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CONVERGENCE OF THE MAC SCHEME FOR THE

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH

VARIABLE DENSITY AND VISCOSITY

L. BATTEUX, T. GALLOUËT, R. HERBIN, J.C. LATCHÉ, AND P. POULLET

Abstract. The present paper addresses the convergence of the implicit MAC
(for Marker-and-Cell) scheme for time-dependent Navier–Stokes equations with

variable density and density-dependent viscosity and forcing term. A priori

estimates on the unknowns are obtained, and thanks to a topological degree
argument, they lead to the existence of a discrete solution at each time step.

Then, by compactness arguments relying on these same estimates, we obtain

the convergence (up to the extraction of a subsequence), when the space and
time steps tend to zero, of the numerical solutions to a limit; this latter is

shown to be a weak solution to the continuous problem by passing to the limit

in the scheme.

1. Introduction

We consider in this paper the numerical approximation of the incompressible
Navier–Stokes equations with variable density and viscosity,

∂tρ̄+ div(ρ̄ū) = 0,(1a)

ρ̄∂tū + (ū ·∇)ū− div(µ(ρ̄)D(ū)) + ∇p̄ = f ,(1b)

divū = 0,(1c)

in Ω×(0, T ) where T ∈ R+ and Ω is an open bounded connected subset of Rd, with
d ∈ {2, 3}, which may be meshed by a structured grid, and therefore consists of a
finite union of rectangles if d = 2 or of rectangular parallelepipeds if d = 3. The
variables ρ̄, ū and p̄ are respectively the density, the velocity and the pressure in the
flow, and the three above equations respectively enforce the mass conservation, the
momentum conservation and the incompressibility of the flow. The viscosity µ of the
fluid is supposed to be a continuous function of the density ρ̄. The strain rate tensor
D is defined as the symmetric part of the velocity gradient, i.e. D(v) = ∇v+ t∇v,
for any sufficiently regular vector function v. We assume that the forcing term f
either belongs to L2(0, T ;L2(Ω)d) or is a continuous function of the density ρ̄. This
system is supplemented with initial conditions and homogeneous Dirichlet boundary
conditions:

(2) ū|t=0 = u0(x), ρ̄|t=0 = ρ0(x) for a.e. x ∈ Ω, and ū|∂Ω = 0,

with u0 ∈ L2(Ω)d, ρ0 ∈ L∞(Ω) and 0 < ρmin ≤ ρ0(x) ≤ ρmax a.e. in Ω.
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These equations model a variable density and viscosity flow, which may be en-
countered in many physical situations. With f(ρ) = ρ g, with g the acceleration
of the gravity, we obtain the system of equations governing the natural convection
problems. System (1) also applies to the motion of mixtures of immiscible fluids
having different densities and viscosities, with possible applications to Rayleigh-
Taylor instabilities, tracking of interfaces between fluids in multiphase flows or
droplet impact onto a solid or a surface liquid, with however the limitation that
surface tension between the different fluids is not taken into account. If the vis-
cosity in one of these fluids is set to a very large value, the system matches what
we obtain when describing the fluid-structure interaction by the so-called volume
penalization method [23, 2].

Let us review the formal estimates satisfied by the solution. First, supposing
that the velocity field is regular enough (and such a regularity is required in the
weak formulation of the problem), a consequence (see for instance [6]) of equations
(1a) and (1c), is the following maximum principle:

(3) ρmin ≤ ρ̄(x, t) ≤ ρmax, for a.e. (x, t) ∈ Ω× (0, T ),

which shows that the natural regularity for ρ̄ is L∞(Ω×(0, T )), ρmin ≤ ρ̄ ≤ ρmax. A
classical formal identity, referred to as the kinetic energy balance, allows to derive
natural estimates for the velocity ū. Let us take for simplicity f = 0 in Equation
(1b), take the inner product of this relation by ū and use twice the mass balance
equation (1a) to obtain:

∂t
(1

2
ρ̄ |ū|2

)
+ div

(1

2
ρ̄ |ū|2 ū

)
− div

(
µ(ρ̄) D(ū)

)
· ū + ∇p̄ · ū = 0.

Integrating over Ω, one gets by integration by parts, since div ū = 0 and ū|∂Ω = 0,
that, for all t ∈ (0, T ):

d

dt

∫
Ω

1

2
ρ̄(x, t) |ū(x, t)|2 dx +

∫
Ω

µ(ρ̄) D(ū(x, t)) : D(ū(x, t)) dx = 0.

Integrating over the time interval (0, t) yields, once again for all t ∈ (0, T ):

(4)

∫
Ω

1

2
ρ̄(x, t) |ū(x, t)|2 dx +

∫ t

0

∫
Ω

µ(ρ̄) |D(ū(x, t))|2 dx dt

=

∫
Ω

1

2
ρ0(x) |u0(x)|2 dx, ∀t ∈ (0, T ).

Thanks to the assumptions on the initial data, the right-hand side of this rela-
tion is bounded. If ρ(x, t) ≥ ρmin > 0, the first term thus yields an estimate on
‖u(x, t)‖L2(Ω)d , for t ∈ (0, T ). Let us assume that the function µ is continuous
over [ρmin, ρmax] and satisfies µ(s) ≥ µmin > 0 for s in [ρmin, ρmax]; this hypothesis
is made throughout the paper. Under this assumption, the so-called Korn lemma
yields

µ(ρ̄) |D(ū(x, t))|2 ≥ µmin

2
|∇ū(x, t)|2, for (x, t) ∈ Ω× (0, T ).

so that the second term of Equation (4) controls the L2(0, T ;H1
0 (Ω)d) norm. The

natural regularity for ū is thus to lie in L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;H1
0 (Ω)d). To-

gether with the estimate (3) of the density, this suggests the following weak formu-
lation of the problem.
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Definition 1.1. Let ρ0 ∈ L∞(Ω) be such that 0 < ρmin ≤ ρ0(x) ≤ ρmax for a.e.
x ∈ Ω, and let u0 ∈ L2(Ω)d. Let µ be a continuous function over [ρmin, ρmax]
such that µ(s) ≥ µmin > 0 for s ∈ [ρmin, ρmax]. Finally, let f either be a given
function of L2(Ω × (0, T ))d or be a function f(ρ) of the density, continuous over
[ρmin, ρmax] (in which case f is bounded over the same interval). A pair (ρ̄, ū) is
a weak solution of problem (1) if it satisfies the following properties:

- ρ̄ ∈
{
ρ ∈ L∞(Ω× (0, T )), ρmin ≤ ρ ≤ ρmax a.e. in Ω× (0, T )

}
.

- ū ∈
{
v ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;E)

}
with E =

{
u ∈ H1

0 (Ω)d, divu =

0 a.e. in Ω
}

.

- For all ϕ in C∞c (Ω× [0, T )),

(5) −
∫ T

0

∫
Ω

ρ̄ (∂tϕ+ ū ·∇ϕ) dx dt =

∫
Ω

ρ0(x)ϕ(x, 0) dx.

- For all ϕ in
{
w ∈ C∞c (Ω× [0, T ))d, divϕ = 0 a.e. in Ω× (0, T )

}
,

(6)

∫ T

0

∫
Ω

[
− ρ̄ ū · ∂tϕ− (ρ̄ū⊗ ū) : ∇ϕ + µ(ρ̄) D(ū) : D(ϕ)

]
dx dt

=

∫
Ω

ρ0 u0 ·ϕ(x, 0) dx +

∫ T

0

∫
Ω

f ·ϕ dx dt.

The existence a weak solution to the problem (1) as given in Definition 1.1 was
proven in [27], without dependency on the density of the viscosity and the forcing
term. This proof is extended in [22, Chapter 2], dealing with the possible oc-
curence of void zones, i.e. zones where the density vanishes, and density-dependent
viscosities; a recent presentation may be found [3, Chapter VI].

The MAC scheme [18] is certainly among the most popular schemes for the
solution of Navier-Stokes equations, and, whenever a structured grid may be used,
proves to be a very efficient choice and has been used for the discretization of
several problems, see e.g. [25, 26, 10, 4]; in particular, for these specific domains, it
generally reaches the same accuracy as alternative inf-sup stable discretizations of
same order, as low order non-conforming finite elements [21], with a better observed
stability and a number of unknowns divided by d for the velocity. The aim of this
paper is to prove the convergence of the implicit-in-time scheme based on this
discretization, in the following sense: first, the scheme admits solutions; second,
given a sequence of grids and time steps, with both the space and time steps
tending to zero, we show by compactness arguments that the sequence of discrete
solutions converges, up to the extraction of a subsequence, to a limit, and that this
limit is a weak solution to the continuous problem in the sense of Definition 1.1.
This process requires results from the theory of transport equations [6], but does
not require any existence nor regularity of the solutions; instead, it provides an
existence result of weak solutions as a by product of the convergence result.

Up to our knowledge,similar studies are scarce : in [23], the authors deal with
a discontinuous Galerkin approximation of System (1); in [21], the authors study
a scheme combining finite volumes (for convection terms) and finite elements (for
the velocity diffusion term), based on the low-order non-conforming Rannacher-
Turek element. The advantage of this latter approach is two-fold: first, under
the discrete divergence-free constraint, the discrete mass balance, with a suitable
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definition of the convection fluxes, preserves the bounds of the density; second, a
careful construction of the velocity convection term allows to derive a local (i.e. not
integrated with respect to space) kinetic energy balance, without the need of any
compensating term. In [21], both the velocity and the forcing term are supposed
to be independent of the problem variables. We extend here this latter study in
several directions. First, the space discretisation is different. Second, we deal
with density-dependent viscosity and forcing term, which needs some technical
complements in order to pass to the limit in the scheme, but also implies that
we cope with the formulation of the stress tensor which is more realistic from a
mechanical viewpoint, namely µD(u) instead of ∆u. This latter point requires to
derive at the discrete level the analogue of the so-called Korn lemma; this results is
given in Appendix A. A part of the material of this paper, namely the convergence
theorem with a constant viscosity and the Laplace operator form for the diffusion
term, was announced in the conference paper [12], with a sketch of proof. The
proof of convergence of the MAC scheme to a weak solution for the constant density
incompressible Navier-Stokes equations is addressed in [13], and several results of
this latter paper are used in the sequel.

The analysis in the present paper is restricted to the fully implicit scheme. How-
ever, an easy extension allows to deal with semi-implicit schemes, where the advec-
tive field in the mass and momentum balance equations is taken at the beginning
of the time step; this process decouples the mass balance from the Navier-Stokes
equations (i.e. the momentum balance and the divergence constraint), yielding a
scheme that is easier to handle. However, for practical applications, pressure cor-
rection algorithms are often preferred: see e.g. [15, 28, 8] in the constant density
case and [16, 17] in the variable density case; their convergence analysis poses se-
vere difficulties and none of the above-quoted works address the convergence of
schemes where momentum balance and divergence free constraint are decoupled.
In [28, 8], error estimates are obtained for the discretization of the constant density
incompressible Navier-Stokes equations on square grids provided the exact solution
is very regular. In [17], first order error estimates for the variable density case are
obtained on the velocity, with a Galerkin-type method for the space discretization,
provided that the exact solution is regular (in a sense for which no proof of ex-
istence is available to this day) and that the density is “well approximated”. A
second order is also presented therein, but the convergence rate is only conjectured
and assessed by numerical results. Our process here is quite different. Indeed, as
already mentioned, we do not assume anye regularity assumption on the exact so-
lution. In fact, we do not even assume that there exists a solution; this is obtained
as a by-product of the proof of convergence of the scheme.

Let us present here the main steps of this proof. Consider a sequence of approx-
imate densities and velocities (ρ(m),u(m))m∈N computed on a series of grids and
time steps indexed by m, such that both the space and time steps tend to 0 as m
tends to infinity.

• From the maximum principle which is verified by the approximate density,
one obtains the existence of a discrete solution and the weak convergence
of the approximate densities to a limit ρ̄, up to a subsequence.
• Owing to the estimates of the velocity obtained by a Korn inequality

(needed because of the non constant viscosity), the weak convergence of
the velocity is obtained. Estimates on the time translates of the velocity
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are then established, so that an Aubin-Simon type time-compactness result
leads to the convergence of the velocity in Lq(Ω× (0, T )), 1 ≤ q < +∞.
• Passing to the limit on the discrete mass equation, we get that the limit

(ρ̄, ū) satisfies the weak mass balance equation.
• The convergence of the sequence (ρ(m))m∈N and consequently the conver-

gence of the sequence (µ(ρ(m)))m∈N in Lq(Ω × (0, T )), 1 ≤ q < +∞ is ob-
tained by remarking that, thanks to the fact that divu = 0,

∫
Ω

(ρ(m))2 dx
is conserved.
• The last step consists in passing to the limit in the momentum balance

equation to show that the limit (ρ̄, ū) of the approximate solutions is a
weak soltuion to the problem. As a by product, we get the existence of a
weak solution of the problem.

The paper is organized as follows. The MAC discretization is described in Section
2, then the considered scheme is given in Section 3, together with some (discrete)
continuity and stability properties of the discrete operators. Section 4 is devoted to
establish a priori estimates for the discrete solutions, i.e. the classical L∞ bound on
the density an L2(H1

0 )d∩L∞(L2)d estimate for the velocity, and then, on this basis,
to prove their existence by a topological degree argument. Finally, in Section 5, we
establish the essential result of this paper, namely the convergence property stated
above. In the appendix, we state and prove two results which seem interesting for
their own sake: the discrete Korn lemma for the MAC scheme, and the stability
and convergence of general transfer operators for piecewise constant functions from
one mesh to another.

2. MAC discretization and discrete unknowns

Consider a domain Ω which is a connected union of disjoint rectangular domains,
and a coordinate system such that the edges (respectively the faces) of these rect-
angles (respectively parallelepipeds) are orthogonal to one vector of the canonical
basis of Rd, (e(1), . . . , e(d)). The mesh of Ω is defined as follows (see Figure 1).

Definition 2.1 (MAC grid). A mesh associated to the MAC discretization of Ω,
referred to by M, is defined by:

- a primal (or pressure) grid M, which consists in a conforming structured
partition of Ω made of rectangles if d = 2 or rectangular parallelepipeds if
d = 3. A generic element K of M is called a primal cell, and we note xK
its center of mass.

- E is the set of edges (d = 2) or faces (d = 3) of the primal grid; throughout the
following, for short, we will use ”face” to denote an element of E, whatever
the space dimension may be. We split E into E = Eint∪Eext, where Eint (resp.
Eext) are the faces of E that lie in the interior (resp. on the boundary) of the
domain. For i ∈ [ 1, d ], we denote by E(i) ⊂ E the set of the faces which are
orthogonal to e(i), and we also split this set into internal and boundary faces

E(i) = E(i)
int ∪ E

(i)
ext. The set of faces of a primal cell K is denoted by E(K)

and, for σ ∈ E(K), we define DK,σ as the half-cell of K adjacent to σ. An
internal face σ separating the primal cells K and L is denoted by σ = K|L,
and we define the dual cell Dσ associated to σ by Dσ = DK,σ ∪DL,σ. For a
face σ ∈ Eext, we set Dσ = DK,σ, with K the primal cell adjacent to K. For
any face σ, xσ = (xσ,1, . . . , xσ,d) stands for the mass center of σ.
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For i ∈ [ 1, d ], the set {Dσ, σ ∈ E(i)} defines a partition of Ω, which is
referred to as the i-th dual mesh.

The discretization of the momentum balance equation hinges upon the sets of

faces of Ẽ(i) of the i-th dual mesh, i ∈ [ 1, d ].. We distinguish once more the internal

elements of Ẽ(i) from the external elements by writing Ẽ(i) = Ẽ(i)
int∪Ẽ

(i)
ext. For ε ∈ Ẽ(i)

int

we note ε = σ|σ′ if (σ, σ′) ∈ (E(i))2 is such that ∂Dσ ∩ ∂Dσ′ = ε.

Dσ

σ = K|L

L

K

+
xK

σ
′ DK,σ

σ

σ′

ε = σ|σ′

Figure 1. Representation of (M, E) for d = 2.

The discretization of the momentum equation requires the introduction of the

faces of the i-th dual mesh, denoted by Ẽ(i). Given a generic dual face ε ∈ Ẽ(i),

we distinguish three situations (see Fig. 2): The set Ẽ(i) is decomposed into three

subsets, Ẽ(i) = Ẽ(i)
int ∪ Ẽ

(i)
ext ∪ Ẽ

(i)
rec, according to the location of the edge:

- Ẽ(i)
int = {ε ∈ Ẽ(i) ; ε ⊂ Ω} ,

- Ẽ(i)
ext = {ε ∈ Ẽ(i) ; ε ⊂ ∂Ω},

- Ẽ(i)
rec = {ε ∈ Ẽ(i) ; ε = εint ∪ εext with εint = ε ∩ Ω and εext = ε ∩ ∂Ω}.

For ε ∈ Ẽ(i)
int (resp. ε ∈ Ẽ(i)

rec) we note ε = σ|σ′ if (σ, σ′) ∈ (E(i))2 is such that
∂Dσ ∩ ∂Dσ′ = ε (resp. ∂Dσ ∩ ∂Dσ′ = εint). Finally, we define the set of faces of

the i-th dual mesh normal to ej : Ẽ(i,j) = {ε ∈ Ẽ(i), ε ⊥ e(j)}.

Remark 2.1 (Elements of Ẽ(i)
rec).

If Ω exhibits a re-entrant corner, there will be instances where (σ, σ′) ∈ E(i)
int × E

(i)
ext

are such that ∂Dσ ∩ ∂Dσ′ 6= ∅ is normal to ej, with i 6= j. Such cases make up the

elements of Ẽ(i)
rec and we have εint = ε ∩ ∂Dσ′ for ε ∈ Ẽ(Dσ) ∩ Ẽ(i)

rec.

The space step is defined by:

(7) hM = max{diam(K),K ∈M}.

Finally, the regularity of the mesh is measured by the following parameter:

(8) θM = max
{ |σ|
|σ′|

, (σ, σ′) ∈ E
}
,
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∂Ω

σ
′σ

ε = σ|σ′

σ
′

σ

ε = σ|σ′

σ
′

σ

ε = σ|σ′

Figure 2. Definition of ε = σ|σ′ in the two-dimensional case for

(σ, σ′) ∈ E(1). Left: ε ∈ Ẽ(1,1). Middle: ε ∈ Ẽ(1,2) ∩ Ẽ(1)
int . Right:

ε ∈ Ẽ(1,2) ∩ Ẽ(1)
rec .

with |·| designating the Lebesgue measure, this notation being used in the following
for either the Rd or Rd−1 measure.

Remark 2.2 (Quasi-uniformity of the mesh). The quantity θM defined by Relation
(8) measures in fact the quasi-uniformity of the mesh. The stability and convergence
proofs in this paper only require a weaker assumption, namely the fact that the
ratio between the size of two adjacent cells remains bounded (which, for a sequence
of more and more refined general meshes, does not prevent θM to tend to +∞).
Unfortunately, this latter requirement combined with the structured character of the
mesh implies quasi-uniformity.

Remark 2.3 (Assumption (8) and reconstruction operators). Let a sequence of
meshes (M(m))m∈N be given, and let us suppose that θM(m) ≤ θ, ∀m ∈ N, with θ
a given real number. Then the dual meshes are quasi-uniform with respect to the
primal one (and, conversely, the primal mesh is quasi-uniform with respect to dual
ones) in the sense specified in Remark B.1. Therefore, the stability and convergence
of reconstruction operators defined in Appendix B easily hold, provided that they use
a constant stencil (see once again Remark B.1). The same occurs with the ”gradient
meshes” which will be defined in the following, together with the discrete diffusion
operator.

For the time discretization, we consider a partition of the time interval [0, T ],
which we suppose uniform to alleviate the notations. We denote by δt the constant
time step, the integer number N = T/δt is the number of of time steps and the
time tn is defined by tn = n δt, for 0 ≤ n ≤ N .

The scalar discrete fields, namely the density and the pressure, are associ-
ated to the primal mesh, so the associated unknowns read (ρnK)K∈M, n∈[ 0,N ] and
(pnK)K∈M, n∈[ 0,N ], respectively. A discrete velocity field reads u = (u1, . . . , ud)

t

and its i-th component is associated to the i-th dual mesh. In addition, to take into
account (a part of) the homogeneous Dirichlet boundary conditions, the normal ve-
locities unknowns associated to external faces are set to zero. Hence, for i ∈ [ 1, d ],
the unknowns for ui read (unσ)

σ∈E(i)int , n∈[ 0,N ]
. Note that, consequently, the compo-

nent of the velocity associated to an unknown is not specified by its notation but
viewed only by the orientation of the associated face.
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3. The discrete scheme

The discrete scheme considered here reads:

Let u0 and ρ0 be given and solve, for 0 ≤ n ≤ N − 1,

ðtρn+1
K + div(ρu)n+1

K = 0, ∀K ∈M,(9a)

ðt(ρui)n+1
σ + div(ρ ui u)n+1

σ − div(µ D(u))n+1
σ

+ (∇p)n+1
σ = fn+1

σ , ∀σ ∈ E(i)
int , for i ∈ [ 1, d ],(9b)

(divu)n+1
K = 0, ∀K ∈M,(9c)

where (9a), (9b), (9c) are the backward-in-time finite volume discretizations of (1a),
(1b) and (1c) respectively, on the primal mesh for the mass balance equation and the
divergence-free constraint, and on the dual mesh associated to the i-th component
of the velocity for the i-th component of the momentum balance equation; the
terms of these equations are detailed below. Note that no equation is written for
the momentum balance on external meshes, since the velocity is prescribed to zero
on the boundary. For the latter reason, the system is singular (the sum over the cells
of Equation (9c) is zero by conservativity, see below for the definition of (divu)n+1

K ),
and must be complemented by the condition

(10)
∑
K∈M

|K| pK = 0,

which states that the mean value of the pressure is zero.

Initialization of the scheme and forcing term – The discrete initial data
(ρ0,u0) is obtained by averaging (ρ0,u0) on the primal and dual cells, respectively:

(11)

ρ0
K =

1

|K|

∫
K

ρ0(x) dx, ∀K ∈M,

u0
σ =

1

|Dσ|

∫
Dσ

ui,0(x) dx, ∀σ ∈ E(i)
int , for i ∈ [ 1, d ].

When f is a given function, the forcing term in the momentum balance equation
is also obtained by averaging f (which is assumed to lie in L2(Ω× (0, T ))d):

(12) fn+1
σ =

1

δt |Dσ|

∫ tn+1

tn

∫
Dσ

fi(x, t) dx dt, ∀σ ∈ E(i)
int , for i ∈ [ 1, d ].

When f is a function of the density, we set

(13) fn+1
σ = fi(ρ̂

n+1
σ ), ∀σ ∈ E(i)

int , for i ∈ [ 1, d ].

where ρ̂n+1
σ may be any reasonable convex combination of the density at the n+ 1

time level in the neighbouring cells.

Mass balance equation – The definition of the discrete time partial derivative of
the density is standard:

ðtρn+1
K =

1

δt
(ρn+1
K − ρnK), ∀K ∈M, 0 ≤ n ≤ N − 1.

The mass convection operator is obtained by a first-order upwind scheme. For

i ∈ [ 1, d ] and σ ∈ E(i)
int , let us denote by un+1

Kσ the quantity uKσ = un+1
σ e(i) · nK,σ.
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Then, for K ∈M and 0 ≤ n ≤ N − 1,

(14) div(ρu)n+1
K =

1

|K|
∑

σ∈E(K), σ=K|L

Fn+1
K,σ ,

with Fn+1
K,σ = |σ| ρn+1

σ un+1
Kσ and ρn+1

σ =

∣∣∣∣∣ ρ
n+1
K if uKσ ≥ 0,

ρn+1
L otherwise.

.

In this relation, Fn+1
K,σ is the (conservative) mass flux through the face σ outward K.

The summation index ”σ ∈ E(K), σ = K|L” implicitly assumes that we restrict
the sum to the internal faces of K, which in turns implicitly assumes that the mass
flux vanishes across the external faces, which is consistent with impermeability
boundary conditions.

Pressure gradient and velocity divergence – The discretization of these terms
is standard for the MAC scheme:

(15)

(∇p)n+1
σ =

|σ|
|Dσ|

(pn+1
L − pn+1

K )(nK,σ · ei), ∀σ = K|L ∈ E(i)
int , i ∈ [ 1, d ],

(divu)n+1
K =

1

|K|
∑

σ∈E(K)

|σ| un+1
K,σ ,

where we recall that, for i ∈ [ 1, d ] and σ ∈ E(K) ∩ E(i), uK,σ = uσ e(i) · nK,σ.
These two operators satisfy the following duality property.

Lemma 3.1 (grad-div duality). Let q and v be a discrete pressure and velocity,
respectively. Then,

(16)
∑
σ∈E
|Dσ| (∇q)σ vσ +

∑
K∈M

|K| qK (divv)K = 0.

Diffusion term – For the velocity diffusion term, we use a weak formulation of the
MAC diffusion scheme which was already introduced [14]. The first step is to define
piecewise constant partial derivatives of the velocity components, based on specific
partitions of the computational domain. Specifically, for i, j ∈ [ 1, d ], the discrete
partial derivative of the i-th component of the velocity ui with respect to the j-th
coordinate, which we denote by ðjui, is piecewise-constant over each volume Dε for

ε ∈ Ẽ(i,j) ∩ Ẽ(i)
rec, recalling that Ẽ(i,j) = {ε ∈ Ẽ(i), ε ⊥ e(j)}. Henceforth we associate

one cell Dε to the elements of Ẽrec mostly for the sake of convenience. The dual cell
is defined as,

(17) Dε =

∣∣∣∣∣∣∣∣∣∣
ε× [xσ,xσ′ ], for ε = σ|σ′ ∈ Ẽ(i)

int ,

ε× [xσ,xσ,ε], for ε ∈ Ẽ(Dσ) ∩ Ẽ(i)
ext,

Dσ,ε ∪Dσ′,ε for ε = σ|σ′ ∈ Ẽ(i)
rec,

with Dσ,ε = ε × [xσ,xσ,ε], Dσ′,ε = εint × [xσ′ ,xσ,ε] if (σ, σ′) ∈ E(i)
int × E

(i)
ext and

where xσ,ε = (xσ,ε,1, . . . , xσ,ε,d) refers to the orthogonal projection of xσ on ε. Note

that the set {Dε, ε ∈ Ẽ(i,j)} is a partition of Ω; a volume Dε of this set is called in
the following a (i, j)-gradient cell. For the two-dimensional case, these volumes are
sketched on Figure 3. When i = j, a (i, j)-gradient cell coincides with a primal cell.
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In addition, we observe that, for i 6= j, the set of the (i, j)-gradient cells and the
set of the (j, i)-gradient cells are the same; in two space dimensions, such a (i, j)-
gradient cell may be associated to a grid vertex, while, in three space dimensions,
for ε = σ|σ′, it is associated to the edge equal to σ ∩ ε = σ′ ∩ ε (see [14]).

Dε

εuσ uσ′

(a)

Dε
ε

uσ

uσ′

(b)

Dε

Dε′

ε xσ,ε

ε′

xσ′,ε′

×

×

uσ

u′σ

(c)

Dε

ε

u′σ

uσ

(d)

Figure 3. (i, j)- gradient cells in the two-dimensional case.

(a): (i, j) = (1, 1), ε = σ|σ′ ∈ Ẽ(1)int and ε ⊥ e(1),

(b): (i, j) = (2, 1), ε = σ|σ′ ∈ Ẽ(1)int and ε ⊥ e(2),

(c): (i, j) = (2, 1),ε = Ẽ(1)ext∩Ẽ(Dσ) and (i, j) = (1, 2), ε′ = Ẽ(2)ext∩Ẽ(Dσ′),
(d): (i, j) = (2, 1), ε = σ|σ′ ∈ Ẽ(rec1).

For i, j ∈ [ 1, d ], we define ðjui a.e. in Ω by
(18)

ðjui(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

uσ′ − uσ
d(xσ,xσ′)

n · ej for x ∈ Dε, ε ∈ Ẽ(i,j) ∩ Ẽ(i)
int , ε = σ|σ′,

−uσ
d(xσ,xσ,ε)

n · ej for x ∈ Dε, ε ∈ Ẽ(i,j) ∩ Ẽ(i)
ext, ε ∈ Ẽ(Dσ).

−uσ
d(xσ,xσ,ε)

n · ejXDσ,ε(x) for x ∈ Dε, ε ∈ Ẽ(i)
rec ∩ Ẽ(Dσ), σ ∈ E(i)

int .

Note that the last formula implicitly take into account the homogeneous Dirichlet
condition satisfied by the velocity (and it is the only consequence in the scheme
formulation that tangential velocities are prescribed to zero at the boundary). For

σ ∈ E(i)
int , let the discrete velocity field ϕσ be the discrete velocity function defined

by (ϕσ)σ = 1 and (ϕσ)σ′ = 0 for σ′ ∈ E , σ′ 6= σ (so the j-th component(s) of ϕσ

are zero for j 6= i and the i-th component has only one degree of freedom set to 1,
namely the degree of freedom corresponding to σ). To each gradient cell (which, for
i 6= j, is both a (i, j)-gradient cell and a (j, i)-gradient cell), we associate a viscosity
µDε , and we introduce d× d viscosity fields defined a.e. in Ω by

µ(i,j)(x) = µDε , for x ∈ Dε, with ε ∈ Ẽ(i,j).

For a discrete velocity field u, we are now in position to define a discrete gradient
∇Eu and a tensor associated to the multiplication of the strain rate by the viscosity,
denoted by (µD)E(u), for a.e. x ∈ Ω:

(19) (∇Eu)i,j(x) = ðjui(x), ((µD)E(u))i,j = µ(i,j)(x)
ðjui(x) + ðiuj(x)

2
.



THE MAC SCHEME FOR VARIABLE DENSITY INCOMPRESSIBLE FLOWS 11

The discrete gradient tensor is associated to the discrete H1
0 norm:

(20) |ui|21,E =

d∑
j=1

∫
Ω

ðjui(x)2 dx, |u|21,E =

d∑
i=1

|ui|21,E ,

which turns out to be the usual finite volumes H1
0 discrete norm, known to dominate

the L2-norm by a discrete Poincaré inequality [9, Lemma 9.1]. Finally, we define
the diffusion term by:

(21) − |Dσ| div(µD(u))n+1
σ =

∫
Ω

(µD)E(u)(x)n+1 : ∇E(ϕσ)(x) dx,

where the time index in (µD)E(u)(x)n+1 means that the viscosity fields and the
velocity in expression (19) must be taken at tn+1. It is shown in [14] that the
definition (21) of the diffusion term is the same as the standard MAC formulation,
up to the specific definition of the viscosity, i.e. that we have a formulation of the

form, for σ ∈ E(i)
int :

−|Dσ| div(µD(u))n+1
σ =

∑
ε∈Ẽ(Dσ)

|ε| µn+1
Dε

D(un+1)|σ · nσ,ε · e(i),

where D(un+1)|σ stands for an approximation of D(un+1) obtained by replacing
as usual the partial derivatives by differential quotients. The quantity µn+1

Dε
may

be approximated by applying the function µ to any reasonable approximation of
ρn+1 in Dσ, for instance:

µn+1
Dε

= µ(ρn+1
K ) if Dε = K, and |Dε| µn+1

Dε
=

∑
K∈M,

K∩Dε 6=∅

|K|
4

µ(ρn+1
K ) otherwise.

Note that, thanks to the definition of Dε, |Dε| =
∑
K∈M,

K∩Dε 6=∅

|K|
4

in the latter case.

The (µD)E tensor and the diffusion term enjoys the following properties.

Lemma 3.2. Let u and v be two discrete velocities. The diffusion term defined by
(21) satisfies the following discrete integration by part formula:

−
d∑
i=1

∑
σ∈E∈E(i)int

|Dσ| div(µD(u))σvσ =

∫
Ω

(µD)E(u)(x) : ∇E(v)(x) dx.

In addition, the (µD)E tensor given by (19) is symmetrical and, if, for i, j ∈ [ 1, d ],
the functions µ(i,j) satisfy 0 ≤ µmin ≤ µ(i,j)(x) ≤ µmax a.e. in Ω,

µmin

2

∫
Ω

∇E(u)(x) : ∇E(u)(x) dx ≤
∫

Ω

(µD)E(u)(x) : ∇E(u)(x) dx

≤ µmax

∫
Ω

∇E(u)(x) : ∇E(u)(x) dx.

Proof. As usual in Galerkin methods, the discrete integration by part formula is
a straightforward consequence of the weak formulation of the diffusion term. The
symmetry of the (µD)E tensor is a consequence of the fact that, for i, j ∈ [ 1, d ],
the gradient cells associated to ðjui are the same as the gradient cells associated
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to ðiuj , so the fields µ(i,j) and µ(j,i) are the same. Since (µD)E is symmetrical, we
have, by a standard identity for the tensors contraction,∫

Ω

(µD)E(u) : ∇E(u) dx =

∫
Ω

1

2
(µD)E(u) : (∇Eu + ∇t

Eu) dx,

and, since

(µD)E(u)(x) : (∇E(u)(x) + ∇t
E(u)(x)) ≥

µmin

2

(
∇E(u)(x) + ∇t

E(u)(x)
)

:
(
∇E(u)(x) + ∇t

E(u)(x)
)

for a.e. x ∈ Ω,∫
Ω

(µD)E(u) : ∇Eu dx ≥ µmin

4

∫
Ω

(∇Eu + ∇t
Eu) : (∇Eu + ∇t

Eu) dx.

The lower bound in the conclusion of the lemma follows by the discrete Korn Lemma
proven in Appendix A. For the upper bound of the left-hand side, we write:

(µD)E(u)(x) : (∇E(u)(x) + ∇t
E(u)(x)) ≤

µmax

(
∇E(u)(x) + ∇t

E(u)(x)
)

:
(
∇E(u)(x) + ∇t

E(u)(x)
)

for a.e. x ∈ Ω, and use∫
Ω

∇E(u)(x) : ∇t
E(u)(x) dx ≤

∫
Ω

∇E(u)(x) : ∇E(u)(x) dx,

which is an easy consequence of the Cauchy-Schwarz inequality, using the fact that
∇t
E(u)(x) : ∇t

E(u)(x) = ∇E(u)(x) : ∇E(u)(x) for a.e. x ∈ Ω. �

Momentum convection term – We now carry out the discretization of the term
∂t(ρui)+div(ρuiu) in (1b), i ∈ [ 1, d ], to obtain the terms denoted by ðt(ρui)n+1

σ +
div(ρui u)n+1

σ in (9b). As shown in [20], the derivation of a discrete kinetic energy

balance requires for these terms to take the following structure, for σ ∈ E(i)
int :

ðt(ρui)n+1
σ + div(ρui u)n+1

σ =
1

δt
(ρn+1
Dσ

un+1
σ − ρnDσu

n
σ) +

1

|Dσ|
∑

ε∈Ẽ(Dσ)

Fn+1
σ,ε un+1

ε ,

where he face densities ρn+1
Dσ

and ρnDσ and the mass fluxes through the dual faces

Fn+1
σ,ε satisfy the following mass balance over Dσ:

1

δt
(ρn+1
Dσ
− ρnDσ ) +

1

|Dσ|
∑

ε∈Ẽ(Dσ)

Fn+1
σ,ε = 0.

This is ensured by the following construction. The face densities are obtained by a
weighted average of the density in the neighbouring cells:

|Dσ| ρkDσ = |DK,σ| ρkK + |DL,σ| ρkL, for k = n and k = n+ 1.

Through ε included in the boundary, the dual mass flux is set to zero. For an
internal dual face, its expression depends on the normal to ε (see Figure 4). If ε is
parallel to σ, there exists K ∈ M and σ′ ∈ E(i) such that ε = σ|σ′ ⊂ K; in this
case, we set

(22) Fn+1
σ,ε =

1

2
(−Fn+1

K,σ + Fn+1
K,σ′).
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Otherwise, denoting by K and L the primal cells adjacent to σ, we observe that
there exist two faces of the primal mesh τ ∈ E(K) and τ ′ ∈ E(L) such that ε is the
union of the half of each of these two faces. We then define

(23) Fn+1
σ,ε =

1

2
(Fn+1
K,τ + Fn+1

L,τ ′ ).

Finally, the velocity at the dual face is approximated by a first-order upwind
scheme: for an internal dual face ε = σ|σ′,

(24) un+1
ε =

{
un+1
σ if Fn+1

σ,ε ≥ 0

un+1
σ′ otherwise.

For external dual faces, since the dual mass fluxes vanish, no definition of un+1
ε is

required in this case.

σσ
′

K

ε

Fσ,ε −FK,σFK,σ′

σ
σ
′

τ

FK,τ

τ ′

FK,τ ′ε Fσ,ε

K L

Figure 4. In the two-dimensional case, primal mass fluxes in-
volved in the computation of the dual mass flux associated to

ε = σ|σ′ ∈ Ẽ(1)
int . Left: for ε ⊥ e(1). Right: for ε ⊥ e(2).

Remark 3.1. In any case, using the last two relations and the associated notations,
we may recast Fσ,ε as Fσ,ε = |ε| ρε ûε nσ,ε · e(j), with (ρε, ûε) given by:

(25) (ρε, ûε) =


(ρσ + ρσ′

2
,
ρσuσ + ρσ′uσ′

ρσ + ρσ′

)
if j = i,

( |τ | ρτ + |τ ′| ρτ ′
|τ |+ |τ ′|

,
|τ | ρτ uτ + |τ ′| ρτ ′ uτ ′
|τ | ρτ + |τ ′| ρτ ′

)
otherwise.

Since, for σ = K|L, the face approximation of the density ρσ is a convex combina-
tion of the density in the adjacent cells ρK and ρL (in fact, for the upwind scheme,
ρσ is equal to either ρK or ρL), the density ρε is itself a convex combination of
the density in the neighbouring cells (precisely speaking, the cells M ∈M such that
M̄∩D̄ε is either a (d−1)-surface or a volume, but not empty). From Equation (25),
supposing that the densities are positive (which is indeed the case by construction
of the scheme, see Section 4), it is clear that ûε is a convex combination of uσ and
u′σ if j = i and of uτ and uτ ′ otherwise.
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We now prove two stability results for the convection operator which will be used
further for the estimation of the time-translates of the velocity. To this purpose,
for i ∈ [ 1, d ], to the unknowns (uσ)

σ∈E(i)int

of a i-th component of a discrete velocity

field, we associate the piecewise constant function u defined for a.e. x ∈ Ω by
u(x) =

∑
σ∈E(i)int

uσXDσ (x), with XDσ the characteristic function of Dσ, and the

following discrete Lq(Ω) norm, q ≥ 1,

‖u‖Lq(Ω) =
( ∑
σ∈E(i)int

|Dσ| |vσ|q
)1/q

,

which is the standard Lq-norm of the function u. To the discrete unkowns (uσ)σ∈Eint
related to a vector field u = (u1, . . . , ud)

t), we associate a discrete Lq(Ω)d norm by

‖u‖qLq(Ω) =

d∑
i=1

‖ui‖qLq(Ω).

We recall that, for any i-th discrete component of a velocity field u, the usual
finite-volume discrete H1-norm is denoted by |ui|1,E and defined by (20). Finally,
for a discrete density field ρ associated to (ρK)K∈M, we set

‖ρ‖L∞(Ω) = max
K∈M

ρK .

We are now in position to state the following results. They consist in discrete
analogues of the following continuous estimates:∫

Ω

div(ρ ui v) wi dx ≤ ‖ρ‖L∞(Ω) ‖wi‖H1(Ω) ‖v‖L4(Ω)d ‖ui‖L4(Ω),∫
Ω

ui wi div(ρv) dx ≤ ‖ρ‖L∞(Ω) ‖ui‖H1(Ω) ‖v‖H1(Ω)d ‖wi‖H1(Ω).

Lemma 3.3 (Continuity results related to the convection operator). Let i ∈ [ 1, d ]
and let (uσ)E∈E(i)int

, (vσ)E∈Eint and (wσ)E∈E(i)int

be three families of real numbers; the

first and last ones correspond to the i-th component of discrete velocity fields u and
w, and the the second one corresponds all the components of the velocity field v.
Let (ρK)K∈M ⊂ R be given, and satisfy ρK > 0, ∀K ∈M. Let Fσ,ε(ρ,v) be defined
by (22)-(23) and let uε be defined by (24). Finally, let us assume that there exists
θ > 0 such that the parameter θM measuring the regularity of the mesh satisfies
θM ≤ θ. Then we have:∑

σ∈E(i)int

wσ
∑

ε∈Ẽ(Dσ)

Fσ,ε(ρ,v) uε ≤ C ‖ρ‖L∞(Ω) ‖u‖L4(Ω) ‖v‖L4(Ω)d ‖w‖1,E ,(26)

∑
σ∈E(i)int

uσ wσ
∑

ε∈Ẽ(Dσ)

Fσ,ε(ρ,v) ≤ C ‖ρ‖L∞(Ω) ‖u‖1,E ‖v‖L4(Ω)d ‖w‖1,E .(27)

where the positive real number C only depends on θ, d and Ω.

Proof. Reordering the sums, we get:

I =
∑
σ∈E(i)int

wσ
∑

ε∈Ẽ(Dσ)

Fσ,ε(ρ,v) uε =
∑
ε∈Ẽ(i),
ε=σ|σ′

Fσ,ε(ρ,v) uε(wσ − wσ′).
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Dε

ε
uσ, vσ, wσ uσ′ , vσ′ , wσ′

uε = uσ or uσ′

(v̂1)ε =
ρσvσ + ρσ′vσ′

ρσ + ρσ′

(ð1w)ε =
wσ′ − wσ
xσ′,1 − xσ,1

Dε

ε

uσ, wσ

uσ′ , wσ′

vτ vτ ′

uε = uσ or uσ′

(v̂2)ε =
|τ | ρτvτ + |τ ′| ρτ ′vτ ′
|τ | ρτ + |τ ′| ρτ ′

(ð2w)ε =
wσ′ − wσ
xσ′,2 − xσ,2

Figure 5. Velocities and velocity partial derivative over Dε in-
volved in the right-hand side of Equation (28), in the two-
dimensional case, for i = 1. Left: j = 1. Right: j = 2.

Thanks to Remark 3.1 and using the same notations, we get:

(28) |I| ≤
d∑
j=1

∑
ε∈Ẽ(i,j),
ε=σ|σ′

|Dε| ρε |(v̂j)ε| |uε|
∣∣∣∣ wσ − wσ′xσ,j − xσ′,j

∣∣∣∣
with ρε ≤ ‖ρ‖L∞(Ω), since ρε is a convex combination of the density in the neigh-
bouring cells. Still by the convex combination properties stated in Remark 3.1, the
functions ∑

ε∈Ẽ(i,j)

uε XDε(x) and
∑

ε∈Ẽ(i,j)

(v̂j)ε XDε(x),

for j ∈ [ 1, d ], are reconstructions of u and vj over the mesh {Dε, ε ∈ Ẽ(i,j)} of Ω in
the sense of Lemma B.1, respectively; the expression of these velocities is given on
Figure 5, in the two-dimensional case and for i = 1. Invoking the stability property
stated in Lemma B.1 and standard Lq-estimates, we thus get

|I| ≤ C
d∑
j=1

‖ρ‖L∞(Ω) ‖u‖L4(Ω) ‖vj‖L4(Ω)d |ðjw|L2(Ω),

which yields the inequality (26).
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By the same reordering of the sums as for I, we get:∑
σ∈E(i)int

uσ wσ
∑

ε∈Ẽ(Dσ)

Fσ,ε(ρ,v) =
∑
ε∈Ẽ(i),
ε=σ|σ′

Fσ,ε(ρ,v) (uσ wσ − uσ′ wσ′)

=

d∑
j=1

∑
ε∈Ẽ(i,j),
ε=σ|σ′

|Dε| ρε (v̂j)ε
uσ wσ − uσ′ wσ′
xσ,j − xσ′,j

.

The proof then ends by developing the numerator of the fraction thanks to the
identity 2(ab−cd) = (a−c)(b+d)+(a+c)(b−d), for (a, b, c, d) ∈ R4, then invoking
the same arguments as for the estimate on I, and finally using the fact that, since
Ω is bounded, the L4-norm is controlled by the L6-norm, itself controlled by the
discrete H1

0 -norm thanks to discrete Sobolev embedding results (see [7, Lemma
B14]). �

4. Estimates and Existence results

The aim of this section is two-fold: first, we prove a priori estimates for the
discrete solutions, and then we establish that the scheme is well-posed, in the sense
that it admits at least a solution.

4.1. Definition and estimates of the discrete solutions. To any family of
real numbers (ρnK)K∈M, n∈[ 0,N ] and (pnK)K∈M, n∈[ 0,N ], we associate the discrete
function ρ and p representing the density and the pressure, respectively, defined by

(29)

ρ(x, t) =

N−1∑
n=0

∑
K∈M

ρn+1
K XK(x) X(tn,tn+1]

(t),

p(x, t) =

N−1∑
n=0

∑
K∈M

pn+1
K XK(x) X(tn,tn+1](t),

where, for A ⊂ Ω and x ∈ Ω, XA(x) = 1 if x ∈ A, XK(x) = 0 otherwise and, for
A ⊂ (0, T ) and t ∈ (0, T ), XA(t) = 1 if t ∈ A, XA(t) = 0 otherwise. Similarly, to
(unσ)σ∈E(i), n∈[ 0,N ], we associate the discrete function representing a i-th component
of a discrete velocity:

(30) ui(x, t) =
N−1∑
n=0

∑
σ∈E(i)

un+1
σ XDσ (x) X(tn,tn+1](t).

Recall that un+1
σ = 0 of σ ∈ E(i)

ext. A discrete velocity is a vector valued function of
the form u = (u1, . . . ud)

t. For such a function ρ, p, u and for n ∈ [ 1, N ], we denote
by ρn, pn and un = (un1 , . . . u

n
d )t the function depending on the space variable only

and corresponding to the value taken by its time-dependent counterpart over the
(tn, tn−1) interval. We define the discrete L2(0, T ;H1

0 (Ω)d) norm of the discrete
velocity and its components by:

‖u‖2L2(0,T ;H1
E) =

d∑
i=1

‖ui‖2L2(0,T ;H1
E) with ‖ui‖2L2(0,T ;H1

E) =

N∑
n=1

δt |uni |21,E .

The set of functions (ρ,u, p) is said to be a solution to the scheme (9) (or to an
equation of (9)) if the associated families of real numbers do so.
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The following estimates for the density are classical consequences of the upwind
choice for the discretization of the convection term in the mass balance equation
and of the fact that the velocity is divergence-free (see [9]).

Lemma 4.1 (Estimates of the density). Let the initial data ρ0 satisfy 0 < ρmin ≤
ρ0(x) ≤ ρmax for a.e. x ∈ Ω. Let ρ and u satisfy the discrete mass balance equation
(9a) and divergence constraint (9c). Then, for a.e x ∈ Ω and t ∈ (0, T ),

(31) ρmin ≤ ρ(x, t) ≤ ρmax.

In addition, ρ satisfies the following discrete entropy balance, for K ∈ M and
n ∈ [ 0, N − 1 ]:

(32)
|K|
2 δt

[
(ρn+1
K )2 − (ρnK)2

]
+

1

2

∑
σ∈E(K)

|σ| (ρn+1
σ )2 un+1

K,σ +Rn+1
K = 0,

where the non-negative remainder term Rn+1
K is given by

(33) Rn+1
K =

|K|
2 δt

(
ρn+1
K − ρnK

)2
+

1

2

∑
σ∈E(K), σ=K|L

|σ|
(
ρn+1
K − ρn+1

L

)2
(un+1
K,σ )−,

with, for a ∈ R, a− = −min(a, 0). Summing over the time steps, we obtain the
so-called weak BV-estimate:

(34)

N∑
n=1

δt
∑

σ∈Eint,
σ=K|L

|σ| |unK,σ|
(
ρnL − ρnK

)2 ≤ C,
where C ≥ 0 only depends on the L2-norm of the initial data ‖ρ0‖L2(Ω).

The next lemma states a discrete equivalent of the continuous L2(0, T ;H1
0 (Ω)d)

and L∞(0, T ;L2(Ω)d) estimates for the velocity.

Lemma 4.2 (Discrete L2(0, T ;H1
0 (Ω)d) and L∞(0, T ;L2(Ω)d) velocity estimates).

There exists C > 0 depending only on Ω and µmin such that any solution u of the
scheme (9) satisfies, for n ∈ [ 0, N − 1 ] :

(35)
1

2

d∑
i=1

∑
σ∈E(i)int

|Dσ| ρn+1
Dσ

(un+1
σ )2 +

µmin

4
δt |un+1|21,E ≤

1

2

d∑
i=1

∑
σ∈E(i)int

|Dσ| ρnDσ (unσ)2 + C ‖f‖2L2(Ω×(tn,tn+1)).

Consequently, there exists C > 0 depending only on Ω, u0, ρ0, µmin and the L2-
norm of f such that any solution u of the scheme (9) satisfies:

(36) ‖u‖L2(0,T ;H1
E) ≤ C and ‖u‖L∞(0,T ;L2(Ω)d) = max

0≤n≤N−1
‖un+1‖L2(Ω)d ≤ C.

The L2-norm of f is itself bounded either by assumption (if f is a given function)
or thanks to the L∞ estimate for ρ (if f is a continuous, and thus bounded, function
over [ρmin, ρmax]).
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Proof. Let us multiply Equation (9b) by un+1
σ , sum over σ ∈ E(i)

int and then over
i ∈ [ 1, d ]. By [19, Lemma 3.1] for the convection term and Lemma 3.2 for the
diffusion term, we get

1

2

d∑
i=1

∑
σ∈E(i)int

|Dσ| ρn+1
Dσ

(un+1
σ )2 +

µmin

2
δt |un+1|21,E ≤

1

2

d∑
i=1

∑
σ∈E(i)int

|Dσ| ρnDσ (unσ)2 + δt

∫
Ω

un+1 · fn+1 dx.

Inequality (35) follows by the Cauchy-Schwarz inequality and the discrete Poincaré
estimate [9, Lemma 9.1]. We then get Relations (36) by summing over the time
steps and using the fact that the face densities are convex combinations of the cell
densities, and thus bounded by below by ρmin. �

4.2. Existence of a solution to the scheme. The proof of the existence of a
solution is obtained by a topological degree arguments (see e.g. [5] for the theory)
and very close to the proof proposed in [21]. Note that the system is nonlinear
and that uniqueness is not guaranteed. In [24], uniqueness is shown for a covol-
ume approach of the MAC scheme using the total pressure form of the constant
density incompressible Navier-Stokes equations on a two-dimensional uniform grid,
assuming H2 regularity of the solution and under small data conditions. Here we
are concerned with the general 2D or 3D case, without any condition on the data
nor regularity of the solution.

Theorem 4.3 (Existence of a solution). For a given n ∈ [ 1, N − 1 ], let us assume
that the density ρn is such that 0 < ρmin ≤ ρnK ≤ ρmax for all K ∈ M. Then the
non-linear system (9)-(10) admits at least one solution (ρn+1,un+1, pn+1), and any
possible solution satisfies the estimates (31) and (36).

Proof. Let NM = card(M), NE = card(Eint) and let V = RNM ×RNE ×RNM . We
introduce the function F : [0, 1]× V → V defined by:

F (λ, (ρK)K∈M, (uσ)σ∈Eint , (pK)K∈M) =
(
(AK)K∈M, (Bσ)σ∈Eint , (CK)K∈M

)
,

with

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AK =
1

δt
(ρK − ρnK) + λ

1

|K|
∑

σ∈E(K)

FK,σ, K ∈M,

Bσ =
1

δt
(ρDσuσ − ρnDσu

n
σ) + λ

1

|Dσ|
∑

ε∈Ẽ(Dσ)

Fσ,εuε

−div
(
µλ D(u)

)
σ

+ (∇p)σ − (fλ)σ, σ ∈ Eint,

CK = − 1

|K|
∑

σ∈E(K)

|σ| uK,σ +
1

|K|
∑
L∈M

|L| pL, K ∈M,

where div
(
µλ D(u)

)
σ

and (fλ)σ are obtained by applying their definition in the

scheme with (λ ρK + (1−λ) ρnK)K∈M instead of (ρK)K∈M. The function F is con-
tinuous from [0, 1]×V to V and the problem F (1, ·) = 0 is equivalent to System (9).
Indeed, the first and second lines correspond to the discrete mass and momentum
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balance equations and, multiplying the third line by |K| and summing over the
cells, we end up, by conservativity, with

card(M)
∑
L∈M

|L| pL = 0,

that is Equation (10). Removing this term from CK , we recover the divergence-free
constraint (9c).

It is clear that F (λ, ·) = 0 still implies, for any λ ∈ [0, 1], the uniform bounds
(31) for the density (AK = 0, ∀K ∈ M still corresponds to the discretization of a
convection equation for ρ with a velocity scaled by λ, and thus still divergence-free).
In addition, thanks to the linearity of the expression of the dual mass fluxes as a
function of the primal ones, the structure which allows to obtain the estimate (35)
is preserved when λ varies in the [0, 1] interval, so the unknowns of the velocity are
bounded independently from λ. Finally, once both the density and the velocity are
bounded independently of λ and knowing that the mean value of the pressure over
Ω is zero, thanks to the so-called inf-sup condition satisfied by the MAC scheme,
the system Bσ = 0, ∀σ ∈ Eint, yields a bound for the pressure unknowns (in mesh
dependent norms), the expression of which may be found in [1]. Therefore, there
exists a real number M such that the boundary of the closed ball of radius M ,
BM ⊂ V , does not contain any point such that F (λ, ·) = 0, ∀λ ∈ [0, 1].

The problem F (0, ·) = 0 has a unique solution: the density is fixed by the
first block of equations AK = 0, ∀K ∈ M, and the system Bσ = 0,∀σ ∈ Eint

and CK = 0, ∀K ∈ M is the discretization of the generalized Stokes system for
the velocity and the pressure, with now a fixed viscosity and right-hand side. In
addition, F (0, ·) is regular (note that both µλ and fλ do not depend on ρ for
λ = 0), the Jacobian of F (0, ·) is triangular per blocks, and the diagonal blocks
are associated to the identity for ρ and the generalized Stokes problem for u and p
(see [21, 1]); therefore, the Jacobian determinant is not equal to 0. The topological
degree of F (0, ·) with respect to 0 ∈ V and BM is thus different from 0. Since it is
preserved up to λ = 1 (because, as said above, F does not vanish on the boundary
of BM ), we obtain that there exists at least one solution to F (1, ·) = 0, i.e. to the
scheme. �

5. Convergence of the scheme

We prove in this section the main result of this paper, namely the convergence,
up to the extraction of a subsequence, of a sequence of discrete solutions obtained
with a sequence of time steps (δt(m))m∈N and of meshes (M(m))m∈N with both
the time and space steps tending to zero. We begin with some estimates on the
time translates of the velocity (Section 5.1) which will be crucial to prove the
compactness of the sequence of discrete velocities; the convergence theorem is then
stated and proved in Section 5.2.

5.1. Estimate on the time translates of the velocity. We derive in this section
an estimate on the time translates of the velocity in L2(Ω × (0, T )) which will be
used to conclude to the compactness of a sequence of solutions.

Lemma 5.1. Let (ρ,u, p) be a discrete solution of (9). Let θ > 0 be such that the
parameter θM measuring the regularity of the mesh satisfies θM ≥ θ, and let τ be
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a positive real number lower than T . Then, the following estimate holds:

(37)

∫ T−τ

0

∫
Ω

‖u(x, t+ τ)− u(x, t)‖2 dx dt ≤ C (τ + δt+
√
τ + δt)

where C > 0 only depends on T , the L2-norm of f , ρmin, ρmax, µmax and θ.

tn tn+l0 tn+l0+1

τ
α δt

Figure 6. Notations for the velocity time translates estimates.

Proof. Since ρ ≥ ρmin, a bound in L2(Ω×(0, T ))d of
√
ρ (u(·, ·+τ)−u(·, ·)) readily

yields a bound in the same norm of u(·, ·+ τ)− u(·, ·)). For t ∈ (0, T ) and x ∈ Ω,
let us write ρ(x, t)

(
u(x, t+ τ)− u(x, t)

)
= T 1(x, t)− T 2(x, t), with

T 1(x, t) = ρ(x, t+ τ) u(x, t+ τ)− ρ(x, t) u(x, t),(38)

T 2(x, t) =
(
ρ(x, t+ τ)− ρ(x, t)

)
u(x, t+ τ).(39)

Let τ < T , t ∈ (0, T − τ) and let us define the integer numbers n and ` by
n = bt/δtc and n + ` = b(t+ τ)/δtc, where, for s ∈ R, bsc is the integer number
such that bsc < s ≤ bsc + 1. We thus have `δt ≤ τ + δt, tn < t ≤ tn+1 and
tn+` < t+ τ ≤ tn+`+1. For x ∈ Ω, we have

T 1(x, t) = ρn+`+1(x) un+`+1(x)− ρn+1(x) un+1(x)

=
∑̀
k=1

(
ρn+k+1(x) un+k+1(x)− ρn+k(x) un+k(x)

)
.

Using the discrete momentum balance equation (9b), we thus get, for i ∈ [ 1, d ] and
x ∈ Dσ, σ ∈ E(i),

T1,i(x, t) =

`+1∑
k=2

(
div(µ D(u))n+k

σ − div(ρui u)n+k
σ − (∇p)n+k

σ + fn+k
σ

)
,

with T1,i the i-th component of T . Let A(t) = (A1(t), . . . Ad(t))
t, with Ai(t) defined

by

Ai(t) =

∫
Ω

T1,i(x, t)
(
ui(x, t+ τ)− ui(x, t)

)
dx,

so that∫ T−τ

0

∫
Ω

(
ρ(x, t+ τ)u(x, t+ τ)− ρ(x, t)u(x, t)

)
·
(
u(x, t+ τ)− u(x, t)

)
dx dt

=

d∑
i=1

∫ T−τ

0

Ai(t) dt.
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We split Ai(t) as Ai(t) = Ai,c(t) +Ai,d(t) +Ai,p(t) +Ai,f (t) with

Ai,d(t) = δt

`+1∑
k=2

∑
σ∈E(i)

|Dσ| div(µ D(u))n+k
σ

(
un+`+1
σ − un+1

σ

)
,(40)

Ai,c(t) = −δt
`+1∑
k=2

∑
σ∈E(i)

|Dσ| div(ρui u)n+k
σ

(
un+`+1
σ − un+1

σ

)
,(41)

Ai,p(t) = −δt
`+1∑
k=2

∑
σ∈E(i)

|Dσ| (∇p)n+k
σ

(
un+`+1
σ − un+1

σ

)
,(42)

Ai,f (t) = δt

`+1∑
k=2

∑
σ∈E(i)

|Dσ| fn+k
σ

(
un+`+1
σ − un+1

σ

)
.(43)

Thanks to the fact that both un+1 and un+`+1 are divergence free, we have∑d
i=1Ai,p(t) = 0. The following of the computation consists in using bounds for

each of the other terms at a given time t, derived from the stability properties of
the discrete operators or by standard estimates, and then conclude by integration
over the time. To provide a guideline for this computation, let us first write an
analogue at the continuous level. To this purpose, we set each of these terms under
the following form

A(t) = v(t)

∫ t+τ

t

w(s) ds,

where the quantities v and w stand for (possibly discrete) norms of the solution.
Then we write

(44) I =

∫ T−τ

0

v(t)
(∫ t+τ

t

w(s) ds
)

dt.

Let us suppose that the function (s, t) 7→ v(s)w(t) lies in L1(]0, T [2), for instance
because both v and w lie in L1(0, T ). Then, if v and w lie in L2(0, T ),

(45) |I| =
∣∣∣∫ T−τ

0

v(t)
(∫ τ

0

w(t+ s) ds
)

dt
∣∣∣

=
∣∣∣∫ τ

0

(∫ T−τ

0

v(t) w(t+ s) dt
)

ds
∣∣∣

≤
∫ τ

0

(∫ T−τ

0

v(t)2 dt
)1/2(∫ T−τ

0

w(t+ s)2 dt
)1/2

ds.

Each integral over the time is bounded by the integral over (0, T ), and we get,

|I| ≤ τ ‖v‖L2(0,T ) ‖w‖L2(0,T ).

Diffusion term - Let us reproduce this computation at the discrete level for the
diffusion term. Lemma 3.2 yields

|Ai,d(t)| ≤ µmax δt

`+1∑
k=2

|un+k
i |1,E

(
|un+`+1
i |1,E + |un+1

i |1,E
)
.

Let α ∈ [0, 1] be defined by α δt = tn + τ − tn+l and let `0 = bτ/δtc (see Figure 6).
Then, for t ∈ (tn, tn+1 − αδt), ` = `0 while, for t ∈ (tn+1 − αδt, tn+1), ` = `0 + 1.
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We thus have

(46)
∣∣∫ T−τ

0

Ai,d(t) dt
∣∣ ≤

µmax(1− α) δt2
N−`0−1∑
n=0

`0+1∑
k=2

|un+k
i |1,E

(
|un+`0+1
i |1,E + |un+1

i |1,E
)

+ µmaxα δt
2
N−l0−2∑
n=0

`0+2∑
k=2

|un+k
i |1,E

(
|un+`0+2
i |1,E + |un+1

i |1,E
)
.

Let A1 be the first summation at the right-hand side of this equation. Then we
get, reordering the summations:

A1 ≤ µmax(1− α)

`0+1∑
k=2

δt

N−`0−1∑
n=0

δt |un+k
i |1,E

(
|un+`0+1
i |1,E + |un+1

i |1,E
)
.

Since, thanks to the Cauchy-Schwarz inequality, for k ∈ [ 2, `0 + 1 ],

N−l0−1∑
n=0

δt |un+k
i |1,E

(
|un+`0+1
i |1,E + |un+1

i |1,E
)
≤ 2

N∑
n=1

δt |uni |21,E = 2 |ui|2L2(H1
E),

we obtain that

A1 ≤ 2µmax(1− α) `0 δt |ui|2L2(H1
E).

The same arguments yields, for the second summation of the right-hand side of
Inequality (46):

A2 ≤ 2µmaxα (`0 + 1) δt |ui|2L2(H1
E).

Finally, we get, since (`0 + 1)δt ≤ τ + δt,

(47)
∣∣∫ T−τ

0

Ai,d(t) dt
∣∣ ≤ A1 +A2 ≤ 2µmax |ui|2L2(H1

E) (τ + δt).

Forcing term - For the term associated to the forcing term, we write

|Ai,f (t)| = δt

`+1∑
k=2

‖fn+k
i ‖L2(Ω)

(
‖un+`+1

i ‖L2(Ω) + ‖un+1
i ‖L2(Ω)

)
,

and thus, by the same technique as for the diffusion term,

(48)
∣∣∫ T−τ

0

Ai,f (t) dt
∣∣ ≤ 2 τ ‖ui‖L∞(0,T ;L2(Ω)) ‖fi‖L2(Ω×(0,T )).

Convection term - For the convection term, returning to the notations of Equa-
tion (44), the technique to obtain the estimate (45) is ineffective.The function
(s, t) 7→ v(s)w(t) lies in L1(]0, T [2), v ∈ L2(0, T ) but w 6∈ L2(0, T ). The con-
tinuous analogue of the computation that we implement at the discrete level is the
following one. The integral to estimate is of the form

I =

∫ T−τ

0

v(t)
(∫ t+τ

t

w(s) ds
)

dt,
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with v ∈ L2(0, T ) and w ∈ L4/3(0, T ). We first change the order of the integrations,
to obtain

I =

∫ T

τ

w(s)
(∫ s

s−τ
v(t) dt

)
ds,

The Cauchy-Schwarz inequality yields

|I| ≤
∫ T

τ

|w(s)|
(∫ s

s−τ
v(t)2 dt

)1/2

τ1/2 ds.

Then the integral over (s− τ, s) is bounded by the integral over (0, T ) to get

|I| ≤ τ1/2 ‖v‖L2(0,T )

∫ T

τ

|w(s)| ds,

and the Holder inequality yields:

|I| ≤ τ1/2 ‖v‖L2(0,T ) T
1/4 ‖w‖L4/3(0,T ).

Let us return to the discrete level. Lemma 3.3 yields∣∣Ai,c(t)∣∣ ≤ C `+1∑
k=2

δt ‖un+k‖2L4(Ω)

(
|un+`+1
i |1,E + |un+1

i |1,E
)
,

with C only depending on θ and ρmax. We thus have∣∣∫ T−τ

0

Ai,c(t) dt
∣∣ ≤ C(A1 +A2) with

A1 =

N−`0∑
n=1

δt |uni |1,E
min(n+`0+1, N)∑

k=n+1

δt ‖uk‖2L4(Ω).

A2 =

N∑
n=`0+1

δt |uni |1,E
n∑

k=n−`0

δt ‖uk‖2L4(Ω).

Reordering the sums, we get

A1 ≤
N∑
k=2

δt ‖uk‖2L4(Ω) S
n
1 , with Sn1 =

min(k−1,N)∑
n=max(k−`0−1,1)

|uni |1,E .

Using the fact that (`0 + 1) δt ≤ τ + δt, the Cauchy-Schwarz inequality yields:

Sn1 ≤
(`0+1∑
k=1

δt
)1/2(N+1∑

k=1

δt |uni |21,E
)1/2

≤ (τ + δt)1/2 ‖ui‖L2(H1
E).

For the term A2, we get

A2 ≤
N∑
k=1

δt ‖uk‖2L4(Ω) S
n
2 , with Sn2 =

min(k+`0,N)∑
n=max(`0+1,k)

|uni |1,E ,

and Sn2 satisfies the same bounds as S1, n. On the other hand, the Cauchy-Schwarz

inequality yields, for any function u ∈ L6(Ω), ‖u‖L4(Ω) ≤ ‖u‖
1/4
L2(Ω) ‖u‖

3/4
L6(Ω), and

‖u‖L6(Ω) ≤ |u|1,E by discrete Sobolev inequalities, so

∣∣∫ T−τ

0

Ai,c(t) dt
∣∣ ≤ 2 C (τ + δt)1/2 ‖ui‖L2(H1

E) ‖u‖
1/2
L∞(0,T ;L2(Ω))

N+1∑
n=3

δt |un|3/21,E .
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Finally, using the Holder inequality with q = 4/3 and q′ = 1/4 to estimate the last
sum,

(49)
∣∣∫ T−τ

0

Ai,c(t) dt
∣∣ ≤

2 C T 1/4(τ + δt)1/2 ‖ui‖L2(H1
E) ‖u‖

1/2
L∞(0,T ;L2(Ω))‖ui‖

3/2

L2(0,T ;H1
E)
.

Term T 2 - Let us now estimate the term issued from the quantity T 2 of equation
(39). By the same developments as previously, we have to estimate the integral
over the time interval of Bi(t), i ∈ [ 1, d ], with

Bi(t) =
∑̀
k=1

∑
σ∈E(i)int

|Dσ| un+`+1
σ (ρn+k+1

Dσ
− ρn+k

Dσ
) (un+`+1

σ − un+1
σ ),

where n and ` depend on t, with the same definition as previously. Thanks to the
mass balance over the dual cells, we get:

Bi(t) = δt

`+1∑
k=2

∑
σ∈E(i)int

|Dσ| un+`+1
σ (un+`+1

σ − un+1
σ )

∑
ε∈Ẽ(Dσ)

Fn+k
σ,ε .

Thanks to Lemma 3.3,∣∣Bi(t)∣∣ ≤ C (|un+`+1
i |1,E + |un+1

i |1,E
)
|un+`+1
σ |1,E

`+1∑
k=2

δt |un+k|1,E ,

with C only depending on θ and ρmax. We proceed in a way similar to the derivation
of the estimate for the convection term. First, we take benefit to the fact that the
sum over k (in the continuous setting, the integral over (t, t+τ)) involves a function
lying in L2(0, T ) (without needing, here, a switch of the integration order thanks
to a discrete Fubini technique) to make appear, thanks to the Cauchy-Schwarz
inequality, the factor (τ + δt)1/2:∣∣Bi(t)∣∣ ≤ C (|un+`+1

i |1,E + |un+1
i |1,E

)
|un+`+1
σ |1,E

(`+1∑
k=2

δt
)1/2(`+1∑

k=2

|un+k|21,E
)1/2

≤ C
(
|un+`+1
i |1,E + |un+1

i |1,E
)
|un+`+1
σ |1,E (τ + δt)1/2 ‖u‖L2(H1

E).

So, integrating with respect to time yields:

(50)
∣∣∣∫ T−τ

0

Bi(t) dt
∣∣∣ ≤ C (τ + δt)1/2 ‖ui‖2L2(H1

E) ‖u‖L2(H1
E).

Conclusion - The conclusion follows by summing Equations (47), (48), (49) and
(50) over i ∈ [ 1, d ] and then summing once again the obtained relations. �

5.2. Convergence of the discrete solutions. We are now in position to state
and prove the convergence result which is the aim of this paper.

Theorem 5.2 (Convergence of the discrete solutions). Let (δt(m))m∈N be a se-
quence of time steps and (M(m))m∈N be a sequence of MAC grids (in the sense
of Definition 2.1) such that δt(m) → 0 and hM(m) → 0 as m → +∞. We as-
sume that there exists θ > 0 controlling the regularity of every MAC mesh in the
sequence: θM(m) ≤ θ for any m ∈ N, with θM(m) defined by (8). For m ∈ N,
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let (ρ(m),u(m)) be a solution to (9) for δt = δt(m) and M = M(m). Then
there exists ρ̄ with ρmin ≤ ρ̄(x, t) ≤ ρmax for a.e. x ∈ Ω and t ∈ (0, T ) and
ū ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;E(Ω)) satisfying, up to a subsequence:

- the sequence (u(m))m∈N converges to ū in L2(Ω× (0, T ))d,

- the sequence (ρ(m))m∈N converges to ρ̄ in Lq(Ω× (0, T )), for q < +∞,

- (ρ̄, ū) is a solution to the weak formulation given by Definition 1.1.

Proof.
Step 1- Weak convergence of (ρ(m))m∈N in Lq(Ω× (0, T )), q ≥ 1, and max-
imum principle – Thanks to the estimate (31), the sequence (ρ(m))m∈N satisfies
ρmin ≤ ρ(m)(x, t) ≤ ρmax for a.e. x ∈ Ω and t ∈ (0, T ), ∀m ∈ N, which implies
that, up to the extraction of a subsequence, this sequence weakly? converges to a
function ρ̄ ∈ L∞(Ω× (0, T )) satisfying the same bounds.

Step 2- Compactness of (u(m))m∈N in L2(Ω × (0, T ))d, regularity of the
limit and divergence free constraint – We apply Theorem C.1 with B =
L2(Ω× (0, T ))d, X(m) the space of the discrete velocities endowed with the discrete
H1-norm defined by (20) and (f (m))m∈N = (u(m))m∈N. Thanks to Estimate (36),
we obtain both the boundedness of (u(m))m∈N in B and the second assumption of

the theorem. Lemma 5.1 yields the third assumption, with η(τ) = C (τ +
√

2 τ),
where C is the constant of the inequality (37), which only depends on T , ρmin,
ρmax, µmax, the L2-norm of f (which is either a data or controlled by T and ρmax)
and θ, and with M(τ) such that, for m ≥ M(τ), δt(m) ≤ τ . Hence, there exists
ū ∈ L2(Ω× (0, T ))d such that, up to a subsequence,

u(m) → ū in L2(Ω× (0, T ))d as m→ +∞.

In addition, the uniform bound of the sequence (u(m))m∈N in L2(0, T ;H1
E) yields

that ū ∈ L2(0, T ;H1
0 (Ω)d) (see [9, Theorem 14.2]). We now prove that ū is di-

vergence free by passing to the limit in the discrete mass balance equation. Let
ϕ ∈ C∞c (Ω× (0, T )) and, for m ∈ N, K ∈ M(m) and n ∈ [ 0, N (m) − 1 ], let ϕnK be
the mean value of ϕ over K × (tn, tn+1). Multiplying the divergence constraint by
δt(m) |K| ϕnK and summing over the cells and the time steps, we get, for m ∈ N,

I(m) =

N(m)−1∑
n=0

δt(m)
∑

K∈M(m)

ϕnK

d∑
i=1

∑
σ∈E(K)∩E(m,i)int

|σ| uσ e(i) · nK,σ = 0,

where, for short, we have denoted by E(m,i)
int the set (E(m)

int )(i). Reordering the sums,
we get

I(m) =

N(m)−1∑
n=0

δt(m)
d∑
i=1

∑
σ∈E(m,i)int ,

σ=K|L

|Dσ| uσ
ϕnK − ϕnL

dσ
e(i) · nK,σ = 0,

with dσ = |Dσ|/|σ|. This last expression may be seen as the integral over Ω× (0, T )
of the inner product of u(m) with a piecewise constant vector-valued function, the i-
th component of which takes the value e(i) ·nK,σ (ϕnK−ϕnL)/dσ over Dσ×(tn, tn+1),

σ ∈ E(m,i)
int and n ∈ [ 0, N (m)−1 ]. Thanks to the regularity of ϕ, the latter function

converges to −∇ϕ in L∞(Ω × (0, T ))d, and we get, invoking the convergence of
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(u(m))m∈N,

lim
m→+∞

I(m) = −
∫ T

0

∫
Ω

ū ·∇ϕ dx dt = 0,

which implies divū = 0 a.e. in Ω× (0, T ).

Step 3- Passing to the limit in the mass balance equation – We show in
this step that the limit (ρ̄, ū) obtained in the previous steps satisfies the weak mass
balance equation (5). Let ϕ ∈ C∞c ([0, T ) × Ω), and m ∈ N. For K ∈ M(m) and
n ∈ [ 0, N (m) ], let ϕnK = ϕ(xK , tn), let us multiply the discrete mass balance (9a)

by δt(m) |K| ϕnK and sum over the time steps, to obtain T
(m)
I + T

(m)
2 = 0 with

T
(m)
1 =

N(m)−1∑
n=0

∑
K∈M(m)

|K| (ρn+1
K − ρnK) ϕnK ,

T
(m)
2 =

N(m)−1∑
n=0

δt(m)
∑

K∈M(m)

ϕnK
∑

σ∈E(K)

Fn+1
K,σ .

Rearranging the sum in T
(m)
1 to perform a discrete integration by parts with respect

to the time variable, we get, using the fact that ϕ vanishes at t = T :

T
(m)
1 = −

N(m)−1∑
n=0

δt(m)
∑

K∈M(m)

|K| ρn+1
K

ϕn+1
K − ϕnK
δt(m)

−
∑

K∈M(m)

|K| ρ0
Kϕ

0
K .

We recognize in the first term the integral with respect to space and time of ρ(m)

multiplied by a discrete time-derivative of ϕ which converges to ∂tϕ in L1(Ω×(0, T ))
when the space and time step tends to zero. In the second term, when the space
step tends to zero, thanks to the definition (11) of the initial value of the scheme, the
function

∑
K∈M(m) ρ0

KXK(x) converges to ρ0 in Lq(Ω), q < +∞, and the function∑
K∈M(m) ϕ0

KXK(x) converges to ϕ in L∞(Ω). So passing to the limit, we obtain:

lim
m→∞

T
(m)
1 = −

∫ T

0

∫
Ω

ρ̄(t,x) ∂tϕ(t,x) dx dt−
∫

Ω

ρ0(x) ϕ(0,x) dx.

Let us now focus on T
(m)
2 . Using the expression of the mass flux FK,σ and the

boundary conditions on the velocity, we reorder the sum in T
(m)
2 so as to perform

a discrete integration by parts with respect to the space variable:

T
(m)
2 = −

d∑
i=1

N(m)−1∑
n=0

δt(m)
∑

σ∈E(i)int ,

σ=K|L

(
|DK,σ| ρn+1

K + |DL,σ| ρn+1
L

)
un+1
σ (∂ϕ)nσ +R

(m)
2 ,

with:

(∂ϕ)nσ =
|σ|
|Dσ|

(ϕnL − ϕnK) (nK,σ · e(i)),

R
(m)
2 = −

d∑
i=1

N(m)−1∑
n=0

δt(m)
∑

σ∈E(i)int ,
σ=K→L

|DL,σ|
(
ρn+1
K − ρn+1

L

)
un+1
σ (∂ϕ)nσ,

where the notation σ = K → L means that K and L are chosen in such a way that

uK,σ ≥ 0. The first term in T
(m)
2 is the sum over i ∈ [ 1, d ] of the integral with
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respect to the time and space of the product of ρ(m) u
(m)
i by a function ðiϕ defined

for a.e. x ∈ Ω and t ∈ (0, T ) by

ð(m)
i ϕ(x, t) =

N(m)−1∑
n=0

δt(m)
∑
σ∈E(i)int

(∂ϕ)nσ XDσ X(tn,tn+1].

Since this function converges in L∞(Ω × (0, T )) to ∂iϕ, u
(m)
i converges to ūi in

L2(Ω× (0, T )) and ρ(m) converges weakly to ρ̄ in L2(Ω× (0, T )), we have

lim
m→∞

T
(m)
2 −R(m)

2 = −
∫ T

0

∫
Ω

ρ̄(t,x) ū(t,x) ·∇ϕ(t,x) dx dt.

The Cauchy-Schwarz inequality yields for R
(m)
2 :

|R(m)
2 | ≤ h(m) ‖∇ϕ‖L∞(Ω×(0,T ))d

(N(m)−1∑
n=0

δt(m)
∑

σ∈Eint,
σ=K→L

|Dσ| |un+1
σ |

)1/2

(N(m)−1∑
n=0

δt(m)
∑

σ∈Eint,
σ=K→L

|σ|
(
ρn+1
L − ρn+1

K

)2 |un+1
σ |

)1/2

so R
(m)
2 tends to zero thanks to the weak BV-estimate on ρ stated in Lemma 4.1

and the control of u in L2(Ω × (0, T ))d (and therefore in L1(Ω × (0, T ))d), which
concludes this step.

Step 4 – Weak convergence of the velocity discrete derivatives in L2(Ω×
(0, T )) – Let i, j ∈ [ 1, d ]. Owing to the ”discrete L2(H1

0 )” bound (36), the sequence

of derivatives (ðju(m)
i )m∈N (see Definition (18)) is bounded in L2(Ω× (0, T )), and

is thus weakly convergent to some limit in L2(Ω × (0, T )). Let ϕ ∈ C∞c (Ω), let us

denote by {Dε, Ẽ(m,i,j)} the set of (i, j)-gradient cells of the mesh M(m), and, for

ε ∈ Ẽ(m,i,j) and n ∈ [ 0, N (m) − 1 ], let ϕnε be the value of ϕ at (xε, (tn + tn+1)/2),
with xε the mass center of ε. Then,∫ T

0

∫
Ω

ðju(m)
i ϕ dx dt = I(m) +R(m),

with

I(m) =

N(m)−1∑
n=0

δt(m)
∑

ε∈Ẽ(m,i,j)

|Dε| (ðjui)n+1
ε ϕnε

=

N(m)−1∑
n=0

δt(m)
∑

ε∈Ẽ(m,i,j),
ε=σ|σ′

|ε| (un+1
σ − un+1

σ′ ) ϕnε ,

where, by convention, we have supposed in the last sum that σ and σ′ are ordered
in such a way that xσ,j > xσ′,j . Let us now use the notation σ = ε−j → ε+j to

mean that ε−j and ε+j are the two faces of Dσ normal to e(j) and that the j-th
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coordinate of the points of ε−j is lower than the j-th coordinate of the points of
ε+j . By a reordering of the sums, we get

I(m) = −
N(m)−1∑
n=0

δt(m)
∑

σ∈E(m,i),
σ=ε−j→ε+j

|ε+j | un+1
σ (ϕnε+j − ϕ

n
ε−j ).

Let xε−j ,j and xε+j ,j be the j-th coordinate of the points of ε−j and ε+j respectively.
Then we remark that, for σ = ε−j → ε+j , (xε+j ,j − xε−j ,j) |ε+j | = |Dσ|, and

I(m) = −
N(m)−1∑
n=0

δt(m)
∑

σ∈E(m,i),
σ=ε−j→ε+j

|Dσ| un+1
σ

ϕnε+j − ϕ
n
ε−j

xε+j ,j − xε−j ,j
.

Thanks to the regularity of ϕ, the piecewise constant function equal to (ϕnε+j −
ϕnε+j )/(xε+j ,j − xε−j ,j) over Dσ, σ ∈ E(m,i) converges to ∂jϕ in L∞(Ω× (0, T )), so,

thanks to the convergence of (u(m))m∈N in L2(Ω× (0, T ))d,

lim
m→+∞

I(m) = −
∫ T

0

∫
Ω

ūi ∂jϕ dx dt.

The residual term R(m) reads

R(m) =

N(m)−1∑
n=0

δt(m)
∑

ε∈Ẽ(m,i,j)

|Dε| (ðjui)n+1
ε (ϕnDε − ϕ

n
ε ),

with ϕnDε the mean value of ϕ over Dε × (tn, tn+1). Thanks to the regularity of ϕ

and the control of (ðju(m)
i )m∈N in L2(Ω× (0, T )), R(m) tends to zero when m tends

to +∞, which concludes this point.

Step 5 – Strong convergence of (ρ(m))m∈N in Lq(Ω × (0, T )), q ≥ 1 – We
follow the proof in [21]. On one hand, a classical property of the weak topology in
L2(Ω× (0, T )) yields, for the weak limit ρ̄ of the sequence (ρ(m))m∈N:

‖ρ̄‖L2(Ω×(0,T )) ≤ lim inf
m→∞

‖ρ(m)‖L2(Ω×(0,T )).

On the other hand, summing the discrete entropy estimate (32) over the cells and
the first n time steps, we have for all n in [ 0, N − 1 ]:∑

K∈M(m)

|K| (ρn+1
K )2 ≤

∑
K∈M(m)

|K| (ρ0
K)2 ≤ ‖ρ0‖2L2(Ω),

and thus, integrating over the time, ‖ρ(m)‖L2(Ω×(0,T )) ≤ T ‖ρ0‖L2(Ω). We know that
the weak limit ρ̄ satisfies the convection equation with a divergence-free velocity
field ū lying in L2(0, T ;H1

0 (Ω)d) and the theory of renormalized solutions [6] implies
that ‖ρ̄‖L2(Ω×(0,T )) = T ‖ρ0‖L2(Ω). We thus have

lim
m→+∞

‖ρ(m)‖L2(Ω×(0,T )) = ‖ρ̄‖L2(Ω×(0,T )),

which implies the convergence of the sequence (ρ(m))m∈N to ρ̄ in L2(Ω × (0, T )).
Finally, this convergence also holds in Lq(Ω × (0, T )) for any q < +∞, since the
sequence (ρ(m))m∈N is bounded in L∞(Ω× (0, T )).

Step 6 – Strong convergence of the viscosity and the forcing term –
Thanks to the strong convergence of (ρ(m))m∈N in Lq(Ω × (0, T )), q ≥ 1, there
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exists a subsequence still denoted (ρ(m))m∈N such that ρ(m)(t,x)→ ρ̄(t,x) for a.e.
x in Ω and t in (0, T ). The Lebesgue dominated convergence theorem implies that,
for any real function g continuous over [ρmin, ρmax] (and so bounded), the sequence
(g(ρ(m)))m∈N converges to g(ρ̄) in Lq(Ω × (0, T )). This yields the convergence of
the sequence (µ(ρ(m)))m∈N defined by

µ(m)(x, t) =

N(m)−1∑
n=0

∑
K∈M(m)

µ(ρn+1
K ) XK(x) X(tn,tn+1](t).

Invoking Lemma B.2, the coefficients µ(i,j) involved in the definition of the diffusion
term therefore also converge to µ(ρ̄) in Lq(Ω× (0, T )), q ≥ 1. In the case where the
forcing term is defined as a function of ρ, the same arguments prove its convergence
to f(ρ̄) in Lq(Ω× (0, T ))d, q ≥ 1.

Step 7 – Passing to the limit in the momentum balance equation – Let
ϕ ∈ C∞c ([0, T )×Ω)d, such that divϕ = 0, and, for m ∈ N, n ∈ [ 0, N (m) ], i ∈ [ 1, d ]

and σ ∈ E(m,i)
int let us define by ϕnσ by

ϕnσ =
1

|σ|

∫
σ

ϕ(x, tn) · e(i) dγ(x).

Multiplying the momentum balance equation (9b) by δt(m) |Dσ| ϕnσ, summing over

σ ∈ E(m,i)
int , over i ∈ [ 1, d ] and n ∈ [ 0, N (m) − 1 ], we get

T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 = 0, with

T
(m)
1 =

d∑
i=1

N(m)−1∑
n=0

δt(m)
∑

σ∈E(m,i)int

|Dσ| ðt(ρui)n+1
σ ϕnσ,

T
(m)
2 =

d∑
i=1

N(m)−1∑
n=0

δt(m)
∑

σ∈E(m,i)int

|Dσ| div(ρ ui u)n+1
σ ϕnσ,

T
(m)
3 = −

d∑
i=1

N(m)−1∑
n=0

δt(m)
∑

σ∈E(m,i)int

|Dσ| div(µ D(u))n+1
σ ϕnσ,

T
(m)
4 =

d∑
i=1

N(m)−1∑
n=0

δt(m)
∑

σ∈E(m,i)int

|Dσ| (∇p)n+1
σ ϕnσ,

T
(m)
5 =

d∑
i=1

N(m)−1∑
n=0

δt(m)
∑

σ∈E(m,i)int

|Dσ| fn+1
σ ϕnσ.

Thanks to the definition of ϕnσ and to the L2-duality between the discrete gradient

and the discrete divergence, the term T
(m)
4 vanishes. Reordering the sums in the
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term T
(m)
1 , we obtain, using the expression of the discrete time derivative,

T
(m)
1 = −

d∑
i=1

N(m)−1∑
n=0

∑
σ∈E(m,i)int

δt(m) |Dσ| ρn+1
Dσ

un+1
σ

ϕn+1
σ − ϕnσ
δt(m)

−
d∑
i=1

∑
σ∈E(m,i)int

|Dσ| ρ0
Dσ u

0
σ ϕ

0
σ.

Thanks to Lemma B.2 and to the convergence of ((ρ(m))m∈N) to ρ̄ in L2(Ω×(0, T )),

the piecewise constant function equal to ρn+1
Dσ

over Dσ × (tn, tn+1), for σ ∈ E(m,i)
int

converges to ρ̄ in L2(Ω×(0, T )) whenm tends to +∞, ∀i ∈ [ 1, d ] (remember that the
face density is a convex combination of the density in the two adjacent cells). The
regularity of ϕ yields that the piecewise function taking the value (ϕn+1

σ −ϕnσ)/δt(m)

on the same space-time domains converges to ∂tϕi in L∞(Ω × (0, T )), ∀i ∈ [ 1, d ].
Finally, still by Lemma B.2, the function of the space variable taking the value

ρ0
Dσ

over Dσ, for σ ∈ E(m,i)
int converges to ρ0 in L2(Ω), ∀i ∈ [ 1, d ], since the initial

condition for ρ does so. The convergence of the velocity in L2(Ω × (0, T ))d was
proven in the previous step, and the convergence of the discrete initial value for the
velocity to u0 in L2(Ω)d is standard, as is the convergence of the function equal to

ϕ0
σ over Dσ, for σ ∈ E(m,i)

int , to ϕi(·, 0) in L∞(Ω), ∀i ∈ [ 1, d ]. Therefore:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫
Ω

ū ·ϕ dx dt−
∫

Ω

ρ0 u0 · ϕ(x, 0) dx.

Let us now turn to the convection term T
(m)
2 . By the same computation as in

the proof of Lemma 3.3, we get, with the notations of Equation (28) and Figure 5,

T
(m)
2 =

d∑
i=1

N(m)−1∑
n=0

δt(m)
d∑
j=1

∑
ε∈Ẽ(m,i,j),
ε=σ|σ′

|Dε| ρn+1
ε (ûj)

n+1
ε un+1

ε

ϕnσ − ϕnσ′
xσ,j − xσ′,j

The Hölder inequality with q = 3/2 and q′ = 3 yields, for v ∈ L∞(Ω × (0, T ))
(which holds for the components discrete velocities), at a.e. t ∈ (0, T ):∫

Ω

|v(x, t)|4/3+2 dx ≤
(∫

Ω

|v(x, t)|2 dx
)2/3 (∫

Ω

|v(x, t)|6 dx
)1/3

,

so

‖v‖10/3

L10/3(Ω×(0,T ))
≤ ‖v‖2/3L∞(0,T ;L2(Ω)) ‖v‖

2
L2(0,T ;L6(Ω)).

We thus get that the sequence (u(m))m∈N is controlled in L10/3(Ω×(0, T ))d and thus
converges to ū in Lq(Ω× (0, T ))d, 1 ≤ q < 10/3. In addition, (ρ(m))m∈N converges
to ρ̄ in Lq(Ω × (0, T )), q < +∞, and, thanks to the regularity of ϕ, the piecewise

function ðjϕ(m)
i equal to (ϕnσ −ϕnσ′)/(xσ,j − xσ′,j) over Dε × (tn, tn+1), ε ∈ Ẽ(m,i,j)

and n ∈ [ 0, N (m)−1 ], converges to ∂jϕi in L∞(Ω× (0, T )), for (i, j) ∈ [ 1, d ]2. The
lemma B.2 thus yields:

lim
m→+∞

T
(m)
2 = −

d∑
i=1

∫ T

0

∫
Ω

ūiū ·∇ϕi dx dt.



THE MAC SCHEME FOR VARIABLE DENSITY INCOMPRESSIBLE FLOWS 31

By definition of the discrete diffusion term, we have:

T
(m)
3 =

∫ T

0

∫
Ω

(µD)E(m)(u(m)(x, t)) : ∇ϕ(m)(x, t) dx dt.

Thanks to the weak convergence of the discrete gradients of u(m) to ∇ū in L2(Ω×
(0, T ))d×d, the convergence of µ(ρ(m)) to µ(ρ̄) in Lq(Ω × (0, T )), q ≥ 1 and the
convergence of the discrete gradients of ϕ to ∇ϕ in L∞(Ω× (0, T ))d×d, we have:

lim
m→+∞

T
(m)
3 =

∫ T

0

∫
Ω

µ(ρ̄) D(ū) : ∇ϕ dx dt.

Finally, f is either fixed or converges to f(ρ̄), so, invoking once again the regu-
larity of the test function:

lim
m→+∞

T
(m)
5 =

∫ T

0

∫
Ω

f ·ϕ dx dt.

This concludes the convergence proof. �

Appendix A. The discrete Korn lemma

Lemma A.1. Let i, j ∈ [ 1, d ]2, with i 6= j, let u and v be two discrete fields
corresponding to a discrete i-th velocity component and j-th velocity component,
respectively, and let the partial derivatives of the discrete velocities be defined by
(18). We suppose that the normal velocities vanish on the boundary. Then we
have:

(51)

∫
Ω

ðju ðiv dx =

∫
Ω

ðiu ðjv dx.

Proof. Let us begin with the two-dimensional case and, to fix the ideas, let us
suppose that i = 1 and j = 2. Both ð2u and ð1v are defined on the same twice-

staggered cells, i.e. cells associated to the vertices of the mesh; we denote by E(1,2)
int

the set of the mesh vertices which lie in the interior of the domain. Let us introduce
the following local notations:

- for a ∈ E(1,2)
int , we define by uaN , uaS , vaW and vaE the four neighbouring discrete

velocity unknowns (see Figure 7-(a));

- for σ ∈ E(1), we define by vσNW , vσSW , vσNE and vσSW the four neighbouring
unknowns for the field v (see Figure 7-(b));

- for K ∈ M, we define by uKW , uKE , vKN and vKS the four normal velocities on
the edges of K (see Figure 7-(c)).

Since the normal velocity vanishes at the boundary, either ð2u or ð1v vanishes, and
the integral of Equation (51) reads:∫

Ω

ðju ðiv dx =
∑

a∈E(1,2)int ∪Ẽ
(i)
rec

(uaN − uaS) (vaE − vaW ).
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Reordering twice the sums, we get:∑
a∈E(1,2)int ∪Ẽ

(i)
rec

(uaN − uaS) (vaE − vaW ) =
∑
σ∈E(1)int

uσ
(
(vσSE − vσSW )− (vσNE − vσNW )

)
=
∑
K∈M

(uKE − uKW ) (vKN − vKS ),

which concludes the proof in the two-dimensional case. These arguments readily
extends to the three dimensional case, replacing (still with i = 1 and j = 2) the
vertices of the mesh by the vertical edges. �

avaW vaE

uaN

uaS

(a)

σ

vσNW vσNE

vσSW vσSE

(b)

K

vKN

vKS

uKW uKE

(c)

Figure 7. Local notations for the proof of the discrete Korn
lemma.

We are now in position to prove the following result, which is the discrete coun-
terpart of the so-called Korn lemma.

Lemma A.2 (Discrete Korn Lemma). For any discrete velocity field u, the follow-
ing identity holds:∫

DE(u) : DE(u) dx =
1

2

∫
∇Eu : ∇Eu dx +

1

2

∫
divM(u)2 dx.

Proof. By the definition of the strain rate tensor D and the simple algebraic identity
T : S = 1

2 (T + T t) : S, valid for two tensors T and S as soon as S is symmetric,
we have:∫
DE(u) : DE(u) dx =

1

2

∫
∇Eu : (∇Eu + ∇T

Eu) dx =
1

2

∫
∇Eu : ∇Eu dx + T,

where

T =
1

2

∫
Ω

( n∑
i,j=1

ðjui ðiuj
)

dx.

Lemma A.1 yields

T =
1

2

∫
Ω

( n∑
i,j=1

ðiui ðjuj
)

dx =
1

2

∫
Ω

( n∑
i=1

ðiui
)( n∑

j=1

ðjuj
)

dx,

which concludes the proof. �
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Appendix B. On transfer operators from one mesh to another one

This section gathers some stability and convergence results for transfer operators
defining a piecewise constant function on a second mesh as a function of a piecewise
constant function on a first one. Since the results of this section are quite general,
we state them using generic notations; in this paper, they apply to transfers (or
”reconstructions”, in the sense defined below) between the primal mesh, a dual
mesh or a mesh associated to the discrete velocity gradients. We first begin with a
Lp stability result.

Lemma B.1. Let Ω be a domain of Rd, d ∈ [ 1, 3 ], and let P and Q be two finite
partitions of Ω. Let (uP )P∈P and (γP,Q)(P,Q)∈(P×Q) be two family of real numbers,
and let us define the functions u and v, Ω→ R, by

u(x) =
∑
P∈P

uPXP (x), v(x) =
∑
Q∈Q

(∑
P∈P

γP,Q uP
)
XQ(x).

For P ∈ P and Q ∈ Q, we denote by NP and NQ the sets NP = {Q ∈ Q s.t. γP,Q 6=
0} and NQ = {P ∈ P s.t. γP,Q 6= 0}. We suppose that n ∈ N and C ∈ R are such
that

card(NQ) ≤ n, ∀Q ∈ Q, and
∑
Q∈NP

|γP,Q|r |Q| ≤ C |P |, ∀P ∈ P.

Then, for r ≥ 1, ‖v‖Lr(Ω) ≤ n(r−1)/r C1/r ‖u‖Lr(Ω).

Proof. Using the inequality (
∑n
i=1 ai)

r ≤ nr−1
∑n
i=1 a

r
i , valid for any set of n non-

negative real numbers (ai)i∈[ 1,n ], we have

‖v‖rLr(Ω) =
∑
Q∈Q
|Q|
∣∣∑
P∈P

γP,Q uP
∣∣r ≤ nr−1

∑
Q∈Q
|Q|

∑
P∈P
|γP,Q|r |uP |r

= nr−1
∑
P∈P

( ∑
Q∈NP

|γP,Q|r |Q|
)
|up|r ≤ nr−1 C

∑
P∈P
|P | |up|r,

which concludes the proof. �

Let us now define what we mean by a reconstruction operator, then state and
prove its convergence properties.

Definition B.1. Let Ω be a domain of Rd, d ∈ [ 1, 3 ], and let P and Q be two
finite partitions of Ω. Let (γP,Q)(P,Q)∈(P×Q) be a family of real numbers such that:

(52) γP,Q ≥ 0, ∀(P,Q) ∈ (P ×Q) and
∑
P∈NQ

γP,Q = 1, ∀Q ∈ Q(m).

Let R the operator associating to a piecewise constant functions over the cells of P
the following piecewise constant function over the cells of Q:

R : u =
∑

P∈P(m)

uPXP 7→ R(v) =
∑

Q∈Q(m)

( ∑
P∈NQ

γ
(m)
P,Q uP

)
XQ.

The operator R is referred to in the following as the reconstruction operator asso-
ciated to the coefficients (γP,Q)(P,Q)∈(P×Q).
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Lemma B.2. Let Ω be a domain of Rd, d ∈ [ 1, 3 ], and let (P(m))m∈N and
(Q(m))m∈N be two sequences of finite partitions of Ω. For m ∈ N, let the coef-
ficients (γP,Q)(P,Q)∈(P(m)×Q(m)) satisfy the assumption (52), and let R(m) be the
associated reconstruction operator. For P ∈ P and Q ∈ Q, we denote by NP and
NQ the sets NP = {Q ∈ Q s.t. γP,Q 6= 0} and NQ = {P ∈ P s.t. γP,Q 6= 0}. Let

δ(m) be defined by

(53) δ(m) = max
Q∈Q(m)

sup{|x− y|, x ∈ Q, y ∈ ∪P∈NQP}.

We assume that δ(m) tends to zero when m tends to +∞. In addition, we suppose
that there exists n ∈ N and C ∈ R such that, for any m ∈ N,

card(NQ) ≤ n, ∀Q ∈ Q(m), and
∑
Q∈NP

|Q| ≤ C |P |, ∀P ∈ P(m).

Then, if a sequence (u(m))m∈N of piecewise functions over (P(m))m∈N converges
in Lr(Ω), r ≥ 1, to ū, then the sequence (R(m)(u(m)))m∈N also converges to ū in
Lr(Ω).

Proof. Let ε > 0 and ϕ ∈ C∞c (Ω) such that ‖ū − ϕ‖Lr(Ω) ≤ ε. For P ∈ P(m), let
ūP and ϕP be the mean value of ū and ϕ over P , respectively, and let us denote
ū(m) and ϕ(m) the corresponding piecewise constant functions. We write

‖R(m)(u(m))− ū‖Lr(Ω) = T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4

with

T
(m)
1 = ‖R(m)(u(m))−R(m)(ū(m))‖Lr(Ω),

T
(m)
2 = ‖R(m)(ū(m))−R(m)(ϕ(m))‖Lr(Ω),

T
(m)
3 = ‖R(m)(ϕ(m))− ϕ‖Lr(Ω), T

(m)
4 = ‖ϕ− ū‖Lr(Ω).

We have ‖u(m) − ū(m)‖Lr(Ω) ≤ ‖u(m) − ū‖Lr(Ω), since u(m) − ū(m) is the projection

of u(m)− ū over the space of piecewise constant functions over the elements of P(m);
for the same reason, ‖ū(m) − ϕ(m)‖Lr(Ω) ≤ ‖ū− ϕ‖Lr(Ω). Since Lemma B.1 yields

that the norm of the linear operator R(m) is lower than R = n(r−1)/r C1/r, there

exists M1 so that, for m ≥M1, both T
(m)
1 and T

(m)
2 are lower than Rε. In addition,

by definition of ϕ, T
(m)
4 ≤ ε. Finally, the term term T

(m)
3 compares ϕ to a piecewise

constant function taking in Q ∈ Q(m) a value obtained by a convex combination of
the averages of ϕ in cells of P(m) included in a ball δ(m) containing Q; therefore,
thanks to the regularity of ϕ, this term tends to zero when m tends to +∞, so there

exists M2 such that, for m ≥M2, T
(m)
3 ≤ ε. Combining the obtained estimates, we

have ‖R(m)(u(m)) − ū‖Lr(Ω) ≤ 2 (R + 1) ε for m ≥ max(M1,M2), which concludes
the proof. �

The following remark clarifies the way these results are used in the present paper.

Remark B.1. Let us assume that the sequence (Q(m))m∈N is quasi-uniform with
respect to the sequence (P(m))m∈N in the sense that there exists θ > 0 such that:

max{|Q|, Q ∈ Q(m)} ≤ θ min{|P |, P ∈ P(m)}, ∀m ∈ N.
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In addition, let us suppose that (52) holds and that there exists n ∈ N such that,
for all m ∈ N,

card(NQ) ≤ n, ∀Q ∈ Q(m) and card(NP ) ≤ n, ∀P ∈ P(m).

and that Assumption (53) holds. This situation corresponds to the case where the
mesh step for (P(m))m∈N and (Q(m))m∈N tends to zero and, as usual, the recon-
struction operator is defined with a constant stencil.

Then the assumptions of Lemmas B.1 and B.2 are satisfied.

Appendix C. A compactness result

Let us begin with a definition.

Definition C.1 (Compactly embedded sequence). Let B be a Banach space and
(X(m))m∈N be a sequence of Banach spaces included in B. The sequence (X(m))m∈N
is said to be compactly embedded in B if any sequence (u(m))m∈N satisfying:

- u(m) ∈ X(m) for all m ∈ N,

- the sequence (‖u(m)‖X(m))m∈N is bounded

is relatively compact in B.

Then the following compactness result is a corollary of [7, Proposition C5] (see
also [11, Chapter 4]).

Theorem C.1 (Time compactness with a sequence of subspaces). Let 1 ≤ p <∞
and T > 0. Let B be a Banach space and (X(m))m∈N be a sequence of Banach spaces
compactly embedded in B. Let (f (m))m∈N be a sequence of Lp(0, T ;B) satisfying
the following conditions:

(1) The sequence (f (m))m∈N is bounded in Lp((0, T );B).
(2) The sequence (‖f (m)‖L1(0,T ;X(m)))m∈N is bounded.

(3) There exists a non-decreasing function η from (0, T ) to R+ such that
lim
τ→0

η(τ) = 0 and, ∀τ ∈ (0, T ) we have:

∫ T−τ

0

‖f (m)(t+ τ)− f (m)(t)‖pB dt ≤ η(τ)

for all m ≥M(τ), where M(τ) is an integer possibly depending on τ (often,
in applications, tending to +∞ when τ tends to zero).

Then, (f (m))m∈N is relatively compact in Lp(0, T ;B).

Proof. Since f (m) ∈ Lp(0, T ;B), one has
∫ T−τ

0
‖f (m)(t+ τ)− f (m)(t)‖pB dt→ 0 as

m→ +∞, so that, by the third assumption of the theorem,

sup
m∈N

∫ T−τ

0

‖f (m)(t+ τ)− f (m)(t)‖pB dt→ 0 as n→ +∞.

Therefore, [7, Proposition C5] applies. �
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[2] L. Batteux, P. Angot, J. Laminie, and P. Poullet. Simulation of a particulate flow in 3D using

volume penalization methods. In M. Deville, C. Calvin, V. Couaillier, M. De La Llave Plata,
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