3rd International Conference on Bio-Based Building Materials

Some mechanical and thermal properties of vegetable aggregates composites: comparison of new binders

C. ONESIPPE, R. V. RATIARISOA, K. BILBA, H. SAVASTANO JUNIOR & M.-A. ARSÈNE

cristel.onesippe@univ-antilles.fr

French – Brazilian collaboration

Some mechanical and thermal properties of vegetable aggregates composites: comparison of new binders

Outline

3

- Context of the study
- Characterization of vegetable aggregates
- Results: Cement bagasse ashes composites
 - Bagasse ashes lime composites
- Effect of the nature of binder and effect of nature/content of aggregates
- Conclusions & perspectives/application

Context of the study

↘CO₂ in cement materials

- Partial substitution of cement by mineral additions
- Alternative binder without Portland cement (hydrated lime)

Context of the study (VALORIZATION OF AGROINDUSTRIAL RESIDUES AS MATERIALS FOR BUILDING AND HOUSING CO₂ emission reduction, material properties, by-product management (Pozzolanic material - Lime - Lime - Cement -

Sugar cane bagasse ashes

AERA 2 : Composites Alternative binder
Vegetable aggregates

pozzolanic material

Coconut

Sugar cane bagasse

RESULTS: characterization of vegetable aggregates

Morphology (binocular loupe)

Both are mainly composed of particles and vegetable fibers

Apparent and specific densities

Spacios	Density (kg / m ³)			
Species	Apparent	Specific		
Bagasse	73.1 ± 1.4	304 ± 21		
Coconut	60.2 ± 0.6	1289 ± 13		
Chenevotte	135.0			
Sunflower marrow	20.1			
Wood (cedar, spruce,) [Stamm 1928]		1484 -1536		
Cellulose [Chen 2014]		1500 -1588		
Lignin [Stamm 1928]		1350 -1500		

Specific density of cement = approx. 3000 kg.m⁻³

Adding vegetable aggregates should lighten the final composite.

Coconut aggregates:

- more than 50% particles < 5 mm;
- more than 80% have an aspect ratio < 2.5.

Bagasse aggregates:

- less than 30% particles < 5 mm;
- more than 50% have an aspect ratio > 2.5
- → more elongated than those of coconut.

Adding vegetable aggregates should reduce the flexural strength of the final composite (high aspect ratio is required).

RESULTS: characterization of vegetable aggregates

Water absorption

Coconut aggregates: After 2 days, absorption of 545%.

Bagasse aggregates: After 2 days, absorption of 400%.

Possible competition between the water necessary for the hydration of the matrix and the water absorbed by the aggregates →disturbing the process of hydration of the binder.

RESULTS: characterization of vegetable aggregates

Thermal decomposition

* 100°C: departure of free water

* 280°C: decomposition of hemicelluloses, pectins and extractives

* 160-650°C: decomposition of lignin

* 330°C: decomposition of cellulose (main peak)

Coconut aggregates are poorer in hemicelluloses and sugars (unfavorable to the hydration of the binder).

Cement - bagasse ashes composites reinforced by vegetable aggregates

12

Formulations 70 wt% C+ 30 wt% CBA + βwt% **vegetable aggregates**

Samples	Cement mass (g)	CBA mass (g)	Binder mass (g)	Bagasse aggregates mass (g)	Coconut aggregate s mass (g)	Water mass (g)	Pre- wetting water mass (g)	β (%)
C-CBA	70	30	100	-		0.48		0
C-CBA/Ba5	70	30	100	5		0.58	5	5
C-CBA/Ba10	70	30	100	10		0.58	10	10
C-CBA/Ba20	70	30	100	20		0.58	20	20
C-CBA/Co5	70	30	100		5	0.58	5	5
C-CBA/Co10	70	30	100		10	0.58	10	10
C-CBA/Co20	70	30	100		20	0.58	20	20

For all samples : mass of SPP = 1.8 g.

aggregates *∧* (high aspect ratio required).

Higher compressive strength with coconut aggregates:

* poorer in HC and water-soluble compounds (unfavorable to the hydration and strengthening of the cement matrix)

* absorb more H₂O

Cement-bagasseashescomposites:density and thermal conductivity results (56 days)

Apparent densities of composites with bagasse aggregates \gg those of composites based on coconut ones.

 $0.386 < \lambda < 0.580 \text{ W} / (\text{m.K}).$

 $\lambda_{\text{concrete}} = 0.92 \text{ W/ (m.K)}$

→No significant difference is found according to the nature of the aggregates.

Bagasse ashes –lime composites reinforced by vegetable aggregates

15

Formulations 70 wt% CBA + 30 wt% CH + βwt% vegetable aggregates

Samples	CBA mass (g)	Lime mass (g)	Binder mass (g)	Bagasse aggregates mass (g)	Coconut aggregates mass (g)	Water mass (g)	Pre- wetting water mass (g)	β (%)
CBA-CH	70	30	100	-		70		0
CBA-CH/Ba5(P)	70	30	100	5		80	5	5
CBA-CH/Ba10(P)	70	30	100	10		80	10	10
CBA-CH/Ba20(P)	70	30	100	20		80	20	20
CBA-CH/Co5(P)	70	30	100		5	80	5	5
CBA-CH/Co10(P)	70	30	100		10	80	10	10
CBA-CH/Co20(P)	70	30	100		20	80	20	20

For all samples : mass of SPP = 1.8 g.

as the mass content of the aggregates ↗ (up to 90% for 20 wt% of aggregates).

* Coconut aggregates: more regular ****

* Composites flexural strength \searrow as the mass content of the aggregates \nearrow (up to 84% for 20 wt% of aggregates).

- Bagasse aggregates: ↘
- No significant impact of aggregates treatment
- Bagasse aggregates: + ↘ of mechanical properties (richer in HC)
- ▶ of the compactness of the composite (introduction of voids)

Apparent density of the composites varies between 430 and 1147 kg / m³.

No noticeable effect of aggregates pyrolysis.

 $0.181 < \lambda < 0.375 \text{ W} / (\text{m.K}).$

 $\lambda_{\text{concrete}} = 0.92 \text{ W/ (m.K)}$

Ash-lime composites: more insulating composites than cement – bagasse ashes composites

→ weaker interface transition zone in CBA – CH composites, for bagasse

→ optimal content of aggregates for compressive strength = 5 wt%

 $\checkmark \lambda$ is reduced by a factor 2 with 20 wt% of aggregates

✓ Lime binder is more insulating than cement binder

Conclusions & perspectives/application

✓ Binder:

flexural and compressive strengths of cement – bagasse ashes binder = 2 to 4 x that of bagasse ashes – lime binder

✓ Composites (5-20 wt%):

↘ of strength cement – bagasse ashes by 8 to 10 lime – bagasse ashes by 4

> Optimal aggregate the binder = coconut

Ashes - lime binder:

- Higher compressive strength than those in literature.
- More insulating composites than cement bagasse ashes composites.
- Life cycle analysis has to be performed to assess CO₂ emission and to validate the environmental advantage of this alternative binder

APPLICATION: internal wall in houses

3rd International Conference on Bio-Based Building Materials

Thank you for your attention!!!

cristel.onesippe@univ-antilles.fr

Université des Antilles

