Indigenous Navigation in the Caribbean Basin: a Historical, Ethnoarchaeological and Experimental Approach to the Caribbean-Guyanese Kanawa
Benoît Bérard, Alexandra Biar

To cite this version:
Benoît Bérard, Alexandra Biar. Indigenous Navigation in the Caribbean Basin: a Historical, Ethnoarchaeological and Experimental Approach to the Caribbean-Guyanese Kanawa. Archaeonautica, 2021. hal-03344356

HAL Id: hal-03344356
https://hal.univ-antilles.fr/hal-03344356
Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The early human occupation of the Antilles was based on the manufacture and use of expanded and extended dugout canoes named kanawa. The same boat type is also associated with the Carib linguistic family groups precolonial expansion along the coasts from Brazil to Venezuela. This paper describes this type of boat and its construction process in a comparative approach to archaeological and ethnohistorical data related to the Antillean archipelago and an ethnoarchaeological study of the contemporary construction process of the kanawa by the Kali’na Amerindians of Guiana (French Guiana/Suriname). Lastly, an experimental maritime archaeology programme carried out in the Antilles over several years allows us to discuss the nature of navigation permitted by this type of boat.

Keywords
Caribbean, dugout canoes, experimentation, Guiana, maritime technology

The Caribbean Sea forms a kind of “American Mediterranean” with the Gulf of Mexico. The Antillean Islands that separate it from the Atlantic Ocean extend over 4000 km between the north coast of South America and Florida (fig. 1). The Amerindian peopling of the archipelago took place in several waves (Keegan et al. 2013; Rouse 1992). The presence of archaic groups, whose origin could be Mesoamerican, was identified in the Greater Antilles as early as the 5th millennium BC. Later (end of the 4th millennium BC) groups of maritime nomads crisscrossed the northern Lesser Antilles and the Virgin Islands (Bonissent 2013; Hofman et al. 2006). Are they the descendants of groups that were present earlier in the Greater Antilles or the result of a new migration of populations from northern South America? There is currently no consensus within the Caribbean archaeological community on this issue (Callaghan 2010). During the second half of the 1st millennium BC, a new population influx from northern South America (Orinoco Basin) marked the beginning of the development of formative societies in the archipelago. They were particularly characterised by the establishment of important networks of inter-island exchange, as well as between the islands and the continent (Berard 2013a). Finally, important links with the Guiana Shield, probably associated with a population influx, have been documented (Boomert 1986; Hofman, Hoogland 2012). Their dating as well as their exact modalities have still to be established (Bérard 2011).

As regards navigation conditions in the West Indies, outside the hurricane season, the wind regime is dominated by trade winds blowing from the northeast. The currents are permanent and significant, mainly linked to the entry of Atlantic waters through the channels that separate the islands from each other and especially between the southern end of the archipelago and the continental coasts (South Equatorial current). The relative narrowness of these channels means that, with one exception (the Anegada Passage between Anguilla and the Virgin Islands), the islands are visible to one another (Torres, Rodriguez Ramos 2008): hence the metaphor of stepping stones that has been used by archaeologists to describe the archipelago. In any case, the precolonial human occupation of the Antilles is one of the rare examples of early human occupation of an oceanic archipelago, and a large set of archaeological data has demonstrated the capacity of all those groups to create and maintain important exchange networks inside the archipelago and with several continental areas (Hofman, van Duijvenbode 2011; Curet, Hauser 2011).

Therefore, an evaluation of the navigation capacities of pre-Columbian populations is central for any archaeologist...
1. ARCHAEOLOGICAL AND HISTORICAL APPROACH TO PRE-COLUMBIAN AND CONTACT PERIOD INDIGENOUS NAVIGATION TECHNIQUES IN THE ANTILLES

Until now very few remains of pre-Columbian canoes have been found in the Antilles. One of these is the so-called Stargate canoe found in a blue hole off Andros Island, Bahamas (Callaghan, Schwabe 2001). This is a very small, simple, dugout canoe, only 1.5 m long. The remains of two other canoes have been found during excavations of the Los Buchillones site in Cuba. The first one is also a simple dugout while the second has been described as a fragment of a large oceanic canoe, possibly an expanded and extended dugout (Cooper 2004). Our knowledge of pre-Columbian Antillean paddles is more extensive. Eight complete paddles and preforms have been discovered sharing approximately the same shape (Bérard et al. 2016a, fig. 6). They are composed of a crosspiece, a shaft, and a lancelate blade. This sort of blade, with a relatively reduced surface, is generally used for long distance navigation in deep water (Warren, Gidmark 2001; Fitzpatrick 2013). Due to this scarcity of direct archaeological evidence, we decided to complement our review with an analysis of the large set of historical European sources dating from the contact period (Bérard et al. 2016a). This provided us with a description of the Kalinago Amerindian vessels, composed of four general types. The most basic was a simple balsa (Ochroma pyramidale) trunk used for leisure purposes as a sort of arcaic bodyboard (Breton 1665). The second was a pumpwood (Cecropia scheberiana) raft known as boûlali (Breton 1665), and used for fishing in calm waters near the coast. The first canoe built by the Antillean Amerindian groups was called kuliala. This was a simple dugout utilised mainly for fishing and coastal navigation. The second type of sea craft was called kanawa (fig. 2). It was a large boat capable of transporting up to 40 people and was more specifically dedicated to inter-island navigation. The kanawa can be characterised as a dugout canoe expanded by firing and extended by framing and planking. The quality of the historical sources has allowed us to reconstruct the entire operational chain for the construction of this type of boat, from the decision to implement the process to the naming of the new canoe (Bérard et al. 2016a).

2. BOAT CONSTRUCTION BY THE KAL’NA OF FRENCH GUIANA

Having collected and studied the available archaeological and historical data, we hoped to give substance to this information by constructing a kanawa, which would be the basis for developing an experimental navigation programme. To this end, we approached the last remaining marine carpenters of the Kal’na indigenous community in French Guiana. At the beginning of the 17th century, the Kal’na, named Galibi by the first European travellers, were family groups of farmers, hunters and fishermen, renowned for their imposing maritime fleets composed of large dugout canoes adapted to coastal and

---

1. There is no precolonial use of sail in the Antilles (Bérard et al. 2016a).
open-sea navigation. Scattered along the coast of the Guiana Shield, Kali’na people settled over a vast area currently divided among the modern countries of Venezuela, Guyana, Suriname, French Guiana and as far as the western bank of the Oyapock River in Brazil (fig. 1). Such an expansion explains why, at the end of the 16th century, Kali’na people were among the first indigenous groups of the region to establish contact with Europeans. Today, the communities attached to the Kali’na are still scattered along a coastal fringe stretching from the Brazilian Amazon to the Orinoco Delta. Some elders still possess knowledge inherited from their long maritime tradition, which is doomed to disappear if it is not passed on to the younger generations. The construction of two kanawa took place over a period of three months under the direction of Felix Brickman, a Kali’na marine carpenter from Suriname. The construction process followed the steps and principles drawn from the study of archaeological and ethnohistorical data and was enhanced by using Kali’na know-how. Thus, the building process was the result of technical exchanges between the experts of the scientific team and the Amerindian experts in charge of boat construction. To provide a framework for these exchanges, the documentation of the construction process was supplemented by a series of ethnographic interviews. The construction team, but also a larger part of the population, was interviewed using a semi-structured questionnaire. The latter sought to acquire technical information, but also ethnological testimonies, essential to the understanding of traditional navigation and how these boats are an important element in their own conception of Kali’na cultural identity.

The kanawa presented here was named Akayouman (fig. 3), which means “The spirit of the grandfather snake”. Its dimensions are: length, 17.52 m; width, 1.5 m; minimum planking height, 74 cm. It weighs 1.4 tons empty and its maximum displacement was 8 tons, which leaves numerous theories regarding capacity to be considered. Examinations carried out on its hull in 2008 showed that the monoxyle element followed the shape of the original trunk. The canoe has a maximum flaring around 3 m from the bow. The dugout structure has a residual thickness that varies between 5 and 8 cm, except for the solid front. It has an 8 cm-thick solid transom with notches to hold the pagalle, a large steering paddle, as well as a footrest and backrest crossbar. The structure is reinforced by 13 frames, spaced from 1 to 1.2 m apart. The monoxyle element is connected to a stem post limited to the upper part of the bow linking the washboards forwards. Each frame is composed of a floor timber (sided dimension 6 cm) with limber hole and futtock (sided dimension 5 cm), which maintains the washboard (average thickness 2.5 cm). Screws and nails arranged as close as possible to the presumed line of the former vegetable fibre stitching provide the connections. Finally, tropical plant fibres and bitumen are used for caulking.

3. THE EXPERIMENTAL NAVIGATION PROGRAMME

The final part of the project was dedicated to an experimental navigation programme (Bérard et al. 2016b). First, we had to
train a crew and reconstitute, step by step, the set of skills associated with navigating this very specific type of boat. We gathered and collated the knowledge and know-how that has been preserved until the present day by native and Creole societies in the West Indies. We benefited from the support of an experienced va’a instructor from French Polynesia. After a long preparation and training process, we conducted four expeditions in the Lesser Antilles between 2008 and 2011 (fig. 4).

The first was a one-day navigation dedicated to crossing the 24 nautical mile channel between Martinique and Dominica. Carried out in exceptionally calm conditions, it took us 6 hours and 48 minutes. The second was a nine-day trip including seven navigation days and two rest days. By paddling for almost 44 hours over 139 nautical miles, we reach English Harbour, Antigua, from northern Martinique. The third expedition in May 2010 took us from Grenada to Martinique (31 h 37 for 82 NM) in eight navigation days. Finally, in 2011, we again made the crossing between Martinique and Dominica but with crew changes.

Akayouman’s standard crew consists of 28 people: 26 paddlers, a boatswain at the front in charge of the rhythm, and a steersman at the stern. One of the forward paddlers occasionally assists the steering in difficult seas or when mooring by acting as a ‘bow thruster’. Between December 2007 and May...
2011, during which time the quantitative data were collected following the personnel of this crew obviously changed, but we were able to benefit from a small stable core of crewmembers. The general principle of crew composition did not change. Indeed, the objective of our programme was to assess the navigational capacities of pre-Columbian Caribbean populations in the context of migratory phenomena or economic and/or social trips. Thus, during the first three expeditions, our crew always included women and men, whose ages ranged from 18 to nearly 70 years. In 2011, in order to test the impact of crew composition on the data collected, we modified the composition. The new crew was almost exclusively male and composed of young soldiers from the 1st RSMA², who had undergone several months of training comparable to those preparing for the other expeditions. Despite the change, the data collected were very similar to those obtained in May 2008 and May 2009 on the same route. The distance of 23.7 nautical miles was covered in 6 hours and 37 minutes.

In addition to the information gathered during the various inter-island expeditions, data from various navigations along the coasts of Martinique were also collected for a total distance of 140 nautical miles. Therefore, we have been able to constitute a corpus of quantitative data (route, surface speed, ground speed, environmental data – current, wind and waves) based on a total of 410 nautical miles of navigation. This allowed us to estimate the average speed of these boats at 3 knots. This experimental navigation programme has been complemented by a hydrostatic study of the Akayouman (Billard et al. 2009) that has provided major data about its cargo capacity, which can reach 1 ton in calm waters. This study also demonstrated that kanawa that are not outrigged must carry a significant amount of ballast to ensure their stability. We made our various crossings with a load of about 500 kg as ballast. Thus, with an average speed of 3 knot for a crew of 27 people and a load of 500 kg, i.e. a displacement of 4 t and a draught of 0.41 m, we have been able to estimate the power developed by the crew at about 1/2 hp.

5. DISCUSSION AND CONCLUSION

_The kanawa_ is an expanded and extended dugout canoe for which navigation on the high seas does not present any major difficulty. However, the morphology, as well as the mode of propulsion, the paddle, impose certain limitations. The first and probably the most important of these is the need in rough seas to maintain permanent forward movement in order to ensure the boat’s stability. Given that we were reasonably able to estimate cruising speed at 3 knots, the combination of these two elements, with regard to a crew’s ability to maintain paddling effort, allows us to approach a limit of navigation in a kanawa. A further limitation is related to environmental conditions. The most constraining factor at this level is the swell, however, it is a complex system that integrates wave height, frequency and direction with respect to route. Some conditions would require a change of course and therefore an extension of the route, others simply act against navigation. Nonetheless, observation of meteorological data shows that it is possible to navigate between the islands of the West Indies most days of the year. Concerning navigation between the islands of the archipelago, the navigation capacities of the kanawa make it possible to envisage a high frequency of trips. In addition, with two exceptions, each channel can be crossed during one day. Lastly, each trip allows the transport of many passengers and a large cargo. This navigation capacity has not only made it possible to make the archipelago a real specific space of civilisation (Keegan, Hofman 2017) but has also served as a basis for the development of important exchange networks (Hofman, Hoogland 2011; Knippenberg 2006) and the creation of inter-island micro-territories (Bérard 2018).

Compared to previous work based on drift models (Altes 2011; Callaghan 2001, 2010, 2011 and 2013), our research allows us to move from what is possible in terms of pre-Columbian navigation to what is probable by reintegrating the human factor through practical experience. Thus, the experimental data collected have recently been integrated into a new type of simulation (Slayton 2018) allowing much more detailed evaluation than in previous work. All the same, the production of new experimental data still seems necessary, particularly when it comes to designing hypotheses based on longer navigations, in particular, direct navigations between continental areas and the heart of the archipelago. For this reason we are preparing a new expedition between the Yucatan peninsula and the western tip of Cuba (115 NM) for July 2022.

2. Qualitative data collection was never completed, since the use of the kanawa continues to this day in the activities of the Karisko society. It has even spread to the Guadeloupe archipelago through the activities of the Association K’na’wa, to which we have sold one of the two boats built in French Guiana.


REFERENCES

**ALTES C.**

2011 A brief note on currents, current archaeologists, and ancient fire-tempered pots, _The Florida Anthropologist_ 64.2, p. 113-118.

**BÉRARD B.**


Benoît Bérard and Alexandra Buz – Indigenous navigation in the Caribbean Basin
2018 Essai d’archéogéographie sociale des territoires amérindiens dans l’archipel antillais 300 av. J.-C./400 apr. J.-C., Mémoire original, Habilitation à diriger les recherches, Université de Paris 1 Panthéon-La Sorbonne.

BÉRARD B., BILLARD J.-Y., L’ETANG TH., LALUBIE G., NICOLIZAS C., RAMSTEIN B., SLAYTON E.


BILLARD J.-Y., BÉRARD B., RAMSTEIN B.


BONNISSENT D. (éd.)


BOOMERT A.


BRETON R.

1665 Dictionnaire caraïbe-français mêlé de quantité de Remarques historiques pour l’esclaircissement de la Langue, Auxerre, Gilles Bouquet.

CALLAGHAN R.


2011 Patterns of contact between the islands of the Caribbean and the surrounding mainland as a navigation problem, in L.A. Curet, M.W. Hauser (eds), Islands at the crossroads: migration, seafaring, and interaction in the Caribbean, Tuscaloosa, University of Alabama Press, p. 59-72.


CALLAGHAN R., SCHWABE S.


COOPER J.

2004 Islas y Isleños en el Caribe: Interacción a través del paisaje, El Caribe Arqueológico 8, p. 91-96.

CURET L.A., HAUSER M.W. (eds)

2011 Islands at the crossroads: migration, seafaring, and interaction in the Caribbean, Tuscaloosa, University of Alabama Press.

DI MÉO G.


DU TERTRE J.-B.


FITZPATRICK S.M.


HOFMAN C., BRIGHT A., HOOGLAND M.


HOFMAN C. L., VAN DUIJVENBODE A. (eds)


HOFMAN C.L., HOOGLAND M.


KEEGAN W., HOFMAN C.L.

2017 The Caribbean Before Columbus, New York, Oxford University Press.

KEEGAN W., HOFMAN C., RODRIGUEZ RAMOS R. (eds)


KNIPPEMBERG S.

2006 Stone artefact production and exchange among the Northern Lesser Antilles, PhD dissertation, Faculty of Archaeology, Leiden University.

ROUSE I.


SLAYTON E.

2018 Seascapes corridors, Leiden, Sidestone Press Dissertations.

TORRES J., RODRIGUEZ RAMOS R.


WARREN G., GIDMARK D.

2001 Canoe paddles, Richmond Hill, Firefly Books Ltd.