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Super-twisting sliding mode control for the stabilization of a linear
hyperbolic system

Ismaı̈la Balogoun, Swann Marx, Thibault Liard, and Franck Plestan

Abstract— This paper deals with the stabilization of a linear
hyperbolic system subject to a boundary disturbance. Our
feedback design relies on a super-twisting control algorithm,
which leads to a feedback that is continuous with respect to
the state, in contrast with the classical sliding mode design.
Our first result is the existence of solutions of the closed-loop
system. Moreover, the global asymptotic stability, that is our
second result, is proved together with the guarantee that the
disturbance is rejected.

I. INTRODUCTION

This paper is concerned with the stabilization of a linear
hyperbolic system with a boundary control and subject to a
disturbance (see e.g, [1] for a review on this class of system).
To be more precise, we aim at designing a super-twisting
algorithm [13] for that purpose.

Systems of linear transport equations have been the subject
of much attention for many years because of the many
physical phenomena they model: e.g pressure drilling [10],
aeronomy [19]. A good overview of the actual research lines
concerning this topic is provided in [1]. For more details, the
reader can also refer to [3]–[5].

Sliding mode control (SMC) strategy has been proved to
be efficient for robust control of nonlinear systems of ordi-
nary differential equations (ODEs) [6], [21], [23], [25]. Such
controllers allow to force, thanks to discontinuous terms, the
system trajectories to reach in a finite time a manifold, called
sliding surface, and to evolve on it. This manifold being
defined from control objectives [21]. Roughly speaking, the
control design is decomposed into two steps: firstly, a sliding
variable is selected such that, once this variable equals zero,
global asymptotic stability is ensured; secondly, a discon-
tinuous feedback-law is designed such that the trajectory
reaches the sliding surface, that is defined thanks to the
sliding variable. On this sliding surface, the disturbance is
rejected. The generalization of the SMC procedure to the
partial differential equations (PDE) case is not new. In [16],
[17], a definition of equivalent control (which is the control
applied to the system after reaching the sliding surface, to
ensure that the trajectories stays on the surface thereafter)
for systems governed by semilinear differential equations in
Banach spaces has been proposed. One can refer also to [11],
[12] where differential inclusions and viability theory are
combined to design sliding mode controllers for semilinear
differential equations in Banach spaces. In the last decade,
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a backstepping strategy has been used to select a sliding
variable [8], [18], [24]. Note also that the SMC feedback-
law is discontinuous, which creates chattering phenomena
when implementing the control numerically. Recall that chat-
tering phenomena are characterized by oscillations having
finite amplitude. Therefore, in practical control cases, it is
important to reduce this phenomena by providing continuous
or smooth controller.

Based on second-order sliding mode techniques (see e.g,
[21, Chapter 4]), the super twisting (ST) algorithm has been
developed for systems whose the sliding variable admits a
relative degree (see [21, Definition 1.6]) equal to 1. The
essential feature of the ST control is to require that only
the measurement of the sliding variable to guarantee the
convergence in finite time to zero of the sliding variable and
its derivative. Moreover, the ST feedback-law is continuous
with respect to the state and this drastically attenuates the
chattering phenomenon. The contribution of this paper is
to use a super-twisting strategy to design a continuous
feedback-law which allows to reject the disturbance in finite
time and to ensure that the resulting closed-loop system is
globally asymptotically stable. The sliding variable comes
from the gradient of a Lyapunov functional that is used
for hyperbolic systems [1, Section 2.3]. This imposes to
measure the integral of the state with a certain weight and
a boundary of the state. Such a sliding variable allows
to directly use well-known results on the stabilization of
hyperbolic systems.

This paper is organized as follows. Section II presents
a system of linear hyperbolic equations, the super-twisting
based control law and the main results of the paper. Section
III contains the proofs of the main results. Finally, Section IV
collects some remarks and introduces some future research
lines to be followed.

Notation. The set of non-negative real numbers is denoted
in this paper by R+. When a function f only depends on the
time variable t (resp. on the space variable x), its derivative
is denoted by ḟ (resp. f ′). Given any subset of R denoted by
Ω (R+ or an interval, for instance), L2(Ω;Rn) denotes the
set of (Lebesgue) measurable functions f1, . . ., fn such that,
for i = {1, . . . , n},

∫
Ω
|fi(x)|2dx < +∞. The associated

norm is ∥(f1, . . . , fn)∥2L2(Ω;Rn) :=
∫
Ω
|f1(x)|2dx + . . . +∫

Ω
|fn(x)|2dx. Given two vector spaces E and F , L(E,F )

denotes the space of linear applications from E into F . A
function α : IR+ → IR+ is of class K, if it is continuous,
strictly increasing and satisfies α(0) = 0. A function α :
IR+ → IR+ is of class K∞, if it is of class K and unbounded.
A function β : IR+ × IR+ → IR+ is of class KL, if for each



fixed t ≥ 0, β(·, t) is of class K, and, for each fixed r ≥ 0,
β(r, ·) is decreasing and satisfies limt→∞β(r, t) = 0.

II. MAIN RESULTS

A. Problem statement

Let ℓ > 0 and λ1, λ2 ∈ C1([0, ℓ]) such that, for all x ∈
[0, ℓ], λ1(x) > 0, λ2(x) > 0 and k2 ∈ IR\{0}. Consider the
following linear hyperbolic system

∂tR1(t, x) + λ1(x)∂xR1(t, x) = 0,

∂tR2(t, x)− λ2(x)∂xR2(t, x) = 0,

R1(t, 0) = u(t) + d(t),

R2(t, ℓ) = k2R1(t, ℓ),

R1(0, x) = R0
1(x), R2(0, x) = R0

2(x),

(1)

where R0
1, R

0
2 ∈ L2(0, ℓ), u denotes the control and d(·)

is an unknown disturbance. Assume that d(·) is bounded
and globally Lipschitz over R+. Furthermore, there exists a
known positive constant C such that, for a.e t ∈ R+,

|ḋ(t)| ≤ C. (2)

When the system (1) is undisturbed (d = 0), it is known that
the feedback law

u(t) := k1R2(t, 0),

allows to stabilize the system if |k1k2| < 1, see [1, The-
orem 2.11.]. The proof, relies on the following Lyapunov
functional

V (t) =

∫ ℓ

0

(
q1(x)R

2
1(t, x) + q2(x)R

2
2(t, x)

)
dx, (3)

q1(x) =
p1

λ1(x)
exp

(
−
∫ x

0

ν

λ1(σ)
dσ

)
,

q2(x) =
p2

λ2(x)
exp

(∫ x

0

ν

λ2(σ)
dσ

)
, (4)

for any ν, p1, p2 > 0 selected as in [1, Theorem 2.11.].
In this paper, the goal is to develop a super-twisting based

controller. To do so, we will consider a continuous robust
feedback-law u which allows to reject the disturbance in
finite-time and to globally asymptotically stabilize the system
around the equilibrium point (0, 0) in the functional space

X := L2(0, ℓ;R2).

More precisely, the aim is to find a sliding surface Σ on
which (1) becomes in finite-time the following system

∂tR1(t, x) + λ1(x)∂xR1(t, x) = 0,

∂tR2(t, x)− λ2(x)∂xR2(t, x) = 0,

R1(t, 0) = k1R2(t, 0),

R2(t, ℓ) = k2R1(t, ℓ),

(5)

with k1 chosen such that |k1k2| < 1. From [1, Theorem
2.11], it is known that (0, 0) is exponentially stable for (5).
The next section will provide a definition of this sliding
surface Σ (and its related sliding variable) and the associated
super-twisting sliding mode controller.

B. Control Design

Introduce the sliding surface Σ defined as follows,

Σ :=

{
(f, g) ∈ X |

∫ ℓ

0

(q1(x)f(x) + q2(x)g(x)) dx = 0

}
(6)

with q1 and q2 defined in in (4). Then, for any solution
(R1, R2) of (1), the sliding variable S : IR+ → IR is defined
by

S(t) :=

∫ ℓ

0

(q1(x)R1(t, x) + q2(x)R2(t, x)) dx (7)

for all t ≥ 0, with ν > 0 and
p1 = 1,

p2 = k1 =
exp

(
−ν
∫ ℓ

0

[
1

λ1(σ)
+ 1

λ2(σ)

]
dσ
)

k2
.

(8)

Consider the super-twisting based controller u defined by,
for a.e t ≥ 0,{
u(t) = νS(t) + k1R2(t, 0)− α|S(t)| 12 sign(S(t)) + v(t),

v̇(t) ∈ −βsign(S(t))
(9)

where k1 is defined in (8), S is introduced in (7), β and
α are positive constants which will be chosen later and the
set-valued function sign is defined by

sign(z) :=

 −1 if z < 0,
[−1, 1] if z = 0,
1 if z > 0.

From (9), only the measurements of R2(t, 0) and S(t) are
required. Furthermore, the full-state is not needed to measure
S(t). Indeed, it is just needed to measure the integral of the
state with the weight functions q1 and q2.

For a.e t ≥ 0, after some formal integration by parts, one
gets {

Ṡ(t) = −α|S(t)| 12 sign(S(t)) + v(t) + d(t),

v̇(t) ∈ −βsign(S(t)).
(10)

along the trajectories of (1)−(9). Then, according to the
following transformation

W (t) = d(t) + v(t), (11)

the system (10) is rewritten as{
Ṡ(t) = −α|S(t)| 12 sign(S(t)) +W (t),

Ẇ (t) ∈ ḋ(t)− βsign(S(t)).
(12)

The system (12) is understood in the sense of Filippov [7]
and the existence of solutions is given in Lemma 1. From
[20, Theorem 1], all trajectories of (12) converge to zero in
finite time.

Proposition 1: ( [20, Theorem 1]) Assuming that

β > C and α >
√
β + C, (13)

there exists a finite time tr > 0 such that S(t) = 0 and
W (t) = 0 for any t > tr.



Then, the closed−loop system (1)−(9) can be seen as
follows:

∂tR1(t, x) + λ1(x)∂xR1(t, x) = 0,

∂tR2(t, x)− λ2(x)∂xR2(t, x) = 0,

R1(t, 0) = k1R2(t, 0) + νS(t)− α|S(t)| 12 sign(S(t)) +W (t),

Ẇ (t) ∈ ḋ(t)− βsign(S(t))
R2(t, ℓ) = k2R1(t, ℓ),

R1(0, x) = R0
1(x), R2(0, x) = R0

2(x)

W (0) =W0.
(14)

Remark 1: According to Proposition 1 and the first line
of (12), Ṡ(t) = 0 for any t > tr. Then, the solution (R1, R2)
of (14) reaches the sliding surface Σ in finite time tr and
remains on it. Since W (t) = 0 for any t > tr, then according
to (11), one has v(t) + d(t) = 0 for any t > tr. As a
consequence, the system (14) can be rewritten as (5) on
the sliding surface, which is exponentially stable from [1,
Theorem 2.11].

Our proof strategy is based on semigroup theory. For this,
it is interesting to mention the scalar product which will be
used in this paper.

Since λ1(·) and λ2(·) are positive functions, define a scalar

product on X as follows: for all
(
z1
w1

)
,

(
z2
w2

)
∈ X ,

〈(
z1
w1

)
,

(
z2
w2

)〉
:=

∫ ℓ

0

1

λ1(x)
z1(x)z2(x)dx

+

∫ ℓ

0

1

λ2(x)
w1(x)w2(x)dx. (15)

Now, consider the following system

d

dt
Y (·, t) = AY (·, t) + Bd̂(t), (16)

where Y = (Y1, Y2), and d̂ ∈ L2(0, T ; IR). The operator A
is defined as

AY = (−λ1Y ′
1 , λ2Y

′
2),

D(A) =
{
Y ∈ (H1(0, ℓ))2 | Y1(0) = k1Y2(0),

Y2(ℓ) = k2Y1(ℓ)} ,
(17)

and according to the proof of [1, Theorem A.1], it generates a
C0−semigroup (T(t))t≥0 of contractions in X . The operator
B is the delta function at x = 0 in L(R2, D(A∗)′) i.e
⟨φ,By⟩D(A∗),D(A∗)′ = φ(0)y for all y ∈ IR2 and φ ∈
D(A∗) where A∗ is the adjoint operator of A, D(A∗) its
domain and ⟨·, ·⟩D(A∗),D(A∗)′ is the dual product.

In this paper, we consider the mild solution of (16) in the
sense of the next definition.

Definition 1: Let T > 0, d̂ ∈ L2(0, T ; IR). Then
for every (R0

1, R
0
2), we say that the map (Y1, Y2) :

[0, T ] × (0, ℓ) → R2 is a mild solution of (16), if

(Y1, Y2) ∈ C(0, T ;X) ∩ H1(0, T ;D(A∗)′) such that for
all t ∈ [0, T ](

Y1(t, ·)
Y2(t, ·)

)
= T(t)

(
Y 0
1

Y 0
2

)
+

∫ t

0

T(t− s)Bd̂(s)ds (18)

where (T(t))t≥0 is the C0−semigroup generated by the
operator A define in (17).

Next, the solutions of (14) are understood in the sense of
the following definition.

Definition 2: Let T > 0 and (R0
1, R

0
2,W0) ∈ X × IR.

We say that the map (R1, R2) : [0, T ] × (0, ℓ) → R2 and
W : [0, T ] → R is a mild solution of the Cauchy problem
(14) if (R1, R2) ∈ C(0, T ;X) such that for all t ∈ [0, T ],
(R1(t, ·), R2(t, ·)) satisfies (18) with

d̂(t) =

(
−α|S(t)| 12 sign(S(t)) +W (t) + νS(t)

0

)
(19)

and W is absolutely continuous and satisfies

Ẇ (t) ∈ ḋ(t)− βsign(S(t)) (20)

for a.e t ∈ [0, T ] where S is given in (7).

The main results of this paper can be formulated as follows:

Theorem 1 (Well-posedness): Assume that (13) holds.
Then, for all T > 0 and for all (R0

1, R
0
2,W0) ∈ X × IR, the

closed-loop system (14) admits a mild solution (R1, R2,W ).

Theorem 2 (Global asymptotic stability): Assume that
(13) holds. Then, for any (R0

1, R
0
2,W0) ∈ X × IR, 0 is

globally asymptotically stable for (14). In other words, there
exists a KL-function τ such that for any (R0

1, R
0
2,W0) ∈

X × R and for any t ≥ 0:

∥(R1(t, ·), R2(t, ·)∥X+ |W (t)| ≤ τ(∥(R0
1, R

0
2)∥X+ |W0|, t).

(21)

III. PROOF OF THEOREM 1 AND THEOREM 2

A. Proof of Theorem 1

This section provides a proof of Theorem 1. More pre-
cisely, the aim consists in proving the well-posedness of the
closed−loop system (14) and the regularity of the function
S defined by (7). Let (R0

1, R
0
2,W0) ∈ X × IR and consider

the following ODE


γ̇(t) = −α|γ(t)| 12 sign(γ(t)) + η(t), t ∈ IR+,

η̇(t) ∈ ḋ(t)− βsign(γ(t)),
γ(0) = S0, η(0) =W0.

(22)

where

S0 =

∫ ℓ

0

(
q1(x)R

0
1(x) + q2(x)R

0
2(x)

)
dx.



The system (22) is understood in the sense of Filippov [7].
In the next lemma, we state that there exists a solution to
(22).

Lemma 1: Assume that (13) holds. There exists an ab-
solutely continuous map (γ, η) that satisfies (22) for almost
t ≥ 0.

Proof: We consider the function f : IR2 → IR2 defined by

f(γ, η) =

{
f+(γ, η) = (−α√γ + η,−β) if γ > 0,
f−(γ, η) = (α

√
−γ + η, β) if γ < 0

(23)
and let Fd : (γ, η) ∈ IR2 7→ Fd(γ, η) be the set-valued map
defined by

Fd(γ, η) = B̄(0, C)+

{
{f(γ, η)} if γ ̸= 0,
conv{f+(γ, η), f−(γ, η)} if γ = 0

(24)
where B̄(0, C) is a closed ball of IR2 centered at 0 and
of radius C. Since f is continuous on IR \ {0} × IR, then
the function Fd is non−empty, compact, convex and upper
semi−continuous. Then according to [2, Theorem 3.6], there
exists at least one solution of the differential inclusion

ζ̇ ∈ Fd(ζ) (25)

where ζ = (γ, η). Since Fd is the Filippov’s construction
associated to (22), then, there exists an absolutely continuous
map that satisfies (22) for almost t ≥ 0, concluding therefore
the proof.
Since γ and η are continuous then, according to the first line
of (22), we deduce that γ̇ is also continuous.

Next, we show the following well-posedness result for
the system (16).

Lemma 2: Let (γ, η) be a solution of (22). Then, for all
(Y 0

1 , Y
0
2 ) ∈ X and for all T > 0, the system (16) with

d̂(t) =

(
νγ(t) + γ̇(t)

0

)
(26)

admits a mild solution (Y1, Y2) ∈ C([0, T ];X).

Proof: Let T > 0 and (γ, η) be a solution of (22). Then
according to Lemma 1, γ and γ̇ are continuous. Therefore,
d̂ ∈ L2(0, T ). As a consequence, since A generates a
C0−semigroup (T(t))t≥0 of contractions in X and if one
proves that the operator B is an admissible operator (see e.g
[22, Chapter 4]) for the C0−semigroup (T(t))t≥0, one can
apply the result provided by [9, Theorem 2.2], and conclude
that the statement of Lemma 2 holds.

Since X is a Hilbert space, proving that the operator B
is an admissible operator for the C0−semigroup (T(t))t≥0

is equivalent to prove that the adjoint operator B∗ of B is
an admissible observation operator for the adjoint of the
C0−semigroup (T(t))t≥0. Then, we consider the dual system

of (16): 
d

dt

(
φ1

φ2

)
= A∗

(
φ1

φ2

)
y∗ = B∗

(
φ1

φ2

) (27)

where A∗ and B∗ are given by

A∗
(
φ1

φ2

)
=

(
λ1φ

′
1

−λ2φ′
1

)
,

D(A∗) =

{(
φ1

φ2

)
∈ (H1(0, ℓ))2 | φ2(0) = k1φ1(0),

φ1(ℓ) = k2φ2(ℓ)

}
,

B∗ :

(
φ1

φ2

)
∈ D(A∗) 7→

(
φ1(0)
0

)
.

(28)
For all (φ0

1, φ
0
2) ∈ D(A∗), the function(

φ1(t)
φ2(t)

)
= T∗(t)

(
φ0
1

φ0
2

)
(29)

defines the unique classical solution of (27) where T∗(t) is a
C0−semigroup with infinitesimal generator A∗ on X . Now,
consider the following function

E(t) =

∫ ℓ

0

(
Q1(x)φ

2
1(t, x) +Q2(x)φ

2
2(t, x)

)
dx, (30)

Q2(x) =
a2

λ2(x)
exp

(
−
∫ x

0

ν

λ2(σ)
dσ

)
,

Q1(x) =
a1

λ1(x)
exp

(∫ x

0

ν

λ1(σ)
dσ

)
, (31)

where ν, a1, a2 > 0 will be chosen later. If we select ν, a1
and a2 as in [1, Proof of Theorem 2.11], then one deduces
that for all t ≥ 0

|φ1(t, 0)|2 ≤ −1

a1 − a2k21
Ė(φ1(t, ·), φ2(t, ·)). (32)

Therefore, for all T > 0 and for all
(
φ1(0, ·)
φ2(0, ·)

)
∈ D(A∗)

∫ T

0

|y∗(t)|2dt ≤ − 1

a1 − a2k21

∫ T

0

Ė(φ1(t, ·), φ2(t, ·))dt

≤ 1

a1 − a2k21
E(φ1(0, ·), φ2(0, ·)) (33)

− 1

a1 − a2k21
E(φ1(T, ·), φ2(T, ·))

≤ 1

a1 − a2k21
E(φ1(0, ·), φ2(0, ·)).

Since E is equivalent to the usual norm, there exists a
positive constant C such that, for all T > 0 and for all(
φ1(0, ·)
φ2(0, ·)

)
∈ D(A∗)

∫ T

0

|y∗(t)|2dt ≤ C∥(φ1(0, ·), φ2(0, ·))∥2X . (34)



This proves that B is admissible for the C0−semigroup
(T(t))t≥0 and concludes the proof of Lemma 2.

The aim is now to prove that, for any Filippov solution
(γ, η) of (22) with initial condition (S0,W0), the solution
(Y1(·), Y2(·), η) of (16)-(26)-(22) is a mild solution of (14).
To that end, we will show that the following function

σ(t) = S(Y1(t, ·), Y2(t, ·)), (35)

with S defined in (7) and (Y1, Y2) the solution of (16), is
equal to γ for any t > 0.

Lemma 3: For any T > 0, σ is a Carathéodory1 solution
of {

σ̇(t) = −νσ(t) + γ̇(t) + νγ(t), t ∈ [0, T ],
σ(0) = S0.

(36)

Proof: Let T > 0. According to (4) and (8), we have(
λ1q1
λ2q2

)
∈ D(A∗). Then, taking the inner product with(

λ1q1
λ2q2

)
on both sides of (16), we obtain for almost every

t ∈ [0, T ]

d

dt

〈(
Y1(t, ·)
Y2(t, ·)

)
,

(
λ1q1
λ2q2

)〉
=

〈(
Y1(t, ·)
Y2(t, ·)

)
,A∗

(
λ1q1
λ2q2

)〉
+ B∗

(
λ1q1
λ2q2

)
d̂(t) (37)

where ⟨·, ·⟩ is defined in (15). This implies that for a.e t ∈
[0, T ]

d

dt

(∫ ℓ

0

(q1(x)Y1(t, x) + q2(x)Y2(t, x)) dx

)

= −ν
∫ ℓ

0

(q1(x)Y1(t, x) + q2(x)Y2(t, x)) dx (38)

+
(
1 0

)
d̂(t)

Then, after integration by parts, one gets for a.e t ∈ [0, T ]∫ ℓ

0

(q1(x)Y1(T, x) + q2(x)Y2(T, x)) dx

−
∫ ℓ

0

(q1(x)Y1(0, x) + q2(x)Y2(0, x)) dx

= −ν
∫ T

0

∫ ℓ

0

(q1(x)Y1(t, x) + q2(x)Y2(t, x)) dxdt (39)

+

∫ T

0

(
1 0

)
d̂(t)dt

Using (7), (26), (35) one has for all T > 0

σ(T )− σ(0) = −ν
∫ T

0

σ(t)dt+

∫ T

0

νγ(t) + γ̇(t)dt. (40)

This concludes the proof of Lemma 3.

1A Carathéodory solution of (36) is an absolutely continuous map that
satisfies (36) for almost every t.

Lemma 4: For all (R0
1, R

0
2) ∈ X , for all W0 ∈ IR and

for all t ∈ IR+, σ(t) = γ(t) and W (t) = η(t).

Proof: Note that it is enough to prove σ(t) = γ(t) to
be able to conclude W (t) = η(t). For this proof, we refer
to [14, Section 4.1]. This concludes the proof of Lemma 4.

Then, according to Lemma 2, Lemma 3 and Lemma 4, one
concludes that, for any Filippov solution (γ, η) of (22) with
initial condition γ(0) = S0, η(0) =W0, d̂ satisfies (19) and
the associated solutions (Y1, Y2, η) is a mild solution of (14)
in the sense of Definition 2. This concludes the proof of
Theorem 1.

B. Proof of Theorem 2

Let us start proving (12). Let T > 0 and (R0
1, R

0
2,W0) ∈

X×IR. We consider (R1, R2,W ) a mild solution of (14) with
initial condition (R0

1, R
0
2,W0). Then, according to Definition

2, there exists w ∈ L1(0, T ) with w(t) ∈ sign(S(t))
such that for a.e t ∈ [0, T ], Ẇ (t) = ḋ(t) − βw(t) and
(R1(t, ·), R2(t, ·)) satisfies (18) with d̂ which satisfies (19).
As a consequence, (R1, R2) satisfies (16). Then, by replacing
(Y1, Y2) with (R1, R2) in (39) and using (7), (19) we obtain
that, for all T > 0

S(T )−S(0) =
∫ T

0

(−α|S(t)| 12 sign(S(t))+W (t))dt. (41)

Then, according to (41), we obtain for a.e t ∈ [0, T ]{
Ṡ(t) = −α|S(t)| 12 sign(S(t)) +W (t),

Ẇ (t) = ḋ(t)− βw(t).
(42)

Since w(t) ∈ sign(S(t)), then (S,W ) is a Filippov solution
of (12) with initial condition (S(R0

1, R
0
2),W0).

Now, we are going to prove the Theorem 2. Let
(R0

1, R
0
2,W0) ∈ X × IR. Then, according to Proposition 1

and Remark 1, there exists a finite time tr such that, for
all t > tr, the system (14) is equivalent to the system (5)
and hence is exponentially in X from [1, Theorem 2.11].
Therefore, to conclude the proof of Theorem 2, it is just
necessary to prove the Lyapunov stability of the system (14)
over the time interval [0, tr]. It is stated in the following
Lemma.

Lemma 5: There exists a K-function ψ such that for all
(R0

1, R
0
2,W0) ∈ X × IR, for all t ∈ [0, tr],

∥(R1(t, ·), R2(t, ·))⊤∥X + |W (t)| ≤
ψ
(
∥(R0

1(·), R0
2(·))⊤∥X + |W0|

)
. (43)

for all mild solutions (R1(t, ·), R2(t, ·),W (·)) of (14).

Proof: Let (R0
1, R

0
2,W0) ∈ X × IR and we con-

sider (R1, R2,W ) a mild solution of (14) associated
(R0

1, R
0
2,W0). Then, using the Definition 2, there exists



C > 0 such that, for all t ∈ [0, tr], we have

∥(R1(t, ·), R2(t, ·))T ∥X ≤ C∥(R0
1(·), R0

2(·))T ∥X+∥∥∥∥∫ t

0

T(t− s)B
(
−α|S(s)| 12 sign(S(s)) +W (s) + νS(s)

0

)
ds

∥∥∥∥
X

.

(44)

As a consequence, since (T(t))t≥0 is exponentially stable
and B is admissible operator for (T(t))t≥0, then according
to [22, Proposition 4.3.3], there exists K1 > 0 independent
of tr such that

∥(R1(t, ·), R2(t, ·))T ∥X ≤ K1

(
∥(R0

1(·), R0
2(·))T ∥X

+ ∥ − α|S(·)| 12 sign(S(·)) +W (·) + νS(·)∥L2((0,tr),IR)

)
.

(45)

Since the couple (R1, R2) is continuous on [0, tr] , then,
according to (7), S is also continuous. Therefore, S is
bounded on [0, tr]. Moreover, d is bounded on [0, tr]. As a
consequence, W is bounded on [0, tr] according to (10) and
(11). Then, the function −α|S(·)| 12 sign(S(·)) +W (·) + νS
is also bounded on [0, tr]. Therefore, there exists K2 > 0
such that

∥−α|S(·)| 12 sign(S(·))+W (·)+νS(·)∥L2((0,tr),IR) ≤ K2t
1
2
r .

(46)
Now, according to [15, Theorem 2], there are positive
constants K3, K4 (dependent on the bound of ḋ) such that{

tr < K3 (|S(0)|+ |W (0)|) ,
|W (t)| ≤ K4|W (0)|. (47)

Using Holder’s inequality there exists C > 0 such that

|S(0)| ≤ ∥q1(·), q2(·)∥L∞((0,L),IR2)∥R0
1(·), R0

2(·)∥L1((0,L),IR2)

(48)

≤ C∥R0
1(·), R0

2(·)∥X .

As a consequence, according to (45), (46), (47) and (48),
exists C1 > 0 (independent of tr) such that for all t ∈ [0, tr],

∥(R1(t, ·), R2(t, ·))T ∥X + |W (t)| ≤
ψ
(
∥(R0

1(·), R0
2(·))T ∥X + |W0|

)
. (49)

where is given by ψ : x ∈ IR+ 7→ C1(x+
√
x).

This concludes the proof of Theorem 2.

IV. CONCLUSION

A new approach for sliding mode control (precisely super-
twisting control) has been proposed for a class of PDEs,
namely a system of two transport equations. It is a Lyapunov
approach, since the sliding variable is based on the gradient
of the classical Lyapunov function given in [1]. The existence
of solutions of the closed-loop system has been proved as
well as the disturbance rejection and the asymptotic stability
of the closed-loop control system.
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