, k) is a proper lower bound for the expansion of our reduction:
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Theorem 1. For all integers k > 2, p > k and ¢ > p, k CSP—q D-reduces to
k CSP—p with an expansion of v(q,p, k) on the approrimation guarantee. The
reduction involves O(gP) instances of k CSP—p.

3 A Lower Bound for Numbers v(q, p, k)

It remains us to exhibit lower bounds for numbers (g, p, k). To do so, we mainly

present a recursive construction for the case when p = k. But first, we mention a

few combinatorial identities that are involved in the analysis of this construction.
We define:

T(a,b) £ 320 (D ("57)s abeN, a>b  (11)
S(a,b,c) = ZQO(—l)"(i) (Z::), a,b,ceN, b>c (12)

Numbers T'(a,b) and S(a, b, c) satisfy the following identities:

Property 1. For all a,b € N with a > b > 1, we have:

T(a,b) =2°(“,") +T(a—1,b—1) (13)
=2(}) = T(a,b—1) (14)
=25 T(e,b—1)+1 (15)

Proof (sketch). Recursions (13) and (14) are obtained using Pascal’s rule on
coefficients of the form respectively (%) and (agi;r). Identity (15) can then be
deduced from those recursions. O

Property 2. For all a,b,c € N with b > max{a, ¢}, we have S(a,b,c) = (b_a).

c

Proof (sketch). By induction on integer b — a. O

3.1 A Recursive Construction for Families I'(R, 1, g, k, k)
This section is dedicated to the proof of the following Theorem:

Theorem 2. For all integers q and k with ¢ > k > 2, we have y(q, k, k) = 1 if
q=k, and v(q,k, k) > 2/(T(q, k) + 1) otherwise.

The case when ¢ = k is trivial, considering ¥ = & = {(1,...,k)}. For greater
integers ¢ — k, the argument relies on the following Lemma:

Lemma 2. Letk > 2, ¢q > k, R* > 1 and R > R* be four integers such that
I'(R,R*,q—1,k,k)#£0. Then '(R+T(q—1,k—1),1,q,k, k) # 0.

Proof. Let (¥,®) € I'(R,R*,q — 1,k, k). We assume w.l.o.g. that (1,...,q — 1)
occurs at row 1 in @. Our goal is to add in arrays ¥ and @ a single new column
and new rows so as to obtain a new pair (¥,®) € I'(R', R*',q, k, k) for some
positive integers R’ and R*' that ideally maximize the ratio R*'/R’.
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Table 2. Construction of a pair of arrays in I'(R+ T'(¢ — 1,k — 1), 1, g, k, k) starting
with a pair (¢,®) € I'(R,R",q — 1,k, k) of arrays with &1 = (1,...,q — 1).

1. Insert in ¥ and @ new columns ¥? and ®? that are defined by:
(a) WO =07 € R
(b) ¢ =g and 1 = d.,r € {2,... R}
2. For h =k — 1 down to 0:
(a) For all H C [¢ — 1] with |H| = h:
i. let a(H) € [q]?"" be defined for all ¢ € [q — 1] by a(H). = cif ¢ € H, and
q otherwise;
ii. if h = k — 1 mod 2, then insert (Zifiﬁ) copies of row vectors (a(H),q)
and (a(H),1) in respectively ¥ and &;
iii. otherwise, insert (Zj:ﬁ) copies of row vectors (a(H), q) and (a(H),1) in
respectively @ and V.

We describe our construction in Table 2. Let us explain it before proving its
rightness. Step 1. first inserts a gth column in the arrays. If we set ¥4 to W'
and @9 to @', then (¥, ®) trivially fulfils requirements 7. and 3. of Definition 2.
However, as (1,...,q) must occur at least once as a row in @, we assign value
q rather than @1 to &{. As a result, (¥, ®) violates requirement 3. of Definition
2. Hence, in Step 2., we insert new rows in the arrays until they satisfy this
requirement.

Let J = {c1,...,cx—1} be a subset of [¢ — 1] with size k — 1, and u =
(c1,...,cx_1). After Step 1., row 1 is the single row of subarray (®”,$9) that
coincides with (u, ¢), while there is no such row in (&7, ¥?). As (¢7,®1) = (u, 1)
while (®,¥) € I'(R, R*,q — 1,k, k), (&7, 89) symmetrically coincides with (u, 1)
on one less row than (W7 ,¥?) does. Iteration h = k — 1 corrects this precise
imbalance when it inserts row vectors («(J),q) in ¥ and («(J),1) in .

However, this iteration also introduces new violations of requirement 3. No-
tably, let s € [k — 1], and v = (¢1,...,C5-1,¢,Cs41,---,Cr—1)- Then iteration
h = k — 1 inserts in each array a new row w with u; = v each time it selects
a (k — 1)-cardinality subset H of [¢ — 1] with ¢1,...,¢5-1,Cs41,...,¢k—1 € H
and ¢; ¢ H. Since there are ¢ — 1 — (k — 1) = ¢ — k such subsets, we deduce
that at the end of this iteration, vectors (v, ¢) and (v, 1) occur respectively ¢ — k
and 0 times as a row in (W7, ¥?), while the converse holds for (&7, ®%). During
iteration h = k — 2, we correct this precise imbalance by inserting ¢ — k copies
of row vectors (a(J\{cs}),1) and (a(J\{cs}),q) in respectively & and .

More generally, for all h € {0,...,k — 1}, iteration h ensures for all v €
{e1,q} x ... x {ck—1,q} with exactly h coordinates in [¢ — 1] and all a € {1, ¢}
that (v,a) occurs the same number of times as a row in (7, ¥?) and (&7, ®9).

We now prove that, at the end of the process, (¥,®) € I'(R', 1, q, k, k) where
R'=R+T(q—1,k—1). By construction, the resulting arrays satisfy that:

— their number R’ of rows is R+ > p—o (1, (122" = R+ T(q — 1,k — 1);
— in @, row 1 is the single row that coincides with (1,...,q);
in ¥, the coefficients of every row take at most k distinct values.
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It remains us to establish that (¥, ®) fulfils requirement 3. of Definition 2. Let
J = (c1,...,cr) be a strictly increasing sequence of integers in [g], and v be a
vector of [g]*. We shall show that subarrays ¥/ and &7 coincide with v on the
same number of rows. The case when ¢ ¢ J is trivial. Thus assume that ¢ = q.
We consider two cases:

ev ¢ {c1,q} x ... x {cx-1,q} x {1,¢}. ¥/ = v or &/ = v may not occur
unless r € [R]. Let r € [R] and let K = (c1,...,cx_1,1). Then ¥ = ¥X  while
@) = &K unless r = 1, in which case @] # v # ®X. Since the original pair of
arrays belongs to I'(R, R*,q—1, k, k), we deduce that ¥”/ and ¢/ indeed coincide
with v on the same number of rows.

eve{er,q} x...x{cr-1,q} x{1,q}. If (v1,...,v6-1) = (c1,...,Ck—1), then
we already discussed the fact that iteration h = k — 1 of Step 2. corrects the
imbalance induced by assignment @} = ¢. Otherwise, let L refer to the set of
indices ¢s € {c1,...,ck—1} such that vy = ¢s, and let ¢ = |L|. As £ < k — 2,
¥ = v or &/ = v may not occur unless r > R. Thus consider an iteration
h €{0,...,k — 1} of Step 2. For each H C [¢ — 1] with |H| = h, L C H and
H\L C [¢ — 1]\J, this iteration generates (Z:?:Z) rows u with uy = v. On the
one hand, if vy = ¢ (resp., vy = 1), then these rows occur in ¥ (resp., in @) iff
h has the same parity as k — 1. On the other hand, there are (‘;L__]}f) such subsets
H of [¢ — 1]. Hence, we have:

k— A {q—2—hY (q—
{r e [RN®] =v}| - [{r € [R]| D] =v}| = iZZ:%(zl)k ' h(zi_;_Z) (Z_];Z)
=+, CUTGESI) ()

We recognise S(q — k,q — 2 — £,k — 1 — ¢) which, according to Property 2, is

equal to (Zj:ﬁ) = 0. We conclude that (¥, ®) indeed satisfies requirement 3. of

Definition 2. a

The proof of Theorem 2 is straightforward from Lemma 2. Namely, given two
integers k > 2 and q > k, we consider the following recursive construction:

1. Set ¥ = {(1,...,k)} and & = {(1,...,k)}.
2. For a = k + 1 to ¢, apply construction underlying Lemma 2 to (¥, ®).

Table 3 illustrates the construction when &k € {2,3}. On the one hand, in view
of Lemma 2, the resulting pair (¥, ) of arrays belongs to I'(R, 1, ¢, k, k) where

R=1+%", T(a—1,k—1)=1+3% T(a,k—1)
On the other hand, by (15), we have:
L+ 0k Tlak = 1) = 14 (T(q.k) = 1)/2 = (T(q. k) +1)/2

This completes the proof of Theorem 2.

3.2 Deduced Approximation Results

Let k > 2, p > k and q > p be three integers. If p = k, then Theorem 2 together
with Theorem 1 provides a lower bound of 2/(T'(¢, k) + 1) for the expansion of
our reduction. We seek an estimate of 2/(T(gq, k) + 1).
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Table 3. The recursive construction for families I'((7'(5,2) + 1)/2,1,5,2,2) and
r(7T4,3)+1)/2,1,4,3,3) of combinatorial designs.

2/(T(5,2) +1) =1/16 2/(T(4,3)+1)=1/8
gl 2@ |l |ut| @ 2|P3| P3| B0 gl g2 gilgt| @t ¢ p3|pt
1 2111 1 2345 1 2 31 1 2 34
1 3 3|11 1 3 1|11 1 2 4 4 1 2 4 1
3 2 333 3 2 1|33 1 4 3 4 14 3 1
3 3 1[3]3 3 3 3|33 4 2 3 4 4 2 31
1 4 4 41 1 4 4 1|1 1 4 4 1 1 4 4 4
4 2 4 4|4 4 2 4 1|4 4 2 4 1 4 2 4 4
4 4 3 4|4 4 4 3 1|4 4 4 3 1 4 4 3 4
4 4 4 114 4 4 4 44 4 4 4 4 4 4 4 1
4 4 4 1|4 4 4 4 4|4
155 5 5 155 5 1
5 2 5 5 5 5 2 5 5 1
5 5 3 5 5 55 3 5 1
5 5 5 4 5 55 5 4 1
5 5 5 5 1 55555
5 5 5 5 1 555 5 5
5 5 5 5 1 5555 5

Property 3. For all a,b € N with a > b > 2, we have (T'(a,b)+1)/2 < (a—b/2)".
Proof. Applying recursions first (14), and then (13), one gets equality:

T(a,b)+1=2(3) =2 () ~ Tla—1,b-2) +1 (16)

On the one hand, we deduce again from (13) that T(a — 1,0 —2) =1 > T(a —
b+1,0) — 1 = 0. On the other hand, we can rewrite 2°(}) — 2°=1(5-]) as:

26 (4) — 261 (971 = 2(a — b/2) x 201 /b x [[*23(a — 1 — i)

Now 2°~1/b! < 1, while by the inequality of arithmetic and geometric means, we
have [[022(a — 1 —i) < (a — b/2)""1. O

We deduce from Property 3 that for all integers k > 2 and ¢ > k, k CSP—q D-
reduces to k CSP —k with an expansion of at least (g—k/2)* on the approximation
guarantee. Corollary 2 thus holds. Now assume that p > k. Then observe:

(g, p, k) > (g —p+k k k) >2/(T(q—p+kk)+1) (17)

Indeed, let a = ¢ — p + k, and assume that R and R* are two integers such
that I'(R, R*,a,k, k) # 0. Let then (¥,®) € I'(R, R*,a, k, k). Substituing for
every row u = (uq,...,u,) of ¥ and @ row vector u = (u1,...,uq,a+1,...,q),
one gets a new pair of arrays that trivially belongs to I'(R, R*,q,p, k). Hence,
combining Theorem 1, inequality (17) and Property 3, one obtains Corollary 1.
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Table 4. Numbers ¥(q, p, k) and v(q, p, k) for some triples (g, p, k). These values (and

the underlying pairs of arrays) were calculated by computer.

v(q,p,2) v(q,p,3) vE(¢:p; 2) ve(q,p,3)
q q q q

3 4 5 6|4 5 6|3 4 5 6 7 |4 5 6 7
2[1/41/91/16 1/25| — — — [1/31/41/59/59 1/7 [— — — -

3| — 1/3 1/6 1/10{1/8 1/251/56| — 1/22/54/13 2/7 |1/41/11 3225
pl4 - — 4/9 1/4| - 1/5 2/271| - — 3/57/15 3/7 | — 1/3 1/6 5/52
51— — — 1/2| - — 1/4| - — — 2/3 11/21| — — 4/9 2/9
6] — — — — |- — —|l— — — — 5/T|—= - = 1/2

4 Concluding Remarks

We make a few remarks as regards combinatorial designs of Definiton 2. When
p = k, we think that 2/(T(¢, k) + 1) is the exact value of (g, k, k). The question
whether 2/(T(q, k) + 1) is optimal, though, still has to be settled. By contrast,
when p > k, the only estimate of v(q,p, k) we are aware of is the trivial lower
bound v(q —p+ k, k, k). Yet, it the most likely holds given three integers k > 2,
p > kand g > p that y(¢+1,p+1,k) > v(g,p, k). Table 4, in which we indicate
the value of v(q, p, k) for a few triples (¢, p, k), illustrates this fact quite well.

According to Lemma 1, v(q, p, k) provides some lower bound on “how much
we lose” on the optimal value of an instance of an optimization CSP when
decreasing the size of its alphabet. This is a good motivation for studying these
combinatorial designs in case when p > k. Likewise, let k CSP(&,) refer to the
optimization CSP over Z, where functions P; that occur in the constraints have
arity at most k, and satisfy:

q )

Piyr+a,....yx, +a) = Pi(y1, -, Yn,), YyELy, acly (18)
k CSP (&) notably covers the restriction of Lin—q to equations of the form a1y, +
cooFag_1yp—1— (1 + ...+ ak—1)yr = o mod q. Given an integer a, we denote
by a the vector (a,...,a) (whose dimension depends on the context). On an
instance I of k CSP(&,), any constraint C; evaluates the same on any two entries
xy, and xj, + a. The objective function v(I,.) similarly evaluates the same on
any two entries x and x + a. This suggests to consider the slight relaxation
I'g(R, R*,q,p, k) of families I'(R, R*, q,p, k) where ¥ and @ have coefficients in

Z4 and, rather than requirements 2. and 3., satisfy the two conditions below:

2. &, €{(a,14a,...,—1+a)|a € Z,} holds for R* indices r € [R];
. for all J C [q] with |J| = k and all v € {0} x ZE~!, @7 and &7 coincide with
a vector in {(v1 +a,...,vx +a)|a € Zg} on the same number of rows.

We define numbers yg(g,p, k) just as the same as numbers (g, p, k). Table 5
pictures two such pairs of arrays, while Table 4 provides the value of vg(q,p, k)
for some triples (q,p, k). Let k > 2, p > k and ¢ > p be three integers. Using a
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Table 5. Pairs of arrays that achieve vg(5,3,2) and vg(5,4, 3).

ve(5,3,2) =4/10=2/5 ve(5,4,3) =4/12=1/3
g gl g2 g3 gt @0 Pl P2 ¢ @t gt g2 g gt @0 ¢l ¢? ¢ Bt

[en)
—
w
w
[en)
o
[en)
o
[en)
—
[N}
w
o
—
w
=

SO OO OO OO oo
B W NNR R == O
O R NN R WNDON
Wk WO WwoFN
B O R O = N W
SO OO OO OO oo
BRW NN RFR =~ RFRO
=Wk ONNDN DN
O = N WWWWk
=R GURNJURI N O NN N
DO OO DODOD OO OO oo
NN R =R RREROO
WHNNWNNDNDNDFNDDN
=W W Wk W W W ww
O B R R R WO R R
DO DD O DODOD OO O OO
NN == O
WNDNWNDNDNDNFNN
W o Wk WWwwwNh wN
=R OO R R R R W W

similar argument as for the general case, it is not hard to see that, when restrict-
ing to input instances of k CSP(&y), the reduction we propose from k CSP—q to
k CSP —p preserves the differential ratio up to a multiplive factor of yg(q, p, k).
Notably, as yg(q,2,2) = 1/q, ¢ € {3,4,5,7}, it follows from [?] that when
g € {3,4,5,7}, 2CSP(&,) is approximable within factor 0.429/¢ (and not only
0.429/(q — 1)?). Therefore, one also shall investigate families I'z(R, R*,q,p, k)
of combinatorial designs, and this more specifically in case when p = k = 2.



