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Quasi-boundary method for a fractional ill-posed problem

Claire JOSEPH * Maryse MOUTAMAL
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Abstract

A quasi-boundary method is used to study an ill-posed, time-fractional diffusion equation in-
volving the fractional Riemann-Liouville derivative. In particular, we consider an ill-posed problem
for a family of well-posed problems, and prove, by means of eigenfunction expansions, that the
solutions of the latter problems converge to the solutions associated with the former problem. The
analysis presented includes providing conditions for the rate of the convergence.

Mathematics Subject Classification. 35K57, 35R25, 26A33
Key-words :Riemann-Liouville derivative, quasi-boundary method, fractional diffusion equation, ill-
posed problem, inverse-problem

1 Introduction

Let d € N* and © be a bounded open subset of R?, for a boundary 0 of class C2. For T' > 0, we set
Q=0x%x(0,T),E2=00x (0,T) and consider the fractional diffusion equation:

D%Ly(xa t) - Ay<xat) = f(l‘,t) in Qa
ylo,t) = 0 on %, (1.1)
oy, T) = y's) om0

where 0 < « < 1, f € L*(Q), y* € H}(Q). The operators I'=*y and D%,y are, respectively,
the Riemann-Liouville fractional integral of order 1 — «, and the left Riemann-Liouville fractional
derivative of order « of y.

The fractional diffusion equation has been of significant interest for many decades. The equa-
tion (specifically the time-fractional diffusion equation) is obtained by replacing the first order time
derivative of the classical diffusion equation with a time fractional derivative. In comparison with the
conventional first order derivative, Left Riemann-Liouville fractional derivatives are characterised by
a convolution integral (see Definition 2.6). This shows that the (fractional) derivative depends on the
behavior of function y over the interval [0,¢]. This is the reason why researchers speak about the
memory effect associated with a fractional derivative, and why, in this context fractional derivatives
are used in other fields such as Physics, Biology or Economics, where the memory association of a field
is mandatory.
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(email :claire.joseph@univ-antilles.fr).
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The model compounded in Equation (1.1), can be used to investigate environmental phenomenon.
In such cases, one might not have all the necessary information on complete the model. In the case
considered here, the initial condition is missing so that Equation (1.1) appears as an ill-posed backward
time-fractional diffusion equation. The problem compounded in Equation (1.1) does not satisfies the
Hadamard conditions. This is because we cannot prove that (1.1) admits a unique solution which
depends continuously of y'. Nowadays, there are many methods such as inverse methods that may be
used to approach such ill-posed problems. In this paper, we use a Quasi-boundary method which was
originally introduced by the quasi-reversibility method developed in [8].

The quasi-boundary method is based on perturbing the final condition. Some researches on the
topic have shown that this method gives better numerical results than the quasi-reversibility method.
For example, in [20], Yang et al. apply the quasi-boundary method to approximate an inverse problem
for identifying the initial data for a time-fractional diffusion equation on a pherically symmetric domain.
Jayakumar [5] use a modified quasi-boundary method to solve a non-homogeneous time fractional
diffusion problem involving the left fractional Caputo derivative. More recently, Huynh et al. [3]
applied a modified quasi-boundary method for a fractional diffusion equation involving the Caputo-
Fabrizio fractional derivative.

We refer to [6, 9, 16, 18, 1, 10, 17, 19] and references therein for more information in regard to
the quasi-reversibility method and quasi-boundary method. In this context, the Riemann-Liouville
and Caputo based fractional derivatives are closely related. The best of the authors’ knowledge, and,
judging from the open literature available, there are no studies on the quasi-boundary method for
fractional diffusion equations involving the Riemann-Liouville fractional derivative. In this paper, we
approach the ill-posed problem compounded in Equation (1.1) through a family of well-posed problems.
More precisely, we consider, for any 8 > 0, the following quasi-boundary value problem:

f(x,t) (2,t) €Q,
0 (o,t) € %,
y'(z) ze€Q,

%rys(a,t) — Ayg(, 1)
yﬁ(ga t)
I'=yg(z,T) + BI*~*yg(z,07)

and prove that the family of solutions yg converge to the solution of Equation (1.1) in an appropriate
Hilbert space, specifying the rate of convergence.

This paper is structured as follows: In Section 2, we provide some definitions on fractional operators,
examples of their properties and some preliminary results. In Section 3, we use the spectral method
to prove the existence and uniqueness of the solution of the problem. The convergence results are
provided in Section 4.

2 Preliminaries

In this section, we recall some basic definitions and results on fractional integration and derivative.

Definition 2.1 [7, 18] Let z be a complex number such that Re(z) > 0. Then the Gamma function is
given by

I'(z) = / t*~tetat.
0
Remark 2.1 It follows from the definition above that

T(z+1) = 2T(2).
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Definition 2.2 [7, 153] Let x and y be two complex numbers such that Re(x) > 0 and Re(y) > 0. The
Beta function is given by

1
B(x,y):/ t* (1 —t)v~dt.
0

Remark 2.2 One can prove [7, 13] that

['(2)I'(y)
B(z,y) = —2—722 2.1
(@) = Ty (21)
Definition 2.3 [7, 13] Let & > 0 and 8 > 0. Then, the two-parameter Mittag-Leffler function is given
by
Ea. zZ) = e ] zeC. 2.2
56 =3t Ty (22)
Thus, we have
o k
z
Boo(z) =Y ————, z€C. 2.3
(2) pars [(ak + «) z€ (23)

In what follows, we set
Eo1(t) = Eu(t).

Theorem 2.1 [13, 15] Let 0 < a < 2 and B € R. We consider that u satisfies

T ,
-5 <mu< min{m, Ta}.

In this case, there exists a constant C = C(«, 8, 1) > 0, such that

|Ea,p(2)] <

, < larg(z)| <.
Ny p < larg(z)] <

Definition 2.4 /2, 7] Let o, 8,p € C such that Re(e) > 0 and Re(8) > 0. Then, the generalized
Mittag-Leffler function is defined by

+oo
t'n,
&b (t)zg _Pat” forallt e C
a,B ? ’
“— I'(an + B)n!

where (p)p, = plp+1)...(p+n—1).
Remark 2.3 Note that, when p =1 we obtain
8(11,,8(75) = Ea,ﬂ(t)a
where B, g is the classical Mittag-Leffler function defined in (2.2).

The following result gives the Laplace transform of the generalized Mittag-Leffler function.

Lemma 2.1 [2] Let o, 8, p be complezes such that Re(a)) > 0,Re(p) > 0 and Re(B) > 0. Then, we
have

_ +o0
-1 s . _ ja— ky(a—B)k ok+1 a
L {S“asﬁw,t} = 1070y (—a)fl T OREE T e (ZbEY), (2.4)
k=0

where |as® /(s* +b)| < 1 and L~ is the inverse Laplace transform.

Eaa
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Definition 2.5 [7, 18] Let f : Ry — R be a continuous function, and o > 0. Then, the expression

I“f(t):ﬁ/o (t— )2 1 f(s)ds, >0,

1s called the Riemann-Liouville integral of order o of the function f.

Definition 2.6 [7, 13/ Let f : R,y — R. The left Riemann-Liouville fractional derivative of order
€ (0,1) of f is defined as

¢
Dy f(t) = ﬁ.%/o (t—s)"“f(s)ds, t>0,

provided that the integral exists.

Remark 2.4 From Definition 2.5, we see that :

d

D f(t) = ST F ) (25)

We also with the right Caputo fractional derivative given by:

Definition 2.7 [7, 13] Let f : Ry — R, 0 < a < 1. The right Caputo fractional derivative of order o
of f is defined by

1 )/T(s—t)‘o‘f’(s)ds, 0<t<T, (2.6)

%f(t)zm

provided that the integral exists.

We consider a result obtained through integration by parts, which involves the left Riemann-Liouville
fractional derivative and the right Caputo fractional derivative.

Lemma 2.2 [11] Let 0 < a < 1, y € C>®(Q) and p € €=(Q). Then, we have,

T
| (Dhustant) = gt t)ete. ot =
/] oz, Ty (ac T)dx—/ o, 0) Ty, 0)dar

/ / (o, t (o,t)dodt — / / (o, t)dodt
o0 0

// (2, ) (— D& (2, £) — Ap(a, £))dadlt,

where D is the right Caputo fractional of order 0 < a < 1.

Corollary 2.1 [11] Let D(0,T) be the set of C> functions on (0,T) with compact support. Then for

all o € D(0,T), ., ;
| Diusretiiar =~ | yyze
0 0

where D is the right fractional Caputo derivative.



Theorem 2.2 [12] Let 1/2 < a < 1, y° € H} () and f € L*(Q). Then, the problem

Dgpy(e,t) — Ay(z,t) = flx,t)  inQ,
ylo,t) = 0 on X,
I'=oy(z,0) = o in Q.

has a unique solution y € L*((0,T), H}(Q)). Moreover, I'=*y € C([0,T], H}(R)), and, there exists a
constant C' > 0, such that the following estimations hold:

1llcz(orym2)y < A (Hy0||Hg(Q) + Hf||L2(Q)) ; (2.8)
Iyl qo.mmi ) < 1T (HyOHHg(sz) + Hf||L2(Q)> , (2.9)
with
20—1
A — max /2T C 12T
20—1"«a )\1
and
2T1 «

II=sup [ CV2,C ( )

On other hand, it is well-known that (—A) is a symmetric uniform elliptic operator. Thus, it admits
real eigenvalues, 0 < A1 < Ay < A3 < ... with A\ — oo when £ — oo. Moreover, there exists an

orthonormal basis {wy}$2, of L*(Q) , where wy € Hj () is an eigenfunction corresponding to Ag:
—Awyg = Mywg. Further, we have,

[ 9o Vo@iz = [ e@uz, e H@) (2.10)
Q Q
In what follows, for all o, € L?(Q), we denote

()i = [ PN

as the inner product in L?(2) and [|¢||12(q) as the associated norm.

We set
alp¥) = [ Tiela) - Voadde., Vo € HY(@), 21)
Then, the bilinear functional a(.,.) defines an inner product on H{ (£2), and we have
o7 ) = ale, 9, (2.12)
which is a norm on H}(2). Since {\/)\i} is an orthonormal basis of H}(f2) for the inner product
kJ k=1

a(.,.), we can write

“+oo
\|¢||§13(Q) =Y i@ wi)izqy Vo€ Hy(Q). (2.13)
=1

equivalencel



3 Approximate problem

In this section, using eigenfunctions expansions of the Laplace operator, we prove the existence and
uniqueness of solution to the approximate problem given by

D%Lyﬂ($7t)_AyB(‘r’t) = f(l',t) (l‘,t) €Q7
ys(o,t) = 0 o,t) €X, (3.1)
I'yg(x,T) + I “yg(x,07) = y'(z) ze€Q,

where 1/2 < a < 1, f € L*(Q),y' € H}(Q) and I'~yg(z,07) = lgirolll_ayﬂ(x,t).

Let us assume that (3.1) has a solution yg € C*°(Q). If we multiply the first equation in (3.1) by
a function v € H}(Q) and integrate by parts over €2, we obtain

/QD%LyB(x,t)v(x)d:r+/QVy5(x,t)on(:c)dx:/Qf(:c,t)v(:c)dx. (3.2)

Observing that (D%, ys(t),v) = D% (ys(t),v) and using (2.11), problem (3.1) becomes for all t €
(0,7):

D% (ys(t),v) 2 +alys(t),v) = (f(t),v)r2@ InQ, Vve Hj(9),
ys(t) = 0 on 99, (3.3)
I'yg(x,T) + I yg(x,07) = ¢! in Q.

We can then consider the following problem : Given 1/2 < a < 1,y! € H}(Q) and f € L*(Q), find

ys € L*((0,T), Hy(2)), (3.4a)
I'%yg € C([0,T]; Hy (), (3.4b)
such that
D%y (ys(t),v)r2(0) + alys(t),v) = (f(),v)12() Vt€ (0,T), VYve Hj(Q), (3.5a)
I'ys(T) + I ys(0") =y*  in Q. (3.5b)

In this context, the following existence and uniqueness theorems hold.

Theorem 3.1 Let 1/2 < a < 1 and a(.,.) be the bilinear form defined by (2.11). Then, the approxi-
mate problem (3.4)-(3.5) has a unique solution yg € L*((0,T), H3(2)) given by

T
oo |yl - / Ea(= (T —w)®) fi(u)du
Z 0

B, o (=Nt
B+ Eo(—X\T) al )

ys(t) = .

(3.6)

+ /O(t—s)"‘_ E%a(—/\i(t—s)o‘)fi(s)ds}wi.

where X; is the eigenvalue of the operator —A corresponding to the eigenfunction w;. E, , as given
in (2.3), yi = (y',w;) and fi(t) = (f(t),w;) are respectively, the i-th component of y* and f(t) in the



orthonormal basis {w;}32, of L*(Q). Moreover, I'=%yz € C([0,T], H} () and there exists a constant

C > 0 such that,
lysllL2(0,1),m2(0)) <11 (HylHHg(Q) + Hf||L2(Q)> ; 3.7)

and
HII ayﬂHC( o Hl(m) (||y ||H1 @ + ||fHL2(Q)) (3.8) ‘estimation_be‘
where
0 — ma 2C 721 2027 . 4C2T
* 20 -1\ B1-a)2a-1)  a-1
and

20 \/204T1°‘ 20T~
© = sup

B\ B2a—-o) R
Proof. If we replace v by w; in (3.5a) and use the fact that

a(ys(t), ws) = Xi(yp(t), w:i)r2(Q) = Niysi,

we deduce from (3.5) that ys; is a solution of the ordinary differential equation

Ao, 1€ 0.T), (3.9)

yia

{ D1 ypi(t) + Niypi(t)
'~ ygi(T) + BI'*ypi(07)

where y! = (47, ;).
Now, using the Laplace transform, we obtain from the first equation of (3.9) that,

D3 ysi(s) + Aii(s) = fuls), (3.10)

where
D$ysi(s) = L(DELysit))(s),
(s = Llym()().
fi(s) = L(fi(t)(s)

and £ denotes the Laplace transform operator.
From (2.5), we have .

Dgrysi(s) = 1" “yai(07) + s%y3i(s),
which, combining with (3.10), gives

—I' g (07) 4+ 5%yBi(s) + Nigi(s) = fils).

Hence,

Yoi(s) = I'"“ypi(07) x

and it follows from (2.4) that

ypi(t) = I'"*ypi (07t Ea o (~Ait") + /0 (t =) Eaa(=Xi(t — 5)%) fi(s)ds



Therefore,
I'oyp(t) =

_|_

where

A

I (I i (00t Eaa (= Ait®))

It (/0 (t—8)* By 0(—Ni(t — s)a)fz'(s)d3> )

A+ B

= I ypi (00" Ba o (= Nit®)),

B=1'"" (/0 (t—8)* By 0(—Ni(t — s)a)fi(s)ds> .

Let us now compute A and B. We

have,

A = 'y (0t By o (—Nit®))

I'=yg,(0) x IVt B, o (= A\it®))

1

I'=2y5,(0) x (F(l_a)/o (t— s)asalEma(—)\isa)ds)

Il OzyB +OO /t L k
: E (t—s) “s* "s™ds
I'l-—a) = I( ak; +
i« ; too ktak 1
1yﬁ § : P / (1 o u)—aua—l-i—aktdu
— Oé Oé Oé

0

ktak

I'y5i(0) = (=A)
21

I'(l—a)

which in view of (2.1) gives

B(1 - k
FO{]{:+O{) ( Q, & +Oé)7

+oo (—Aita)k

A= Il_ayﬁi(o) Z m = Il_ayﬁi(O)Ea(—)\itQ)-
k=0

1)



On the other hand,

B = Il—«@ (/ (t_3)0_1Ea}a(_)\i(t—S)a)fi(s)d8>
0
1 t e s - -
= m/(t—S) (/0 (s —u)* "Eqa(=Xi(s —w)) fi(u)du | ds

= e /fz (/ (t—5)"(s —u)* ' Eq.a(—Ni(s —u)*)ds | du

I T L N L B APPSO

= F(I—OZ)/() fl(U);)F(ak"_a) (/u (t S) (S u) ds | du

_ +oo t—u)ak 1 o ttok

T T(l-a) /fl kZ:O ak+a) (/0 (1—-2)"% dz)du
u)ak

B (1 —a) /fl ( ak_'_a)B(l—a,ock—l-a))du

:/fl ( t_“ )du—/fz Eol(=i(t — u)®)du.

/fz Eo (=it —u)*)du (3.12)

Finally, adding (3.11) to (3.12), we obtain

Thus,

I y5:(t) = I' ™y (0) Bo (—Nit®) / filu) Eq(—=Ai(t — w))du. (3.13) |[I1-a
Hence,
T
I'"ygi(T) = I' " “yg; (0)Ea(—AT*) + / fi(w) Eo(=Ai(T — u)*)du.
0
From (3.9)2, we have that,

yﬂz —\T) / fi(u Ai( U)Oé)dquﬂIliayﬁi(o) :yil’

from which, we deduce that

N /E Fi(u)du

A(0) = . 14) [1y0
“vail B+ Bo(—NT) (8.14)




Finally, we obtain

T
- / Ea(=X(T — u)®) fi(u)du

B + Ea(_)\iTa)

yﬁi(t) ta_lEa,oc(_)‘ita)

tfsafl =\ (t—38)Y)f;(s)ds
+ /O(t ) ana( )\z(t ) )fZ( )d

The rest of proof can be done in three steps.
Step 1: We give the formulation of a solution to an approximate problem associated to Equations
(3.4)-(3.5).
Let V,, be a subspace of H}(Q) generated by the wy, wa, ..., Wy,.
Consider the following approximate problem associated to Equations (3.4) — (3.5):
Find ygm : t € (0,T] = ygm(t) € V,, the solution of

D& (Ysm(t),v)L2(0) + a(ysm(t),v) = (f(t),v)r2(q), Vv € Vin, (3.15)

"y (T) + BT ypm (0) = yp, = Zymwz (3.16)

As ygm(t) € Vip, we have

m

Ypm(t) = Z(y(t) w;) L2 ()W = Zy51

i=1

Proceeding as per the computation of yg, we show that yg.,, is a solution of the problem given by
Equations (3.15) — (3.16) and obtain,

T
e / Ea(=X(T — u)*) fi(u)du
yom) = D B+ Eo(—A\Te)

=1

tailEo“a(*)\ita) W;

(3.17)

Z{/ - a lEaa( Ai (tS)a)fi(S)ds}wi,

Step 2: We show that the sequences (ys.,) and (I'~%yg,,) are respectively, Cauchy sequences in
L*((0,7); Hy (€)) and C([0,T]; Hy ().
Let m and p be two integers such that p > m > 1. Then, from (3.17)

P

yop(t) = yam() = D ysilthw;

i=m-+1

10



yi — | Ea(=Xi(T —u)®) fi(u)du
Set b; = 0 . Then, we have that,
ﬂ"’Ea(_)\iTa)
p
a(ysp(t) = Ypm (), Usp(t) = ysm(D) = D Nilysi(®))?
1=m-+1
p
< 20) 0 NEPTPER (=Mt [bl
1=m-+1
p t 2
+ 2 Z )\i{/ (t—s)o‘_lE%a(—)\i(t—s)a)fi(s)ds} .
1=m-+1 0
Hence,
T
lysp () = Ysm O T2(0,0)m0100) = /O a(ypp(t) — Ysm(t), ysp(t) — ypm(t))dt
< A, + B,
with
P T
A = 2> )\i|bi\2/ 22 E2 (= NitY)dt,
i=m+1 0
p T t 2
B, = 2% / )\i{/ (t—s)a_lEa,a(—)\i(t—s)a)fi(s)ds} dt.
1=m-+1 0 0

Note that from Theorem 2.1, we know that there exists a generic constant C' > 0 such that

p T
A, = 2 Z Mbi|2/ POPEL (= At)dt
i=m+1 0
p T
< 20% ) )\i|b,;|2/ 2224t
i=m+1 0
P t20¢—1 T 202T2a—1 p
< 202 > Aifbil? < = ) A~
0

200 — 1

200 — 1 P

1=m-+1

Remark 3.1 From the latter estimation, we see that we have to take 1/2 < a < 1 to give a sense to
our computation.

11



Using again Theorem 2.1 and noting that 1 — o # 0, we obtain

p ;
ORI I a
i=m+1 i=m-+1 B"’Ea(_)\iT )
1 T 2
< = — [ B =) fiw)a
B 0
2 & 2
S S D SR Y| (XY R
i=m-+1 i=m-+1
2 —(T — )t
SﬁZAIy (102] Z/m )[2du.
1=m-+1 0 i=m+1

Consequently,
- e
Do bl < Z Nilyi I? > / | fi(w)[*du. (3.18)
i=m—+1 i=m—+1 ( )i:erl 0
and we have that

402T2a 1 p 4C4Ta
4 Z Aily; I 21— a)(2a 1) Z / | fi(u)Pdu | . (3.19)

T’f 2
B i=m+1 1=m-+1

On the other hand, using the Cauchy-Schwartz inequality,
2
B =2y / { / —s)a-lEa,A—Ai(t—s)am(s)ds} di
1=m-+1
P

= 2 Z /T)\i{/ot {(t—S)%*%Ea,a(—Ai(t—8)0‘)} [(t—s)%*%fi(s)} ds} dt

i=m+170

2y / V ts)a%Ei,aMi(ts)a)ds] Votas)a%fi(sn?ds] dt,

1=m-+1

IN

12



which in view of Theorem 2.1 gives

¢
Bo< ey [ [ [~ st] [ =9 (o) s |
i=m-+1 0
< 40?72 Z / / (t — $)* 73| f;(s)|Pdsdt
i=m+1
_ 4TV Z / (s |2/ (t — 5)°=2dtds
1=m-+1
4C2T°‘
< Z / |fi(s)ds.
2 1=m-+1
Thus,
402T“ 2
B, Z |fz ds (3.20)
i=m-+1
Adding (3.19) to (3.20), we obtain
4027201 P
< Adlyi [?
B2(9~ _ 1) Z (2
ﬁ 20( 1=m-+1
n 40?1 +4CQT“ Z / (s |d
i s| .
Bl-a)2a-1)  a-3 || 4 .
Therefore,
, 1/2
20 T2a—1 1o
lvsp(t) — ygm (D20, 1)) < V201 Z Ailyi |
i=m-+1
1/2
40?1 4C?*T
i d
Wl—axw—w* (3, [ e

)

In view of Equation (3.13), we have

Il_a(yﬁp(t) - yﬁm( )) = Z ‘b |Eoé (=it wz + Z {/ fz E,, 1 (t - u)a)du} Wi,

i=m+1 i=m-+1

13



from which we deduce that,

= (Wep(®) = Ysm (D F1 ) < el (Wsp(t) = yam (), T (Ypp(t) — yam (1))
< 23 MPEL ()
i=m-+1
+ 2 Ai fi(u)Eq, (t—u)a)d“} :
PRV

If we set

P
Co = 2 ) MNilPE2 (—Nit?),

1= m+1 5
{/ F5() B (tu>“>du} ,

we have from Theorem 2.1, (3.18) and the Cauchy-Schwartz inequality that,

Zp

1= m+1

p
Cp, < 2C% ) Ailbif

i=m-+1
20°T T1 o
< ([pl%ﬁm Z/\fz 2du)
2 p 11—«
< % > Nl + 4CT (Z / |fiu |du)
i=m-+1 1=m-+1
and
Z, < 2 i E? i(t—u)® | fi(u |2du>
<2 3 ([ mmon-ana ([
p t t
c —u)%d i(u)|*d
< 2 _;(/ (t— ) u) (/ fi(w) u>
20t~
< | fi(u |2du>.
1- 1=m-+1 (‘/
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Using the estimations of C}, and Z,, we obtain

40?2 &
IIIl“’(y/sp(t)—yam(t))lli,é(g) < 3 > Nily P

i1=m-+1
<404T1a +20t1a> > /tlf( )P
2 _ _ AN U
B2(1 — «) 1-« =)o
Thus,
1/2
1-a 2C - 112
sup (11 (Wsp(t) = ysm)llmyor < = | D Ailyi]
t€[0,T] B i=m+1
) 1/2
ACAT 20T ! 2
; d
\/52(1_a)+ o | X[ e
(3.22)
As y' € H}(Q) and f € L?(Q),
1/2 1/2
P P t
. o112 _ . ] 2 _
o (S il )= m | 3 [scra) o
1=m-+1 1=m-+1
Then, from Equation (3.21) and Equation (3.22), we obtain
T
: 2 _
i Wyen(®) = ym Ol 4t = 0

and

sup |1 *(ysp(t) = Ysm () 1) = 0-
te[0,T]

Consequently, (ysm) and (I'~*yg,,) are Cauchy sequences in L?((0,7); H}()) and C([0,T7], H}(2))
respectively. This implies that
Yo s in L2((0,7); HY(9), (3.23)
and
I'yg,, — & in C([0,T7; Hy()).
Since yg € L((0,7), H}(Q)) and I'~*yg are continuous, we have £ = I'~%yz and

I'%ygn = I' "%y in C((0,T]; Hy(2)). (3.24)

Step 3: We show that yg satisfies (3.4) — (3.5).
Let ¢ € D(0,T) and p > 1 an integer. Then, from (3.15), we have for all m > p,

/ (1), 0) Byl = / D31 (s (1), 0) 2 ey o (1)t
0 OT

+ /Oa(yﬁm(t),v)gp(t)dt, Yo eV,

15



which according to Corollary 2.1 implies that,

T T
/ O, 0)e@e(t)dt = — / (Y (1), 0) 1200 DEp(1)dlt

0 0
T

+ /Oa(ygm(t),v)ga(t)dt, YveV,.

Therefore, passing to the limit and using (3.23), we obtain
T T
| 0 oetia = - [ @st) 0@ Do
0 0

T
+ /a(yﬁ(t),v)go(t)dt, Yo eV,
0

Since U, >1V,, is dense in H{(£2) because (w;) is a base of H}(£2), we have for all v € H} () that
T

/(f(t)av)m(ﬂ)@(t)dt = —/ (yp(t),v) L2 Dep(t)dt
0 Jo

+ /a(yg(t),v)gp(t)dt, Vv € H} ().
0

Using, once again, Corollary 2.1, we can write
T T
| 0 0oetia = [ Diplus o)t
0 0
T

n /O alys(t), V)p(t)dt, Yo € HL(Q).

This implies that for all v € H}(Q),

(f (), v)2(yp(t) = Dy (ys(t), v)L2)(t) + alys(t), v)e(t), vt (0,T).
From (3.24), we have
I yg,,(0) — I'™y5(0) in H (),

and
1'%y (T) — I'%ys(T) in H(Q).
But
m +o00
=Yg (T) + BTy (0) = > ylwi = Y yjwi =y,
=1 =1
Thus,

I'=ys(T) + BI'™ys(0) = y".
To complete the proof of Theorem 3.1, we need to prove Equation (3.7) and Equation (3.8). Since yg
is the solution of (3.4)-(3.5), we have

T
i@ yg_/o Eu(=M\(T — )™ fy(u)du

B, o (=Nt
B+ Eo(—=\T9) af )




Proceeding as above for estimations on ¥g.,, we can prove that there exists a constant C' > 0 such

that
N 1/2
20 TZozfl o0 -
lus@llL20.y:m2 ) < B\ 21 ;/\ﬂyﬂ
1/2
+ \/ 402Ta + 402Ta = /T |f(8)|2d$ /
PO-a@a-1  a-1 (&
and
1/2
1 20 [ 12
sup HI %y t’ < — Aily;
te[0,T) 5() Hj(Q) B 1:21 |
1/2

a0t 20Tt (X T
- > [ k)
2(1 — _
\/ﬁ (1-a) l—a = Jo
from which we deduce, respectively, Equation (3.7) and Equation (3.8). m

4  Convergence results

In this section we provide some convergence results.
Theorem 4.1 For all y' € H}(Q), we have

lim |[I'™%yg(T) — y'|| = 0.
ﬂlggll ys(T) =y

That is I'=*ys(T) converges to y* in H ().
Proof. Since y! € H}(Q2), we know that

—+o0
3N, € N such that Alyd|? < <
Ve > 0, € N such tha i:NZ—H ly; | < 3

Also, since f € L?(Q), we know that

400 T
Ve >0, 3N, € N such that A(5)[?ds < <.
e>0, € N such tha Z /0 |fi(s)|7ds < 5

i=Ne+1

Let € > 0 and choose N > 0 such that
S 12 _ € Too T , .
i:%l)\ﬂyﬂ < 5 and i_;_l/o |fi(s)|?ds < 5

17



Then, we have
11 =s(T) =y ey = @ (=B "us(0), ~BI'~"y5(0))

+oo
= p? Z)\ilbi|2
=1

< A+B,

where

A:252+ZOO )\Zlyzllz
2 T T Bl AT

+oo \s T 2
B =2p? ; B+ Ea(i)\iT"‘)P (/0 Eo(=Xi(T — U)a)fz'(u)du> :

We firstly have,

4 = 2622 Ailyi? 4 2p? io Ailyi?
B (B + Eo(—X\T*))? (B4 Ea(=A\T*))?

i=N+1

N

< 522 2()\ |§7Ta +2 Z A\ |y

1=N+41

N
2\ilyi |

< B2y R el
< B ;E&(*AiTa)—’—e

Secondly, using the Cauchy-Schwartz inequality, we can write

+oo ,
v 262; (B+ Eaf )\ ) (/ Eq( — U)O‘)fi(u)du>
2+OO C27l-« T
< 28 ; (1 —)(B+ Eo(=X\T))2 </0 | fi(w)] du)

N

2021« T 271«
52; o) B (AT (/o |fz'(u)|2du> + =

IN

Finally, using the estimations of A and B, we have

N N _ T
~ 2|yl 2 2021
1—a 12 < 2 i ) 2
1 =ys(T) =y a0y < B [;_1 B2 (AT +§:1 (1= ) B2 (T4 /O | fi(w)[*du

CQTl—a

18




Since
N

2 o 20T T )
K3 3 d
2 B2AT) T 2 T B2 (AT || 1) <o

we choose 8 such that

-1
N

al - T
2 2Xiy; [* 2C°T! / ()2
s EZ(=AT) " ; (1 —a)E2(=\T) \ J, |fi(w)|"du

i=1 "¢

Theorem 4.2 Supposing there exists € € (0,2) such that

T
)2
+oo /\z‘yzl‘Q QCQTl—a +oo /O |f1(3)‘ ds

D=2
;Eg(—)\iTa) TTIma LB (A

converges, then ||[I'™%yz — y1||Hé(Q) converges to zero with order e 2j¢.
Proof. Let € € (0,2) such that D converges and k € (0,2). We fix a natural integer ¢, and define

Bk

9%58) = BFE.aTP

Differentiating g; with respect to 3, we obtain

(k — 2)B8F + kB*1Eq(—AT9)

9:0) = B+ Ea(—NT*)]

(k — 2)B + kEo(—\T%)

= X T p TP

Observing that g/(8) =0if 5 =0 or (k — 2)8 + kE,(—\T*) = 0. We have

(k—2)B+kEa(~A\TO) =0 & = %Ea(—)\iTa).
As g;(8) >0, g;(0) =0 and lim ¢;(8) =0. Indeed,
B——+o0
Bk
523—100 gi(ﬂ) - BETOO @ - BETDO W =0.
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We know that g; achieves its maximum at Gy = ﬂEa(—)\iT“). Hence, we have,

(Bo)*
[Bo + Eo(=XiT?)]?

k
(557) AT
o+ Ba (AT

gi(B) < gi(Bo) & 9(B) <

& gi(B) <

& gi(B) < <2kk>kE§‘2(—)\iT“).

Since we can write

too 112
110y~ g1 [2 g < 2673 2l
(@) 2 BT Bul AT

+ 2522 R )\T‘l </ Eq( —u)o‘)fi(u)du>

+oo +oo T 2
= 28RN Ny Pai(B) + 2877 YN ( / Ea(—Ai(T—U)“)fi(u)dU) a(B),
=1 i=1

it follows that

+oo too
CQTI [eY
Iy = 9 oy < 20770 D0l Poa(B) +26° 7 (/ filu >|2du>gi</3>
i=1

i=1

IN

52 k < > |:QZ)‘ |y1 2Ek 2 >\1Ta)

a Foo
T (/ itu >|2du> Eﬁ?(—w%].

=1
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If we choose, k = 2 — € (then € = 2 — k), we then obtain

2—6 2—e —+o00 . N
1w = gy < 8 (555) (2N PER AT
=1

2027 -2 IX [ (T )
- - X E-¢(=\.T"
T g(/ fiw)lPdu | B< (AT
9 2 +oo
< Bz 2y N PEZ (=T
< o (2) > AP (AT)
2027 X [ [T ) . .
+ 1_@;(/0 |fi(w)["du | EgS(=XT7)

Since D converges, there exists a constant K > 0 such that

=1 2027 X [T )
2 Nilyi |PEL (=T _— i du | E¢(—\T¢ K.
DM AT+ S ;/Olf(u)l u) Bt (-AT*) <
which implies that
2 2
p(2) K

€
= € 2B°(4K)
= € ?2B°K'.

It then suffices to take K’ = 4K to achieve the proof. m

IN

1125 (T) — 4280

Theorem 4.3 For all y* € HE (), the problem compounded in Equation (1.1) has a solution y if and
only if the sequence I'=®yz(0T) converges in Hg(§2). Furthermore, we have that yg converges to y as
B tends to zero in L*((0,T); H}(2)).

Proof. We proceed in two steps.
Step 1: We show that if I*~%y4(0) converges in HE (), then the problem (1.1) admits a solution.
Assume that éirr%) I'~%y5(0) = y° exists. Since y* € H}(Q), we can write

—

+oo

v =Y ylwi where ) = (y°,w).
=1

Let y the solution of the following equation

D?{Ly(m?t) - Ay(.%‘,t) = f($7t) in Q’
ylo,t) = 0 on %,
I'~oy(z,0) = o° in Q.
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where 1/2 < a < 1. Then, from Theorem 2.2, we know that y € L?((0,7T); H3(f2)) is given by

+oo t
yt) =y {talEa,a(_)\ita)y? + / (t =) Baa(=Ai(t — S)Q)fi(s)ds} w;.
i=1 0
Moreover, I'=%y € C([0,T], H}()). Thus, I*~*y(T) € Hg () exists.
Now, let ¢ € [0,T], we have

+oo

ys(t) —y(t) = Z[Il‘“ym(O)t“‘lEa,a(—Ait“)+/O(t—s)“‘lEa,a(—Ai(t—s)“)fi(s)dsl w;
=1
+oo t

-y lygtalEa,a(—AitaH/o (t—s)o‘1Ea7a(—>\i(t—s)“)fi(s)ds] w;

1

.
Il

“+o0
= (Il*aym(o) - y?) 107 Bg o (=Xt )w;.
i=1
consequently,
T
oo = 9oy g = [ elos(®) = w0 95(0) = w0t

/OT 2& (Il—ayﬂi(o)—yf)z(ta—le(—Aitu))Q dt

00 9 T
S (1) =) [ B e
i=1
400 2 T
< Py N (I“C‘yﬁi(o)—y?) / o2 dt
i=1 0
C2T2a71 2
~ - Ilfa O _ 0’ .
20 — 1 H yp(0) —y HL ()

This implies that ys converges to y in L?((0,T); H} (£2)) because éin}) I'~y5(0) = ¢°.
—
On the other hand, we have
T
'y (T) = y) Eo (= NT) +/ Eo(=Xi(T — u)®) f;(uw)du,
0

and
T
I'ys(T) = 1’aym(0)Ea(—>\iT“)+/O Eo(=Ai(T — u)®) fi(u)du.

Hence, we obtain

+oo 2
[ =eys(T) = 1=y ey = DN (1 7a(0) =) E2(-AT)
=1
< C?|IMoyg(0) - yOHZ(}(Q) .
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This implies that
I'%yg(T) — I'~*y(T) strongly in Hg ()

and since, from Theorem 4.1
I'%ys(T) — y* strongly in Hy(Q),

the uniqueness of the limit allows us to conclude that I'=%y(T) = y! and y is a solution of the problem
compounded in Equation (1.1).

Step 2: We show that if the problem given by Equation (1.1) admits a solution y then I'~%yz(0)
converges in H}(12).

Let y be a solution of the problem associated with Equation (1.1), then as in the proof of existence
in Theorem 3.1, we know that y; = (y(t), w;)2(q) is a solution of the ordinary differential equation

Dgryi(t) + Nya(t) = fi(t), t€]0,T],

Using the Laplace transform of the first equation in Equation (4.1), we obtain

yi(t) = "y (0)t* L By o (—\it®) +/0 (t — ) LBy 0 (=it — 5)*) fi(s)ds. (4.2)

Observing that

Il_a(ta_lEa,a(—)\ita» = Ea(—/\ita)

Jl—a</ot(t—s)a—1Ea,a( M(t— 5)9) ) /fz Ea(=Ai(t — u)®)du,

IV (t) = I (0) By (— M\it®) +/0 fi(u)Eq (=i (t — uw)®)du.

and because I'~%y;(T) = y}, we can write

and

we have

T
1, (0) Ea (A T®) + / Fit) Ba(=N(T — w)®)du = g,
0
from which, we deduce that

/fz Eo(=Ni(T = w)?)du

Iy Ea(—\T7)

Thus, we can write

+oo Yyt — /E (T —u)®) fi(u)du

y(t) = (,\Ta) t* By o (= Nt®) 3 w;

(3



and

PR - /E ) fi(u) s /fl

B (T Ai(t—uw)*)du p w;.

z:l

(a9

Let 8,7 > 0. Then, from (3.14), we have

T
( Eq(— )*) fi(w)d >
[oys(0) — 'y (0) = 0 .
v g By + (B+7)Ea(-ANT?) + EZ(-A\T?)

As I'=2y(0) € HL(Q), we choose N > 0 such as

€
Ve > 0 § I~y -
e >0, Ail < 5
1=N-+1
This means that
2

/fl Eo(=M(T — u))du

e i= N+1 Ba(=AiT?) <§,
and we have
2
+o00 (’y_ﬁ) <y7,1 OTEa(Ai(Tu)a)fi(u)du>
11—« l1-a 2 = ;
17 =2y5(0) = I'*55 ()1 0) = ;A By + (B + ) Ea(-NT%) + E2(-AT)
e OIS (o [ B )
I ) et " Jo
T 2
(B+7)? i=N+1 a(=AT)
< W—ﬂ)zfy(l_/TE(—x( ) (w) )
> 672 . i\ Y; o v
(v=8)?¢
RCE=ED



Finally, we obtain

2 N 2pl—a N T

o o 2 y—p5 20°T

|11~ yp(0) — 1! yv(O)HH&(Q) < QZ)\i\y}\erﬁZ ; | fil* (w) du
=1 =1

IN

N N

2 2 20?11~ T

7 + 2> QZ)\¢|%1|2 + ﬁz/o | fil* (u)du
=1 =1

Since
N N
20271 r 2 2
12 2 : —
2 Z.E_l Ai‘yi ‘ + ﬁ i_g 1 /0 |f1| (u)du < oo and lim ([32 + 72) =0,

we deduce that
lim lll—ayB(O) - Il_o‘yﬂ,(O)H

~, B0 HY Q)

This implies that the sequence {Il_ayg (0)} is of Cauchy and thus it converges in H}(Q2). m

5 Conclusion

In this work, we have considered an ill-posed problem associated with a family of well-posed problems
and prove, using spectral methods, that the solutions of the latter problems converge to the solution
of the former problem in an appropriate Hilbert space. This analysis is useful if we want to control an
ill-posed problem which will be the subject of future work. Moreover, the convergence results obtained
can be used to find a numerical solution for problem compounded in Equation (1.1).
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