F. Aleskerov, D. Karabekyan, M. Remzi, V. Sanver, and . Yakuba, On the manipulability of voting rules: The case of 4 and 5 alternatives, Mathematical Social Sciences, vol.64, pp.67-73, 2012.

K. J. Arrow, Social Choice and Individual Values, 1963.

K. J. Arrow, Social Choice and Individual Values, 1951.

R. Axelrod, Advancing the art of simulation in the social sciences, Lecture Notes in Economics and Mathematical Systems, vol.456, pp.21-40, 1997.

J. Bentham, An Introduction to the Principles of Morals and Legislation, 1789.

S. Berg, A note on plurality distortion in large committees, European Journal of Political Economy, vol.1, issue.2, pp.271-284, 1985.

S. Berg, Paradox of voting under an urn model: the eect of homogeneity, Public Choice, vol.47, pp.377-387, 1985.

S. Berg and B. H. Bjurulf, A note on the paradox of voting : anonymous preference proles and May's formula, Public Choice, vol.40, pp.308-316, 1983.

A. Bergson, A reformulation of certain aspects of welfare economics, Quarterly Journal of Economics, vol.52, pp.310-334, 1938.

B. H. Bjurulf, A probabilistic analysis of voting blocs and the occurrence of the Paradox of Voting, pp.232-251, 1972.

D. Black, Justication of the Borda count, Public Choice, vol.28, pp.1-15, 1976.

D. Black, The Theory of Committees and Elections, 1958.

D. Black, On the rationale of group decision making, Journal of Political Economy, vol.56, pp.23-34, 1948.

J. De-borda, Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, 1781.

F. Brandt, C. Geist, and M. Strobel, Analyzing the Practical Relevance of Voting Paradoxes via Ehrhart Theory, Computer Simulations, and Empirical Data, Proceedings of the 2016 International Conference on Autonomous Agents, vol.16, pp.385-393, 2016.

C. D. Campbell and G. Tullock, A measure of the importance of cyclical majorities, Economic Journal, vol.75, pp.853-857, 1965.

D. Cervone, W. V. Gehrlein, and W. Zwicker, Which scoring rule maximizes Condorcet eciency under IAC?, Theory and Decision, vol.58, pp.145-185, 2005.

J. R. Chamberlin, J. L. Cohen, and C. H. Coombs, Social choice observed: Five presidential elections of the American Psychological Association, The Journal of Politics, vol.46, pp.479-502, 1984.

N. Condorcet and C. De, Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, Imprimerie Royale, 1785.

F. N. David and C. L. Mallows, The variance of spearman's rho in normal samples, Biometrika, vol.48, pp.19-28, 1961.

F. Demeyer and C. R. Plott, The probability of a cyclical majority, Econometrica, vol.38, pp.345-354, 1970.

M. Diss, V. Merlin, and F. Valognes, On the Condorcet eciency of approval voting and extended scoring rules for three alternatives, pp.255-283, 2010.

M. Diss and A. Doghmi, Multi-winner scoring election methods: Condorcet consistency and paradoxes, Public Choice, vol.169, issue.1, pp.97-116, 2016.
URL : https://hal.archives-ouvertes.fr/halshs-01285526

J. L. Dobra, An approach to empirical measures of voting paradoxes : an update and extension, Public Choice, vol.41, issue.2, pp.241-250, 1983.

J. L. Dobra and G. Tullock, An approach to empirical measures of voting paradoxes, Public Choice, vol.36, pp.193-194, 1981.

A. Downs, An Economic Theory of Political Action in a Democracy, Journal of Political Economy, vol.65, issue.2, pp.135-150, 1957.

F. Y. Edgeworth and . 1881, Mathematical psychics: An Essay on the Application of Mathematics to the Moral Sciences

B. Efron, Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, vol.7, pp.1-26, 1979.

E. Ouafdi, I. Abdelhalim, H. Moyouwou, and . Smaoui, Evaluating Voting Systems with Probability Models, Essays by and in honor of William Gehrlein and Dominique Lepelley, 2020.

J. M. Enelow and M. J. Hinich, Advances in the Spatial Theory of Voting, 1990.

M. Feix and J. Rouet, L'espace des phases électoral et les statistiques quantiques. Applications à la simulation numérique, 2005.

D. S. Felsenthal, Review of Paradoxes Aicting Procedures for Electing a Single Candidate, Electoral Systems : Paradoxes, Assumptions, and Procedures, Studies in Choice and Welfare, pp.19-91, 2012.

D. S. Felsenthal and H. Nurmi, Voting Procedures for Electing a Single Candidate, 2018.

P. C. Fishburn and W. V. Gehrlein, An Analysis of Voting Procedures with Nonranked Voting, Behavioral Science, vol.22, pp.178-185, 1977.

P. C. Fishburn and W. V. Gehrlein, The paradox of voting: Eects of individual indierence and intransitivity, Journal of Public Economics, vol.14, pp.83-94, 1980.

P. C. Fishburn and W. V. Gehrlein, Majority eciencies for simple voting procedures: Summary and interpretation, Thery and Decision, vol.14, issue.2, pp.141-153, 1982.

M. Fontana, Simulation in economics: evidence on diusion and communication, Journal of Articial Societies and Social Simulation, vol.9, issue.2, 2006.

M. B. Garman and M. I. Kamien, The paradox of voting: Probability calculations, Behavioral Science, vol.13, pp.306-316, 1968.

W. V. Gehrlein, Condorcet winners in dual cultures. Presented at National Meeting of Public Choice Society, 1978.

W. V. Gehrlein, The Condorcet criterion and committee selection, Mathematical Social Sciences, vol.10, pp.199-209, 1985.

W. V. Gehrlein, Condorcet's paradox and the Condorcet eciency of voting rules, Mathematica Japonica, vol.40, pp.173-199, 1997.

W. V. Gehrlein, Condorcet's paradox, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01452557

W. V. Gehrlein and P. C. Fishburn, Condorcet's paradox and anonymous preference proles, Public Choice, vol.26, pp.1-18, 1976.

W. V. Gehrlein and P. C. Fishburn, Coincidence probabilities for simple majority and positional voting rules, Social Science Research, vol.7, pp.272-283, 1978.

W. V. Gehrlein and P. C. Fishburn, Probabilities of election outcomes for large electorates, Journal of Economic Theory, vol.19, pp.38-49, 1978.

W. V. Gehrlein and D. Lepelley, Probability calculations in voting theory: An overview of recent results, The Finnish Political Science Association, pp.140-160, 2004.

W. V. Gehrlein and D. Lepelley, , 2011.

W. V. Gehrlein and D. Lepelley, Elections, Voting Rules and Paradoxical Outcomes, 2017.

G. Guilbaud, Les théories de l'intérêt général et le problème logique de l'aggrégation, Economie Appliquée, vol.5, pp.501-584, 1952.

M. L. Greenhut, Plant Location in Theory and Practice, The Economics of Space, 1956.

H. Hotelling, Stability in Competition, The Economic Journal, vol.39, issue.153, pp.41-57, 1929.

N. L. Johnson and S. Kotz, Urns Models and their Application, 1977.

B. Jones, B. Radcli, C. Taber, and R. Timpone, Condorcet winners and the paradox of voting: Probability calculations for weak preference orders, 1995.

, American Political Science Review, vol.89, pp.137-144

O. Kedar, When Moderate Voters Prefer Extreme Parties: Policy Balancing in Parliamentary Elections, American Political Science Review, vol.99, issue.2, pp.185-199, 2005.

J. S. Kelly, Almost all social choice rules are highly manipulable, but a few aren't. Social Choice and Welfare, vol.2, pp.161-175, 1993.

D. Klahr, A computer simulation of the paradox of voting, American Political Science Review, vol.60, pp.384-390, 1966.

K. Kuga and N. Hiroaki, Voter antagonism and the paradox of voting, Econometrica, vol.42, pp.1045-1067, 1974.

P. Kurrild-klitgaard, An empirical example of the Condorcet paradox of voting in a large electorate, Public Choice, vol.107, pp.135-145, 2001.

P. Kurrild-klitgaard, Voting paradoxes under proportional representation: Evidence from eight Danish elections, Scandinavian Political Studies, vol.31, issue.3, pp.242-267, 2008.

J. Laslier, Handbook on Approval Voting, Studies in Choice and Welfare, pp.311-335, 2010.

L. Breton, D. Michel, H. Lepelley, and . Smaoui, Correlation, partitioning and the probability of casting a decisive vote under the majority rule, Journal of Mathematical Economics, vol.64, pp.11-22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452554

D. Lepelley, A. Louichi, and H. Smaoui, On Ehrhart polynomials and probability calculations in voting theory, Social Choice and Welfare, vol.30, issue.3, pp.363-383, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01245310

D. Lepelley, A. Louichi, and F. Valognes, Computer simulations of voting systems, Advances in Complex Systems, issue.01n04, pp.181-194, 2000.

A. P. Lerner and H. W. Singer, Some Notes on Duopoly and Spatial Competition, Journal of Political Economy, vol.45, issue.2, pp.145-186, 1937.

C. List, Social Choice Theory. The Stanford Encyclopedia of Philosophy, 2013.

C. M. Macal and M. J. North, Tutorial on agent-based modelling and simulation, Journal of Simulation, vol.4, issue.3, pp.151-162, 2010.

A. Marshall, Principles of Economics. Macmillan, 1960.

K. O. May, A set of independent necessary and sucient conditions for simple majority decisions, Econometrica, vol.20, pp.680-684, 1952.

K. O. May, Probability of Certain Election Results, American Mathematical Monthly, vol.55, issue.4, pp.203-209, 1948.

R. M. May, Some mathematical remarks on the paradox of voting, Behavioral Science, vol.16, pp.143-153, 1971.

I. Merrill and . Samuel, A comparison of eciency of multicandidate electoral systems, American Journal of Political Science, vol.28, issue.1, pp.23-48, 1984.

I. Merrill, B. Samuel, and . Grofman, A unied theory of Voting: Directional and Proximity Spatial Models, 1999.

N. R. Miller, Election Inversions by the U.S. Electoral College, Electoral Systems : Paradoxes, Assumptions, and Procedures, Studies in Choice and Welfare, pp.93-127, 2012.

R. G. Niemi, The occurrence of the paradox of voting in university elections, Public Choice, vol.8, pp.91-100, 1970.

R. G. Niemi, . Weisberg, and F. Herbert, A mathematical solution for the probability of the paradox of voting, Behavioral Science, vol.13, pp.317-323, 1968.

H. Nurmi, Voting Paradoxes and How to Deal with Them, 1999.

H. Nurmi, Comparing Voting Systems. Dordrecht: B.Reidel, 1989.

A. C. Pigou, The Economics of Welfare, 1920.

R. L. Plackett, A reduction formula for normal multivariate integrals, Biometrika, vol.41, issue.3/4, pp.351-360, 1954.

F. Plassmann and T. Nicolaus-tideman, How to predict the frequency of voting events in actual elections, 2011.

J. E. Pomeranz and R. L. Weil, The cyclical majority problem, Communications of the ACM, vol.13, issue.4, pp.251-254, 1970.

A. Popova, M. Regenwetter, and N. Mattei, A behavioral perspective on social choice, Annals of Mathematics and Articial Intelligence, vol.68, pp.5-30, 2013.

G. Rabinowitz and S. E. Macdonald, A Directional Theory of Issue Voting, American Political Science Review, vol.83, issue.1, pp.93-121, 1989.

M. Regenwetter and B. Grofman, Choosing subsets: a size-independent probabilistic model and the quest for a social welfare ordering, Social Choice and Welfare, vol.15, pp.423-443, 1998.

M. Regenwetter, J. Adams, and B. Grofman, On the (sample) Condorcet eciency of majority rule: An alternative view of majority cycles and social homogeneity, Theory and Decision, vol.53, pp.153-186, 2002.

M. Regenwetter, B. Grofman, and A. A. Marley, On the model dependence of majority preference relations reconstructed from ballot or survey data, Mathematical Social Sciences, vol.43, pp.451-466, 2002.

M. Regenwetter, B. Grofman, A. J. Anthony, I. A. Marley, and . Tsetlin, Behavioral social choice, 2006.

W. H. Riker, The paradox of voting and congressional rules for voting on amendments, American Political Science Review, vol.52, pp.349-366, 1958.

W. H. Riker, Arrow's theorem and some examples of the paradox of voting, Mathematical applications in political science, pp.41-60, 1965.

D. G. Saari, Basic Geometry of Voting, 1995.

D. G. Saari and M. Tataru, The likelihood of dubious election outcomes, Economic Theory, vol.13, pp.345-363, 1999.

P. A. Samuelson, Foundations of Economic Analysis, 1947.

A. Smithies, Optimum location in spatial competition, Journal of Political Economy, vol.49, pp.423-439, 1941.

P. D. Stran, The Shapley-Shubik and Banzhaf power indices as probabilities, The Shapley Value: Essays in Honor of Lloyd S. Shapley, pp.71-82, 1988.

A. D. Taylor, A glimpse of impossibility: Kenneth Arrow's impossibility theory and voting, Perspect Polit Sci, vol.26, pp.23-26, 1997.

N. T. Tideman, Collective decision and voting: Cycles. Presented at Public Choice Society Meeting, 1992.

N. T. Tideman and F. Plassmann, Developing the aggregate empirical side of computational social choice, Annals of Mathematics and Articial Intelligence, vol.68, pp.31-64, 2013.

I. A. Tsetlin and M. Regenwetter, On the probability of correct or incorrect majority preference relations, Social Choice and Welfare, vol.20, pp.283-306, 2003.

V. Neumann, J. , and S. Ulam, The Monte Carlo Method, Bulletin of the American Mathematical Society, pp.51-60, 1945.

R. J. Weber, Comparison of voting systems, 1978.

H. F. Weisberg and R. G. Niemi, Probability calculations for cyclical majorities in Congressional voting, pp.181-203, 1978.

H. F. Weisberg and R. G. Niemi, A pairwise probability approach to the likelihood of the paradox of voting, Behavioral Science, vol.18, pp.109-117, 1973.

M. C. Wilson and G. Pritchard, Probability calculations under the IAC hypothesis, Mathematical Social Sciences, vol.54, pp.244-256, 2007.