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Abstract. Given an instance I of an optimization constraint satisfac-
tion problem (CSP), finding solutions with value at least the expected
value of a random solution is easy. We wonder how good such solutions
can be. Namely, we initiate the study of ratio ρE(I) = (EX [v(I,X)] −
wor(I))/(opt(I)−wor(I)) where opt(I), wor(I) and EX [v(I,X)] refer to
respectively the optimal, the worst, and the average solution values on I.
We here focus on the case when the variables have a domain of size q ≥ 2
and the constraint arity is at most k ≥ 2, where k, q are two constant
integers. Connecting this ratio to the highest frequency in orthogonal
arrays with specified parameters, we prove that it is Ω(1/nk/2) if q = 2,
Ω(1/nk−1−blogpκ (k−1)c) where pκ is the smallest prime power such that
pκ ≥ q otherwise, and Ω(1/qk) in (max{q, k}+ 1})-partite instances.

Keywords: Average differential ratio · Optimization constraint satis-
faction problems · Orthogonal arrays

1 Introduction

Given an integer q ≥ 2, an optimization Constraint Satisfaction Problem (CSP)
over Zq = Z/qZ considers a set {x1, . . . , xn} of Zq-valued variables and a set
{C1, . . . , Cm} of constraints, where a constraint consists of the application of
a (non constant) predicate Pi : Zkiq → {0, 1} to a tuple xJi = (xi1 , . . . , xiki )
of variables. The goal is then to assign values to the variables so as to satisfy
either as many, or as few constraints as possible. For instance, in the Maximum
Satisfiability Problem (MaxSat), the goal is to satisfy as many disjunctive clauses
as possible. In Min Lin−q, the goal is to satisfy as few equations of a system of
linear equations modulo q as possible.

Most often, a positive weight wi is associated with each constraint Ci. Given
a positive integer N , we represent by [N ] the discrete interval {1, . . . , N}. The
goal is then to optimize an objective function of the form∑m

i=1 wiCi =
∑m
i=1 wiPi(xJi) =

∑m
i=1 wiPi(xi1 , . . . , xiki )

over Znq where for all i ∈ [m]: ki ∈ [n], Pi : Zkiq → {0, 1}, Ji = (i1, . . . , iki) ⊆ [n]
and wi > 0. The special case when functions Pi all belong to a specific family F
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of functions is referred to as CSP(F) in the literature. Given a predicate P , the
restriction to constraints of the form P (xJi + vi) where vi is a constant vector is
refered to as CSP−P. For example, given a postive integer k, XORk is the k-ary
boolean predicate that accepts entries (y1, . . . , yk) with y1 + . . .+ yk ≡ 1 mod 2;
then Lin−2 = CSP−{XORk | k ∈ N∗} = CSP({XORk, 1− XORk | k ∈ N∗}).

We here consider the slight generalization where functions Pi may be real-
valued. In the sequel, we denote by CSP−q the corresponding problem, and by
kCSP−q (resp., EkCSP−q) the special case when every constraint depends on
at most (resp., exactly) k variables, where k is a universal constant integer. As
kCSP−q is NP−hard even in case when q = k = 2 [9], a major issue as regards
optimization CSPs consists in charactering their approximation degree.

1.1 Around the Average Solution Value

Thereafter, given an instance I of CSP−q, we denote by v(I, .) its objective
function, by w(I) =

∑m
i=1 wi the total weight on I, by opt(I) and wor(I) re-

spectively the optimum and the worst solution values on I. It is convenient to
think of the average solution value on I as the expected value EX [v(I,X)] of a
random solution where X = (X1, . . . , Xn) is a vector of pairwise independent
random variables, each uniformely distributed over Zq. This value expresses as:

EX [v(I,X)] =
∑m
i=1 wiEX [Pi(XJi)] =

∑m
i=1 wirPi

where given i ∈ [m], rPi refers to the average value of Pi over Zkiq . For example,
on an instance I of Lin−2, the average solution value equals w(I)/2.

Solutions with value at least EX [v(I,X)] are computationally easy to find,
e.g. using the conditional expectation technique [13]. Therefore, two questions
can naturally be asked: is it possible to compute within polynomial time solutions
that beat the average solution value, and what is the gain of the average solution
value over the worst solution value?

The former question notably leads to the concept of approximation of the ad-
vantage over a random assigment [11], herein referred to as gain approximation.
The advantage of a given solution x over a random assigment is the difference
v(I, x) − EX [v(I,X)] if one maximizes, EX [v(I,X)] − v(I, x) if one minimizes.
Given ρ ∈]0, 1], x approximates the optimum gain |opt(I) − EX [v(I,X)]| over
EX [v(I,X)] within factor ρ iff x achieves a gain ratio

ρG(I, x) =
v(I, x)− EX [v(I,X)]

opt(I)− EX [v(I,X)]
(1)

at least ρ. A given CSP Π is ρ-gain approximable (where ρ possibly depends
on parameters of the considered instance I) if it is possible to compute within
polynomial time on every instance I of Π a solution with gain ratio at least ρ(I).
The corresponding issue consists in determining “the best” ρ for which Π is ρ-
gain approximable. H̊astad and Venkatesh introduced in [11] this approximation
measure motivated by the fact that for numerous predicates P , for all constant
ε > 0, finding solutions with value at least (rP + ε)w(I) on almost satisfiable
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wor(I) opt(I)EX [v(I,X)] v(I, x)

Fig. 1. Quantities involved in ρG(I, x) and ρE(I).

instances of MaxCSP−P is NP−hard. For example, for all k ≥ 3, XORk is such
a predicate [10]. Thus for all k ≥ 3, k Lin−2 is NP−hard to approximate to
within any constant gain factor. It is, though, approximable within an expected
gain factor of Ω(

√
1/m) [11].

The latter question leads to the notion of advantage of a random solution
over the worst solution value. Namely, we say that the average solution value on
I is ρ-approximate if the ratio

ρE(I) =
EX [v(I,X)]− wor(I)

opt(I)− wor(I)
(2)

of the gain of EX [v(I,X)] over wor(I) to the diameter of I is at least ρ. Given a
CSP Π, we say that the average solution value is ρ-approximate for Π provided
that ρE(I) ≥ ρ(I) holds for all instances I of Π. The issue here consists in ex-
hibing “the tightest” possible lower bound ρ for ρE . For example, on an instance
I of E3 Lin−2, as given any x, any equation is satisfied either by x or by its com-
plement, we have opt(I) + wor(I) = w(I) = 2 × EX [v(I,X)] [7]. Equivalently,
ρE(I) is equal to 1/2. By contrast, for E2 Lin−2, we show that ρE(I) ∈ Ω(1/n),
while there are satisfiable instances I on which ρE(I) ∈ Θ(1/n).

Figure 1 pictures the quantities involved in ratios (1) and (2). The two ques-
tions are complementary, and the latter has potential to enlighten the former.
For instance, we may think that the more EX [v(I,X)] does a good job at getting
away from wor(I), the more it is computationally difficult to get away from it.

1.2 Outline

Our goal is to estimate ρE(I) on instances I of kCSP−q given two integers
q ≥ 2, k ≥ 2. To the best of our knowledge, such a study has not been carried out
so far. We may nevertheless make mention of a result due to Feige et al., and that
concerns the restriction to submodular functions. A function P : {0, 1}n → R is
submodular iff it satisfies for all y, z ∈ {0, 1}n that

P (y) + P (z) ≥ P (y1 ∨ z1, . . . , yn ∨ zn) + P (y1 ∧ z1, . . . , yn ∧ zn)

As shown in [8], given any maximizer x∗ of such a function P , we have:

EX [P (X)] ≥ P (x∗)/4 + P (x̄∗1, . . . , x̄
∗
n)/4 + P (0, . . . , 0)/4 + P (1, . . . , 1)/4 (3)

Since a conical combination of submodular pseudo-boolean functions is submod-
ular, it follows from (3) that, on an instance I of MaxCSP−2 in which functions
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Table 1. Lower bounds for ρE on instances of kCSP−q given two integers q ≥ 2, k ≥ 2:
pκ refers to the smallest prime power greater than or equal to q.

q k restriction ρE
≥ 2 ≥ 2 (k + 1)-partite instances of kCSP−q 1/qk

≥ 2 < pκ (pκ + 1)-partite instances of kCSP−q Ω(1/qk)

≥ 3 = 3 (2dlog2 qe + 2)-partite instances of 3CSP−q Ω(1/q3)

= 2 ≥ 2 kCSP−2 Ω(1/nbk/2c)

≥ 3 ≥ 2 kCSP−q Ω(1/nk−1−blogpκ (k−1)c)

Pi all are submodular, we have EX [v(I,X)] ≥ opt(I)/4+3×wor(I)/4 and thus,
ρE(I) ≥ 1/4.

In kCSP−q, thought, the functions that may occur in the constraints are not
constrained otherwise than by their arity. In order to exhibit lower bounds for
ρE(I), we seek expressions of EX [v(I,X)] as a conical combination of the opti-
mum solution value and as few other solution values as possible. We adopt kind
of a neighbourhood approach: we associate with each solution x of I a multiset
S(I, x) of solutions with the same average solution value as the whole solution
set, of relatively small size, and in which x occurs at least once. In the next sec-
tion, we show how to derive such solution multisets from hypothetical orthogonal
arrays (see Definition 2) with specified parameters that rely on characteristics
of I (main theorem). In Section 3, we derive lower bounds for ρE either from
orthogonal arrays of the literature, or by reduction from one alphabet size to a
greater one. These bounds are summarized in Table 1. In the last section, we
briefly discuss the obtained results and perpectives for further research.

2 Seeking Symmetries in the Solution Set

Let us start with a simple example. Given an integer q ≥ 2, we denote by Oq
the set of functions P : Zkq → R with k ∈ N∗ that satisfy:∑q−1

a=0 P (y1 + a, . . . , yk + a)/q = rP , y ∈ Zkq (4)

Oq is a natural generalization to q-ary alphabets of such boolean functions P
as XOR3 that, when using a {−1, 1}-encoding of truth values, are odd. For
example, the predicate on Z3

q that accepts solutions to equation y1 + y2 − y3 ≡
0 mod q is a function of Oq. By (4), given any instance I of CSP(Oq), we have:

v(I, x)/q +
∑q−1
a=1 v(I, (x1 + a, , . . . , xn + a))/q = EX [v(I,X)], x ∈ Znq (5)

Taking (5) at a solution x with optimal value, one trivially gets that the average
value is 1/q-approximate on I. Hence, for this CSP, one shall define S(I, x) by
S(I, x) = {x+ (a, . . . , a) | a ∈ Zq}.

2.1 Partition-Based Solution Families

We base our solution families S(I, x) on a specific partition V = {V1, . . . , Vν} of
[n]. These families then rely on an array M with ν columns and coefficients in
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Zq. Given x ∈ Znq , each row Mr = (M1
r , . . . ,M

ν
r ) of M gives rise in S(I, x) to the

vector obtained from x by translating for each c ∈ [ν] by M c
r all its coordinates

with index in Vc. Formally, let R refer to the number of rows in the array, and
let πV : Zνq → Znq be defined by:

πV(u)Vc = (uc, uc, . . . , uc), c ∈ [ν] , u ∈ Zνq (6)

Then we define S(I, .) by:

S(I, x) = (x+ πV(Mr) | r ∈ [R]) , x ∈ Znq (7)

We more specifically seek pairs (V,M) that satisfy the following condition:∑R
r=1 Pi(xJi + πV(Mr)Ji)/R = rPi , i ∈ [m], x ∈ Znq (8)

For example, when I is an instance of CSP(Oq), one may consider the pair (V,M)
where V = {[n]} and M = (0, 1, . . . , q − 1)T . Requirement (8) ensures that the
average solution value over S(I, x) equals the average solution value on I. Since
this holds for all x ∈ Znq , this in particular holds for a solution multiset S(I, x∗)
where x∗ is optimal. If R∗ refers to the number of times (0, . . . , 0) occurs as a
row in M , then R∗ precisely is the number of times x∗ occurs in S(I, x∗). Then
for such a solution multiset, we have:

EX [v(I,X)] =
∑R
r=1 v(I, x∗ + πV(Mr))/R

= R∗ × v(I, x∗)/R+
∑
r∈[R]:Mr 6=(0,...,0) v(I, x∗ + πV(Mr))/R

Therefore, the average solution value on I is R∗/R-approximate.
Observe that we may assume that (0, . . . , 0) is a vector of highest frequency

in M , since the array obtained by shifting every row of M by u ∈ Zνq still satisfies
(8).

2.2 Solution Families Derived from Orthogonal Arrays

Given i ∈ [m], we denote by (ci,1, . . . , ci,ki) the sequence of indices in [ν] such
that (i1, . . . , iki) ∈ Vci,1 × . . .× Vci,ki . Then given any x ∈ Znq , over S(I, x), Pi is
evaluated at entries

xJi + πV(Mr)Ji = (xi1 +M ci,1
r , . . . , xiki +M

ci,ki
r ), r ∈ [R]

(V,M) therefore in particular satisfies (8) at (i, x) provided that these entries
coincide the same number of times with each u ∈ Zkiq . Equivalently, (8) is satisfied

at (i, x) provided that each u ∈ Zkiq occurs R/qki times in vector multiset

((M ci,1
r , . . . ,M

ci,ki
r ) | r ∈ [R]) (9)

On the one hand, this may not occur unless indices ci,1, . . . , ci,ki are pairwise
distinct. On the other hand, assuming that these indices indeed are pairwise
distinct, {ci,1, . . . , ci,ki} can be any at most k-cardinality subset of [ν]. These
observations suggest to consider a pair (V,M) where V is a strong coloring of
the primary hypergraph of I, and M is orthogonal of strength k:
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Table 2. An OA(27, 5, 3, 2) on Z3 (we picture the transpose).

M1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
M2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
M3 0 0 2 0 1 1 1 2 2 1 1 2 0 0 2 0 1 2 0 1 2 1 2 2 0 0 1
M4 0 0 2 1 0 1 2 1 2 1 2 1 2 2 0 0 0 1 1 2 0 1 0 2 1 2 0
M5 0 0 2 1 1 2 2 0 1 2 0 1 0 2 1 2 1 0 1 1 2 0 2 0 2 1 0

Definition 1. The primary hypergraph of a CSP instance I is the hypergraph
GI where: for each j ∈ [n], there is a vertex j in GI ; for each i ∈ [m], there
is a hyperedge ei = (i1, . . . , iki) in GI . A strong coloring of GI is a partition
{U1, . . . , Uν} of [n] such that for all c ∈ [ν] and all i ∈ [m], |Uc∩{i1, . . . , iki}| ≤ 1.
I is said ν-partite whenever such a partition exists.

Definition 2. Let q ≥ 2, t ≥ 1, ν ≥ t and R be four integers, and Σ be a set of
q symbols. Then an R × ν array M with entries in Σ is an Orthogonal Array
of strength t, OA(R, ν, q, t) in short, if given any sequence J = (c1, . . . , ct) of
t column indices, each v ∈ Σt occurs the same number of times as a row in
subarray MJ = (M c1 , . . . ,M ck). (See Table 2 for an illustration.)

Since ki ≤ k, i ∈ [m], such a pair (V,M) indeed satisfies for all i ∈ [m] that the
vectors of (9) coincide R/qki times with each u ∈ Zkiq and thus, (8).

It is possible to reduce the number of columns and possibly the strength of
the array if functions Pi all satisfy, for some integer t > 0, that their average
value when fixing any t of their variables is equal to their average value. Namely,
given two integers q ≥ 2, t ≥ 1, we define Itq as the set of functions P : Zk → R
with k ∈ N∗ that satisfy:∑

y∈Zkq :yJ=v
P (y)/qk−t = rP , J ⊆ [k], |J | = t, v ∈ Ztq (10)

Such functions notably arise in the establishment of inapproximability bounds
for kCSP−q. Notably, for all k ≥ 3, if the accepting entries of a k-ary predicate
P ∈ I2q form a subgroup of Zkq , then MaxCSP−P is NP−hard to approximate
within any constant factor greater than rP [4]. For example, the predicate that
accepts solutions to equation y1 + y2− y3 ≡ 0 mod q over Z3

q is such a predicate.
Thus assume that Pi ∈ Itq, i ∈ [m] holds for some t > 0. It is then possible

to fix up to t coordinates of πV(Mr)Ji , and still obtain when averaging Pi(xJi +
πV(Mr)Ji) over r ∈ [R] the average value of Pi. Hence, rather than a strong
coloring {U1, . . . , Uν} of GI , we consider partition V = {U1, . . . , Uν−t, V0} where
V0 = Uν−t+1∪. . .∪Uν of [n]. M consequently has ν−t+1 columns. Given i ∈ [m],
we denote by Ki the set {ci,1, . . . , ci,ki}∩{1, . . . , ν−t} of column indices, by si it
cardinality. For the sake of clarity, we assume w.l.o.g. that Ki = {ci,1, . . . , ci,s}.
Over S(I, x), Pi is evaluated at entries

(xi1 +M
ci,1
r , . . . , xisi +M

ci,si
r , xisi+1 +Mν−t+1

r , . . . , xiki +Mν−t+1
r ), r ∈ [R]

where ki−si ≤ t and si ≤ min{ν−t, ki} ≤ min{ν−t, k}. We deduce that setting
e.g. M = N × {0} where N is an orthogonal array of strength min{ν − t, k} on
ν − t columns, one obtains a pair (V,M) that satisfies (8).
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Thereafter, given an instance I of CSP−q, we denote by νI the strong chro-
matic number of GI (that is, νI is the smallest integer such that I is νI -partite),
and by tI the greatest integer such that Pi ∈ ItIq , i ∈ [m] (thus tI possibly is 0).
In all, the preceding discussion establishes the following connection between the
average solution value of CSP instances and orthogonal arrays:

Theorem 1. Given any three integers q ≥ 2, t ≥ 1, ν ≥ t, we define ρ(ν, q, t) as
the greatest ρ ∈ [0, 1] for which an OA(R, ν, q, t) with highest frequency ρ exists.
(For example, the OA(27, 5, 3, 2) of Table 2 does achieve ρ(5, 3, 2) = 2/27.)

Then for all integers k ≥ 2, q ≥ 2, the average solution value on an instance
I of kCSP−q is ρ(νI − tI , q,min{k, νI − tI})-approximate.

3 Approximation Quality of the Average Solution Value

3.1 From an Alphabet Size to a Greater One

We derive lower bounds for ρE from orthognonal arrays with a relatively small
number of rows of the literature. Such arrays often require q to be a prime power.
However, we can derive lower bounds for ρE in case when q is not a prime power
from lower bounds for ρE in case when q is a prime power:

Theorem 2. Let q ≥ 3, k ≥ 2 be two integers. Then for all primes p, the average
solution value on an instance I of kCSP−q is ρ(νI , p

dlogp qe, k)-approximate.

Proof. Let κ = dlogp qe, d = pκ, and let π = (π1, . . . , πn) be a vector of surjective
maps from Zd to Zq. We interpret I as the instance fπ(I) of CSP−d where:

1. for each j ∈ [n], there is in fπ(I) a variable zj with domain Zd;
2. for each i ∈ [m], there is in fπ(I) a constraint Pi(πi1(zi1), . . . , πiki (ziki )),

with the same associated weight wi as Ci in I.

So as to retrieve solutions of I from solutions of fπ(I), we define gπ(I, .) by
gπ(I, z) = (π1(z1), . . . , πn(zn)), z ∈ Znd . By construction, gπ(I, .) is surjective,
and satisfies for all z ∈ Znd that v(I, gπ(I, z)) = v(fπ(I), z). The extremal solution
values on I and fπ(I) therefore satisfy:

opt(fπ(I)) = opt(I), wor(fπ(I)) = wor(I) (11)

By contrast, EZ [v(fπ(I), Z)] may differ from EX [v(I,X)], due to the fact
that two distinct vectors x, x′ ∈ Znq may be the image by gπ(I, .) of a distinct
number of vectors of Znd . Hence, rather than a single vector π, we consider a
vector Π = (Π1, . . . ,Πn) of random maps that are independently and uniformly
distributed over the set M of surjective maps from Zd to Zq.

Let j ∈ [n], a ∈ Zd, b ∈ Zq, b′ ∈ Zq\{b}. Consider then function σ onM that
maps any π ∈M to the map σ(π) : Zd → Zq defined by σ(π)(c) = b′ if π(c) = b,
b if π(c) = b′ and π(c) otherwise. σ clearly is a bijection onM. Hence, we have:

|{π ∈M|π(a) = b}| = |{π ∈M|σ(π)(a) = b′}| = |{π ∈M|π(a) = b′}|
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Since
∑q−1
b=0 PΠj [Πj(a) = b] = 1 holds for all j ∈ [n] and all a ∈ Zd, we first

deduce that probabilities PΠj [Πj(a) = b] all are equal to 1/q. We then de-
duce that probabilities PΠ [gΠ(I, z) = x], z ∈ Znd , x ∈ Znq all are equal to∏n
j=1 PΠj [Πj(zj) = xj ] = 1/qn. Accordingly, given any z ∈ Znd , we have:

EΠ [v(I, gΠ(I, z))] =
∑
x∈Znq

v(I, x)× PΠ [gΠ(I, z) = x] = EX [v(I,X)]

We eventually deduce that the expected average solution value on fΠ(I) satisfies:

EΠ [EZ [v(fΠ(I), Z)]] = EZ [EΠ [v(I, gΠ(I, Z))]] = EX [v(I,X)] (12)

By (12), there exists π∗ ∈ Mn such that EZ [v(fπ∗(I), Z)] ≤ EX [v(I,X)]
while by (11), for such a vector π∗, we have ρE(I) ≥ ρE(fπ∗(I)). Since the
supports of the constraints are unchanged by fπ, π ∈ Mn, the result follows
from Theorem 1. ut

3.2 Deriving Bounds from Orthogonal Arrays of the Litterature

Let q ≥ 2, t ≥ 1, ν ≥ t be three integers. The smallest positive integer R such
that an OA(R, ν, q, t) exists is referred to as F (ν, q, t) in the literature. The
highest frequency of a word in an array that achieves F (ν, q, t) naturally is at
least 1/F (ν, q, t). Also observe that F (ν, q, k) ≤ F (ν′, q, k) naturally holds for
all integers ν′ > ν. Hence, according to Theorems 1 and 2, given any instance I
of kCSP−q, we may exhibit lower bounds for ρE(I) using inequalities:

ρE(I) ≥ 1/F (ν′, q,min{νI − tI , k}), ν′ ∈ N, ν′ ≥ νI − tI (13)

ρE(I) ≥ 1/F (ν′, pdlogp qe, k), ν′, p ∈ N, ν′ ≥ νI , p prime (14)

First, we consider the case of instances with a bounded strong chromatic
number. Given three integers q ≥ 2, k ≥ 1, ν ≥ k, there exists an OA(qk, ν, q, k)
provided that one of the following cases occurs (see e.g. [12]):

1. ν ∈ {k, k + 1};
2. q is a prime power, q > k and ν ∈ {k + 2, . . . , q + 1};
3. k = 3, q is a power of 2, q > 3 and ν = q + 2.

1. is trivial, considering M ' Zkq if ν = k, M ' {y ∈ Zk+1
q | y1 + . . . + yk+1 ≡

0 mod q} otherwise. 2. and 3. are due to Bush. We deduce from (13) and (14)
the following lower bounds for ρE in O(max{q, k})-partite instances of kCSP−q:

Corollary 1. Let q ≥ 2, k ≥ 2, ν ≥ k be three integers with ν ∈ O(max{q, k})
and I be a ν-partite instance of kCSP−q. We denote by pκ the smallest prime
power greater than or equal to q. Then on I, ρE(I) is bounded below by:

1. 1/qν−tI > 1/qk if ν < k + tI ;
2. 1/qk if ν ≤ k + tI + 1;
3. 1/qk if q is a prime power, q > k and ν ≤ q + tI + 1;
4. 1/pκk ≥ 1/(2(q − 1))k if q is not a prime power, pκ > k and ν ≤ pκ + 1;
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5. 1/q3 if k = 3, q is a power of 2, q > 3 and ν ≤ q + tI + 2;
6. 1/23dlog2 qe ≥ 1/(2(q−1))3 if k = 3, q is not a power of 2 and ν ≤ 2dlog2 qe+2.

For example, on a k-partite instance I of Lin−q in which equations all are of the
form (xi1 + . . .+ xik ≡ αi,0 mod q), we have ρE(I) ≥ 1/q.

For greater integers ν, we refer to families of orthogonal arrays that originate
from infinite families of linear codes. Over the boolean alphabet, we consider dual
codes of BCH codes. Namely, binary BCH codes allow for all integers κ ≥ 3, k ≥ 1
such that 2κ−1 ≥ 2k+ 1 to construct an OA(R, 2κ−1, 2, 2k) with R ≤ 2κk (see
e.g. [12, 15]). For such pairs (κ, k), we consequently have F (2κ − 1, 2, 2k) ≤ 2κk.
Besides, as reported in [12], F (2κ, 2, 2k + 1) = 2 × F (2κ − 1, 2, 2k). Then, for
such pairs (κ, k), it also holds that F (2κ, 2, 2k + 1) ≤ 21+κk. Accordingly:

Corollary 2. Let k ≥ 2 be an integer. Then on all instances I of kCSP with
νI − tI ≥ k + 2, ρE(I) is bounded below by:

1. 1/2dlog2(νI−tI+1)ebk/2c ≥ 1/2bk/2c × 1/(νI − tI)bk/2c if k is even;
2. 1/21+dlog2(νI−tI)ebk/2c ≥ 1/21+bk/2c × 1/(νI − tI − 1)bk/2c if k is odd.

For E2 Lin−2, which is a special case of 2CSP(I12 ), we thus obtain for ρE a lower
bound of 1/2dlog2 νIe. We provide evidence that this bound is tight: given n ∈ N∗,
let In refer to the instance where GIn is the complete graph K2n and equations
all are of the form (xj + xh ≡ 0 mod 2). These instances are trivially satisfiable
by the vectors of allzeros and of allones. For all n ∈ N∗, we have:

ρE(In) = (
(
2n
2

)
/2− 2

(
n
2

)
)/(
(
2n
2

)
− 2
(
n
2

)
) = 1/(2n) = 1/νIn

For greater prime powers q, trace-codes of Reed-Solomon codes give rise for
all integers s, k, λ such that qs ≥ k > qλ ≥ 1 to q1+s(k−1−λ) × qs orthogonal
arrays of strength k on Zq [3]. Accordingly:

Corollary 3. Let q ≥ 3, k ≥ 2 be two integers. We denote by pκ the smallest
prime power such that pκ ≥ q, by λ the greatest integer such that k > pκλ. If q
is a prime power, then for all instances I of kCSP−q with νI − tI ≥ k, we have:

ρE(I) ≥ 1/q1+dlogq(νI−tI)e(k−1−λ) ≥ 1/qk−λ × 1/(νI − tI − 1)k−1−λ

Otherwise, for all instances I of kCSP−q with νI ≥ k, we have:

ρE(I) ≥ 1/pκ(1+dlogpκ νIe(k−1−λ)) ≥ 1/(2(q − 1))k−λ × 1/(νI − 1)k−1−λ

4 Concluding Remarks

In order to evaluate the quality of the average solution value, one shall compare
the lower bounds we obtain for ρE to both gain and differential approximability
bounds of the literature. The differential approximation measure (see [6] for an
introduction) evaluates the performance of a given soluton x by the ratio

ρD(I, x) =
v(I, x)− wor(I)

opt(I)− wor(I)
(15)
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Thus ρE(I) precisely is the average differential ratio on I. ρ-differential approx-
imable problems are defined just as the same as for the gain approximation
measure. Notice that by definition of ρG(I, x), ρE(I) and ρD(I, x), we have:

ρD(I, x) = ρE(I) + (1− ρE(I))× ρG(I, x) (16)

Hence, if a given CSP Π is ρ-gain approximable, and the average solution value
is δ-approximate for Π, then Π is [ρ+ δ(1− ρ)]-differential approximable.

We summarize in Table 3 the bounds we are aware of. In this table, we take
into account the fact that gain approximability lower bounds that hold for Lin−2
somehow extend to kCSP−q for all integers q ≥ 2, k ≥ 3:

Proposition 1. For all integers q ≥ 2, k ≥ 2, if (kdlog2 qe)Lin−2 is approx-
imable within gain factor ρ, then kCSP−q is approximable within differential
factor ρ and, provided that q is a power of 2, within gain factor ρ.

Proof (sketch). Let I be an instance of kCSP−q. First map I to an instance J
of (κk)CSP−2 where κ = dlog2 qe using a binary encoding of the variables. Then
map J to an instance H of (κk)Lin−2 using the discrete Fourier transform. When
q = 2κ, the average solution values on I and J (and thus, on H) are identical. ut

For such symptomatic CSPs as the restriction of CSP(Ik−1q ) to k-partite
instances for all k ≥ 3, and CSP(Oq), EX [v(I,X)] trivially brings the same
differential approximation guarantee of 1/q, which essentially is optimal, as in
the standard approximation framework. By contrast, for 2CSP−2, EX [v(I,X)]
is of rather low quality, considering that Ω(1/n) is a tight lower bound for ρE(I),
while 2CSP−2 is approximable within gain and differential factor respectively
Ω(1/ lnn) and Ω(1). For greater integers k, in dense instances of kCSP−2, the
factor of Ω(1/nbk/2c) EX [v(I,X)] gains over wor(I) is significantly greater than
the best gain approximation guarantee of Ω(1/m) known so far, and comparable
to the best expected gain factor of Ω(1/

√
m) known so far.

Starting with a R × ν-array M on Zq, we can define a probability distribu-
tion on Zνq by associating with each vector u ∈ Zνq its frequency in M . Then,
M is orthogonal of strength t iff this distribution is balanced t-wise independent.
This classical notion is strongly involved in the exhibition of approximation re-
sistant predicates (e.g. see [2, 4]). A function P : Zνq → R with minimal value P∗
similarly belongs to Itq iff 1/qν × (P − P∗)/(rP − P∗) defines a balanced t-wise
independent distribution on Zνq . The analysis we proposed therefore reinforce
the connection between balanced t-wise independence and approximability of
kCSP−q by allowing the establishement of positive results. Observe that the
arrays we used contain no duplicated rows. Therefore, lower bounds for ρ(ν, q, k)
(and thus, for ρE) could be improved by exhibiting orthogonal arrays (or bal-
anced k-wise independent measures) that maximize their highest frequency. Ta-
ble 4 provides a few illustrations of this fact.

The average differential ratio has potential to provide new insights into
CSPs. First, the method we used to obtain lower bounds for ρE not only shows
that EX [v(I,X)] achieves some differential ratio ρ, but also indicates that ρ-
differential approximate solutions are spread all over the solution set. It thus
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Table 3. Differential (ρD) and gain (ρG) approximability bounds for kCSP−q that
are achievable by either deterministic (det.) or randomized (exp.) algorithms, and their
comparison to ρE : pκ refers to the smallest prime power ≥ q; inapproximability bounds
are given for all constant ε > 0, and assume P 6= NP.

Approximability bounds in k-partite instances of EkCSP−q
k q tI ρG det. ρD det. ρE

= 2 = 2 = 1 0.561 [1] 0.78 [1] = 1/2
≥ 3 ≥ 2 = k − 1 ¬ ε [4] ¬ 1/q + ε [4] ≥ 1/q

≥ 3 ≥ 2, ≤ k = 2 ¬ ε [4] ¬ O(k/qk−1) + ε [4] ≥ 1/qk−2

≥ 3 ≥ k = 2 ¬ ε [4] ¬ O(k/qk−2) + ε [4] ≥ 1/qk−2

Gain approximability bounds for EkCSP−q
k q tI ρG det. ρG exp. ρE

= 2 = 2 ≥ 0 Ω(1/ lnn) [16] Ω(1/νI)

= 3 = 2 = 2 Ω(1/m) [11] Ω(
√

lnn/n) [14] = 1/2

≥ 4 = 2 ≥ 0 Ω(1/m) [11] Ω(1/
√
m) [11] Ω(1/ν

bk/2c
I )

≥ 2 = 2κ, ≥ 4 ≥ 0 Ω(1/m) Ω(1/
√
m) Ω(1/ν

k−1−blog2κ (k−1)c
I )

Other differential approximability bounds for kCSP−q
k, q ρD det. ρD exp. ρE

k = 2 or (k, q) = (3, 2) Ω(1) [17, 5] Ω(1/νI)

k ≥ 3 and q ≥ 3 Ω(1/m) Ω(1/
√
m) Ω(1/ν

k−1−blogpκ (k−1)c
I )

provides additional information on the repartition of solution values. Although
we took into account parameters νI and tI so as to refine our analysis, apart
from the arity of their constraints, we did not restrict the instances we consid-
ered. Hence, a next step should be the identification of hypergraphs and function
properties that allow to build partition-based solution families of low cardinality
that satisfy (8). More generally, it would be worthwhile to characterize func-
tions families F (as the set of submodular functions [8]) such that MaxCSP(F)
or MinCSP(F) admits a constant lower bound for ρE . Finally, the properties of
ρE viewed as a complexity measure, including its connections to other measures,
should be investigated. Notably, the authors of [7] could derive from the hard-
ness result of [10] for E3 Lin−2 a constant inapproximability bound of 0 for the
diameter of instances of 3 Sat, precisely because for E3 Lin−2, ρE ∈ O(1).
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