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Quasi-reversibility method for an optimal control of an ill-posed

fractional diffusion equation

Claire JOSEPH ∗

April 25, 2024

Abstract

In this paper, an optimal control problem associated to an ill-posed fractional diffusion equation
is considered. To study our initial problem, we use the quasi-reversibility method introduced by
Lions and Lattès in 1969. More precisely, we consider an approximated optimal control problem
of our initial problem. Then the new problem is associated to a well-posed state equation which
approximate the ill-posed state equation. Firstly, we prove that the approximated optimal control
problem admits a unique solution which we characterized using the Euler-Lagrange optimality
conditions. Next, we show that the solution of the approximated optimal control problem converges
to the solution of the initial optimal control problem. To finish, we characterize the optimal control
of our initial problem by an optimality system.

1 Introduction

Let d ∈ N∗ and Ω be a bounded open subset of Rd with boundary ∂Ω of class C2. For T > 0, we set
Q = Ω× (0, T ), Σ = ∂Ω× (0, T ) and we consider the following fractional diffusion equation :

Dα
RLy(x, t)−∆y(x, t) = v(x, t) (x, t) ∈ Q,

y(σ, t) = 0 (σ, t) ∈ Σ,
I1−αy(x, T ) = yT (x) x ∈ Ω,

(1.1)

where 3/4 < α < 1, v ∈ L2(Q), yT ∈ L2(Ω) and the integral I1−α and the derivative Dα
RL of order α

are understood in the Riemann-Liouville sense.
Fractional diffusion equation is obtained by replacing the first order time derivative with a time

fractional derivative in the classical diffusion equation. Due to the fact that the Riemann-Liouville
fractional derivatives are characterized by a convolution integral (see Definition 2.5), researchers speak
about memory effect. This is why, many researchers have focused their attention on fractional calculus
and there are many applications in other fields such as Physics, Economics and Biology. For more
information about fractional calculus, we can refer to [22, 12, 23, 21, 16] and references therein.

Fractional diffusion equations are often used to model environmental phenomenon such as pollution
problems. However, in this latter type of phenomenon, it is common to not have all the information
of the problem. This is why, we decided to consider a problem where the initial condition is missing.

∗Laboratoire LAMIA, Université des Antilles , Campus Fouillole, 97159 Pointe-à-Pitre Guadeloupe (FWI)
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Regarding studies of ill-posed fractional diffusion equation, we can refer to [10, 14, 20, 9, 11] and the
references therein, for instance.

The main purpose of this paper is to solve an optimal control problem associated to equation (1.1).
More precisely, we are interesting in solving of the following optimal control problem:

inf
(v,y)∈A

J(v, y), (1.2)

where
A = {(v, y) : v ∈ Uad and y is solution of (1.1) in the sense of Definition 3.1}

Uad being a given nonempty closed and convex subset of L2(Q) and J is the functional cost given by

J(v, y) =
1

2

∥∥∥I1−αy(·, 0)− zd

∥∥∥2
L2(Ω)

+
N

2
∥v∥2L2(Q) , (1.3)

where zd ∈ L2(Ω) is a given target and N > 0.
Model computed in (1.1) is an ill-posed problem, in Hadamard sense. Hence, the solution of the

optimal control problem (1.1)-(1.2) is difficult to characterize. In this work, we decided to use the
quasi-reversibility method that was introduced by Lions and Lattès in [13]. Moutamal et al. [10] used
the quasi-boundary method, which is inspired by the quasi-reversibility method. More precisely, they
approached Equation (1.1) by the well-posed problem : Dα

RLyβ(x, t)−∆yβ(x, t) = f(x, t) (x, t) ∈ Q,
yβ(σ, t) = 0 (σ, t) ∈ Σ,

I1−αyβ(x, T ) + βI1−αyβ(x, 0
+) = y1(x) x ∈ Ω,

where 1/2 < α < 1 , β > 0 and I1−αyβ(x, 0
+) = lim

t↓0
I1−αyβ(x, t). And they proved that when

y1 ∈ H1
0 (Ω), the solution of (1.4) converges in L2((0, T );H1

0 (Ω)) to the solution of the following
equation :  Dα

RLy(x, t)−∆y(x, t) = f(x, t) (x, t) ∈ Q,
y(σ, t) = 0 (σ, t) ∈ Σ,

I1−αy(x, T ) = y1(x) x ∈ Ω,

under a certain condition.
In order to study our optimal control problem (1.1)-(1.2), we used the same approach. For this,

we consider the associated approximated equation of (1.1) :
Dα

RLy
ε(x, t)−∆yε(x, t) = v(x, t) (x, t) ∈ Q,

yε(σ, t) = 0 (σ, t) ∈ Σ,
I1−αyε(x, T ) + εI1−αyε(x, 0+) = yT (x) x ∈ Ω,

(1.4)

where ε > 0, v ∈ L2(Q), yT ∈ L2(Ω) and I1−αyε(x, 0+) = lim
t↓0

I1−αyε(x, t) and the associated approx-

imated optimal control problem, given by:

inf
(v,yε)∈A

Jε(v, yε), (1.5)

where
A = {(v, yε) : v ∈ Uad and yε is the unique solution of (1.4)}.
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Uad being a given nonempty closed and convex subset of L2(Q) and Jε is the functional cost given by

Jε(v, yε) =
1

2

∥∥∥I1−αyε(·, 0)− zd

∥∥∥2
L2(Ω)

+
N

2
∥v∥2L2(Q) . (1.6)

Recently, Mophou and Warma, in [19], used this latter method to study an optimal control problem
associated to a non-well posed Cauchy problem for a general space-fractional diffusion equation. They
approximated their problem by a well-posed problem and proved that the solution of the well-posed
problem converges to the solution of the ill-posed problem. They also gave an optimality system which
characterize their optimal control.

Over the past 10 years, optimal control problems associated to a well-posed fractional diffusion-
wave equations have been studied extensively, see [1, 2, 3, 5, 6, 7, 18, 15] and references therein,
for example. However, we have less studies about optimal control problem associated to ill-posed
fractional diffusion-wave equations. For instance, in [4, 17], the authors used the concept of low-regret
and no-regret controls to study optimal control problems associated to an ill-posed fractional diffusion-
wave equations with incomplete data, where the derivative is understood in Riemann-Liouville sense.
The best of the authors’ knowledge, and, judging from the open literature available, this is the first
application of the quasi-reversibility method to solve an optimal control problem associated to an
ill-posed fractional diffusion equation.

This paper is structured as follows. In section 2, we firstly give some definitions and results
on fractional calculus. After, we give some important existence and uniqueness results which are
obtained using the spectral method. In section 3, we begin by the existence and the uniqueness of the
approximated optimal control problem (1.4)-(1.5). Using the Euler-Lagrange optimality conditions, we
characterized the solution of the approximated problem by a system. After, we proved that the solution
of the approximated problem converges to the solution of the optimal control problem (1.1)-(1.2). To
finish, we give the singular optimality system that characterizes the optimal control.

2 Preliminaries

In this section, we provide some basic definitions and results on fractional calculus. And we give some
existence and uniqueness results of fractional diffusion equations.

Definition 2.1 [22, 12] Let z a complex such as Re(z) > 0. Then the Gamma function, noted Γ, is
given by

Γ(z) =

∫ ∞

0

tz−1e−tdt.

Definition 2.2 [22, 12] For α > 0 and β > 0 we denote by,

Eα,β(z) =

+∞∑
k=0

zk

Γ(αk + β)
, z ∈ C (2.1)

the two-parameters Mittag-Leffler function and thus

Eα,α(z) =

∞∑
k=0

zk

Γ(αk + α)
, z ∈ C. (2.2)

We set

Eα,1(t) = Eα(t) =

+∞∑
k=0

zk

Γ(αk + 1)
. (2.3)
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Theorem 2.1 [22] Let 0 < α < 2, β ∈ R be an arbitrary , and we suppose that µ as

πα

2
< µ < min{π, πα}.

Then there exists a constant C = C(α, β, µ) > 0 such that

|Eα,β(z)| ≤
C

1 + |z|
, µ ≤ |arg(z)| ≤ π.

Definition 2.3 [12, 8] Let α, β, ρ ∈ C such that Re(α) > 0 and Re(β) > 0 then the generalized
Mittag-Leffler function is defined by

E
ρ
α,β(t) =

+∞∑
n=0

(ρ)nt
n

Γ(αn+ β)n!
, pour tout t ∈ C,

where (ρ)n = ρ(ρ+ 1) . . . (ρ+ n− 1).

Remark 2.1 Note that, when ρ = 1 we get

E1
α,β(t) = Eα,β(t),

where E is the classical Mittag-Leffler function defined in (2.1).

Definition 2.4 [22, 12] The left and right Riemann–Liouville fractional integrals of order α ∈ (0, 1)
of f are defined, respectively, by:

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, (t > 0) (2.4)

and

Iαf(t) =
1

Γ(α)

∫ T

t

(s− t)α−1f(s)ds, (t < T ), (2.5)

provided that the integrals exist.

Definition 2.5 [22, 12] The left and right Riemann–Liouville fractional derivatives of order α ∈ (0, 1)
of f are defined, respectively, by:

Dα
RLf(t) =

d

dt
(I1−αf)(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s)ds, (t > 0) (2.6)

and

Dα
RLf(t) = − d

dt
(I1−αf)(t) =

−1

Γ(1− α)

d

dt

∫ T

t

(s− t)−αf(s)ds, (t < T ), (2.7)

provided that the integrals exist.

Definition 2.6 [22, 12] The left and right Caputo fractional derivative of order α ∈ (0, 1) of f are
defined respectively, by:

Dα
Cf(t) = I1−αf ′(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds, (t > 0) (2.8)

and

Dα
Cf(t) = I1−αf ′(t) =

−1

Γ(1− α)

∫ T

t

(s− t)−αf ′(s)ds (t < T ) (2.9)

provided that the integrals exist.
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Now we give the following integration by parts formulas.

Lemma 2.1 [18] Let 0 < α < 1, y ∈ C∞(Q̄) and φ ∈ C∞(Q̄). Then we have,∫ T

0

∫
Ω

(Dα
RLy(x, t)−∆y(x, t))φ(x, t)dxdt =∫

Ω

φ(x, T )I1−αy(x, T )dx−
∫
Ω

φ(x, 0)I1−αy(x, 0)dx+

∫ T

0

∫
∂Ω

y(σ, t)
∂φ

∂v
(σ, t)dσdt

−
∫ T

0

∫
∂Ω

∂y

∂v
(σ, t)φ(σ, t)dσdt+

∫
Ω

∫ T

0

y(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt,

(2.10)

where Dα
C is the right Caputo fractional defined by (2.9).

On other hand, since the embedding of H1
0 (Ω) in L2(Ω) is compact and (−∆) is a symmetric

uniform elliptic operator, then (−∆) admits real eigenvalues, 0 < λ1 ≤ λ2 ≤ λ3 ≤ ... with λk → ∞
when k → ∞. Moreover, there exists an orthonormal basis {wk}∞k=1 of L2(Ω) , where wk ∈ H1

0 (Ω) is
an eigenfunction corresponding to λk: −∆wk = λkwk. Further, we have,∫

Ω

∇φ(x) · ∇ψ(x)dx = λk

∫
Ω

φ(x)ψ(x)dx, ∀p ∈ H1
0 (Ω). (2.11)

In what follows, for all φ,ψ ∈ L2(Ω), we denote

(φ,ψ)L2(Ω) =

∫
Ω

φ(x)ψ(x)dx,

as the inner product in L2(Ω) and ∥φ∥L2(Ω) as the associated norm.
We set

a(φ,ψ) =

∫
Ω

∇φ(x) · ∇ψ(x)dx, ∀φ,ψ ∈ H1
0 (Ω). (2.12)

Then, the bilinear functional a(., .) defines an inner product on H1
0 (Ω), and we have

∥φ∥2H1
0 (Ω) = a(φ,φ), (2.13)

which is a norm on H1
0 (Ω). Since

{
wk√
λk

}∞

k=1

is an orthonormal basis of H1
0 (Ω) for the inner product

a(., .), we can write

||ϕ||2H1
0 (Ω) =

+∞∑
i=1

λi(ϕ,wi)
2
L2(Ω), ∀ϕ ∈ H1

0 (Ω). (2.14)

3 Existence results

In this section, we give some existence and uniqueness results for the fractional diffusion equations
which are used in this paper.

We first have to give our notion of strong solution to the ill-posed problem (1.1):

Definition 3.1 Let v ∈ L2(Q) and yT ∈ L2(Ω). A function y ∈ L2((0, T );H1
0 (Ω)) is said to be a

strong solution of (1.1), if the following assertions hold:
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• I1−αy ∈ C([0, T ];L2(Ω)),

• Dα
RLy(t) ∈ H−1(Ω), y(·, t) ∈ H1

0 (Ω) for a.e t ∈ (0, T ) and the first equation of (1.1) is satisfied
for a.e. t ∈ (0, T ).

• I1−αy(·, T ) = yT .

We have the following results:

Lemma 3.1 Let 3/4 < α < 1, T > 0, v ∈ L2(Q), yT ∈ L2(Ω) and y satisfies (1.1).
Then y ∈ L2((0, T );H1

0 (Ω)) if

lim
N→∞

K1

 N∑
i=1

|yTi |2

E2
α(−λiTα)

1/2

+K2


N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)


1/2
 <∞ (3.1)

where

K1 = C2

√
2T 3α−2

(4α− 3)(1− α)
and K2 = C4

√
2T 3α−2

(4α− 3)(1− α)
.

Proof. Set
VN = Span (w1, w2, · · · , wN ) . (3.2)

Then we look for

YN (x, t) =

N∑
i=1

(y(t), wi)L2(Ω)wi(x) =

N∑
i=1

yi(t)wi(x), (3.3)

solution of the following approximate problem :
Dα

RLYN (x, t)−∆YN (x, t) = vN (x, t) (x, t) ∈ Q,
YN (σ, t) = 0 (σ, t) ∈ Σ,

I1−αYN (x, T ) = yTN (x) x ∈ Ω,
(3.4)

where

vN (x, t) =

N∑
i=1

(v(t), wi)L2(Ω)wi(x) =

N∑
i=1

vi(t)wi(x), (3.5)

and

yTN =

N∑
i=1

(yT , wi)L2(Ω)wi(x) =

N∑
i=1

yTi wi(x). (3.6)

Note that if YN converge then lim
N→∞

YN = y, where y satisfies (1.1).

If we replace YN in (3.4) by

N∑
i=1

yi(t)wi(x), we obtain that yi, i = 1, · · · , N is a solution of the

ordinary differential equation{
Dα

RLyi(t) + λiyi(t) = vi(t), t ∈ (0, T ),
I1−αyi(T ) = yTi .

(3.7)
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Now, using the Laplace transform, we obtain from the first equation of (3.7) that,

D̂α
RLyi(s) + λiŷi(s) = v̂i(s), (3.8)

where
D̂α

RLyi(s) = L(Dα
RLyi(t))(s),

ŷi(s) = L(yi(t))(s),
v̂i(s) = L(vi(t))(s)

and L denotes the Laplace transform operator. Then after some computations we obtain (see [10]):

yi(t) = I1−αyi(0)t
α−1Eα,α(−λitα) +

∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds, (3.9)

which implies that

I1−αyi(t) = I1−αyi(0)Eα(−λitα) +
∫ t

0

Eα(−λi(t− s)α)vi(s)ds. (3.10)

From the latter equality, we can deduce that

I1−αyi(T ) = I1−αyi(0)Eα(−λiTα) +

∫ T

0

Eα(−λi(T − s)α)vi(s)ds,

which combining with the second equation of (3.7) gives

I1−αyi(0) =

yTi −
∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)
, (3.11)

where Eα(−λiTα) > 0 (see [24], for instance).
Therefore, combining (3.9) and (3.11), we obtain

yi(t) =


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)

 tα−1Eα,α(−λitα)

+

∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds.

It then follows from (3.3) that

YN (t) =

N∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)
tα−1Eα,α(−λitα)

wi

+

N∑
i=1

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}
wi.

(3.12)
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Set ai =

yTi −
∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)
. Then, we have that,

a(YN (t), YN (t)) =

N∑
i=1

λi[yi(t)]
2

≤ 2

N∑
i=1

λit
2α−2E2

α,α(−λitα)|ai|2

+ 2

N∑
i=1

λi

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}2

.

Hence,

∥YN (t)∥2
L2((0,T );H1

0 (Ω))
=

∫ T

0

a(YN (t), YN (t))dt

≤ AN +BN ,

with

AN = 2

N∑
i=1

λi|ai|2
∫ T

0

t2α−2E2
α,α(−λitα)dt,

BN = 2

N∑
i=1

∫ T

0

λi

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}2

dt.

Note that from Theorem 2.1, we know that there exists a generic constant C > 0 such that

AN = 2

N∑
i=1

λi|ai|2
∫ T

0

t2α−2E2
α,α(−λitα)dt

≤ 2

N∑
i=1

λi|ai|2
(∫ T

0

t4α−4E2
α,α(−λitα)dt

)(∫ T

0

E2
α,α(−λitα)dt

)

≤ C4

N∑
i=1

|ai|2
(∫ T

0

t4α−4dt

)(∫ T

0

t−αdt

)

≤ C4

N∑
i=1

|ai|2
[
t4α−3

4α− 3

]T
0

[
t1−α

1− α

]T
0

≤ C4T 3α−2

(4α− 3)(1− α)

N∑
i=1

|ai|2

(3.13)

Therefore, we have

AN ≤ C4T 3α−2

(4α− 3)(1− α)

N∑
i=1

|ai|2. (3.14)
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Remark 3.1 From the latter estimation, we see that we have to take 3/4 < α < 1 to give a sense to
our computation.

Using Theorem 2.1 and Cauchy-Schwartz inequality, we obtain

N∑
i=1

|ai|2 ≤ 2

N∑
i=1

|yTi |2

E2
α(−λiTα)

+ 2

N∑
i=1

1

E2
α(−λiTα)

∣∣∣∣∣
∫ T

0

Eα(−λi(T − s)α)vi(s)ds

∣∣∣∣∣
2

≤ 2

N∑
i=1

|yTi |2

E2
α(−λiTα)

+ 2C2
N∑
i=1

1

E2
α(−λiTα)

(∫ T

0

|vi(s)|2ds

)
Therefore, we have

N∑
i=1

|ai|2 ≤ 2
N∑
i=1

|yTi |2

E2
α(−λiTα)

+ 2C2
N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)

, (3.15)

which combining with (3.14) gives

AN ≤ 2C4T 3α−2

(4α− 3)(1− α)

N∑
i=1

|yTi |2

E2
α(−λiTα)

+
2C6T 3α−2

(4α− 3)(1− α)

N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)

. (3.16)

Proceeding as in [10], we have

BN ≤ 4C2Tα

α− 1
2

N∑
i=1

∫ T

0

|vi(s)|2ds. (3.17)

Combining (3.16) and (3.17), we obtain

∥YN (t)∥2
L2((0,T );H1

0 (Ω))
≤ 2C4T 3α−2

(4α− 3)(1− α)

N∑
i=1

|yTi |2

E2
α(−λiTα)

+
2C6T 3α−2

(4α− 3)(1− α)

N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)

+
4C2Tα

α− 1
2

N∑
i=1

∫ T

0

|vi(s)|2ds.

Hence, we can deduce that

∥YN (t)∥L2((0,T );H1
0 (Ω)) ≤ C2

√
2T 3α−2

(4α− 3)(1− α)

 N∑
i=1

|yTi |2

E2
α(−λiTα)

1/2

+ C4

√
2T 3α−2

(4α− 3)(1− α)


N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)


1/2

+ 2C

√
Tα

α− 1
2

 N∑
i=1

∫ T

0

|vi(s)|2ds

1/2

.

(3.18)
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Passing to the limit, when N → ∞, in (3.18), we have that y ∈ L2((0, T );H1
0 (Ω)) if (3.1) holds.

Therefore,

y(t) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)
tα−1Eα,α(−λitα)

wi

+

+∞∑
i=1

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}
wi.

(3.19)

Lemma 3.2 Let 3/4 < α < 1 , yT ∈ L2(Ω) and v ∈ L2(Q). Then the problem (1.1) admits a strong
solution if and only if the following two series converge:

+∞∑
i=1

|yTi |2

E2
α(−λiTα)

1/2

and


+∞∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)


1/2

(3.20)

where λi is the eigenvalue of the operator −∆ corresponding to the eigenfunction wi. y
T
i = (yT , wi)L2(Ω)

and vi(t) = (v(t), wi)L2(Ω) are respectively the i-th component of yT and v(t) in the orthonormal basis
{wi}∞i=1 of L2(Ω).

Proof. Let y ∈ L2((0, T );H1
0 (Ω)) be a strong solution of (1.1). Then, (3.1) holds. Therefore taking

successively in (3.1) v = 0 and yT = 0, we obtain that the two series in (3.20) converge.
Conversely, assume that the two series in (3.20) converge, then y ∈ L2((0, T );H1

0 (Ω)).
Combining (3.10) and (3.11), we can write that

I1−αYN (t) =

N∑
i=1

∣∣∣∣∣∣∣∣∣
yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)

∣∣∣∣∣∣∣∣∣Eα(−λitα)wi

+

N∑
i=1

{∫ t

0

Eα(−λi(t− s)α)vi(s)ds

}
wi,

which implies that,

∥I1−αYN (t)∥2
L2((0,T );H1

0 (Ω))
=

∫ T

0

a(I1−αYN (t), I1−αYN (t))dt

≤ CN + ZN ,

where

CN = 2

N∑
i=1

λi|ai|2
∫ T

0

E2
α(−λitα)dt,

ZN = 2

N∑
i=1

∫ T

0

λi

{∫ t

0

Eα(−λi(t− s)α)vi(s)ds

}2

dt.
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Using Theorem 2.1, (3.15) and proceeding as in [10], we obtain

CN = 2

N∑
i=1

λi|ai|2
∫ T

0

E2
α(−λitα)dt

≤ C2

N∑
i=1

|ai|2
∫ T

0

t−αdt

≤ C2T 1−α

1− α

2

N∑
i=1

|yTi |2

E2
α(−λiTα)

+ 2C2
N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)

 ,

(3.21)

We can also write that

ZN ≤ C2T 1−α

1− α

N∑
i=1

(∫ T

0

|vi(s)|2ds

)
.

Consequently, we have

∥I1−αYN (t)∥2
L2((0,T );H1

0 (Ω))
≤ 2C2T 1−α

1− α

N∑
i=1

|yTi |2

E2
α(−λiTα)

+
2C4T 1−α

1− α

N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)

+
C2T 1−α

1− α

N∑
i=1

(∫ T

0

|vi(s)|2ds

)
,

which implies that

∥I1−αYN (t)∥L2((0,T );H1
0 (Ω)) ≤ C

√
2T 1−α

1− α

 N∑
i=1

|yTi |2

E2
α(−λiTα)

1/2

+ C2

√
2T 1−α

1− α


N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)


1/2

+ C

√
T 1−α

1− α

 N∑
i=1

∫ T

0

|vi(s)|2ds

1/2

.

(3.22)

As v ∈ L2(Q) and Series in (3.20) converge, we have

lim
N→+∞

 N∑
i=1

|yTi |2

E2
α(−λiTα)

1/2

<∞, lim
N→+∞


N∑
i=1

∫ T

0

|vi(s)|2ds

E2
α(−λiTα)


1/2

<∞,
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and

lim
N→+∞

 N∑
i=1

∫ T

0

|vi(s)|2ds

1/2

= ∥v∥L2(Q).

This implies that I1−αy ∈ L2((0, T );H1
0 (Ω)).

Therefore

I1−αy(t) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)
Eα(−λitα) +

∫ t

0

Eα(−λi(t− s)α)vi(s)ds

wi.

(3.23)
Since y ∈ L2((0, T );H1

0 (Ω)) is solution to (1.1) and v ∈ L2(Q), we have that

Dα
RLy(t) = ∆y(t) + v(t) ∈ H−1(Ω) for almost every t ∈ (0, T ).

Let φ ∈ H1
0 (Ω). If we multiply the first equation in (1.1) by φ and integrate by parts, we have that:∫

Ω

Dα
RLy(t)φdx =

∫
Ω

∇y(t) · ∇φdx+

∫
Ω

v(t)φdx

≤ ∥∇y(t)∥L2(Ω)∥∇φ∥L2(Ω) + ∥v(t)∥L2(Ω)∥φ∥L2(Ω)

≤
(
∥y(t)∥H1

0 (Ω) + C(Ω)∥v(t)∥L2(Ω)

)
∥φ∥H1

0 (Ω).

(3.24)

This implies that Dα
RLy(t) ∈ H−1(Ω).

Let φ ∈ L2((0, T );H1
0 (Ω)). If we multiply the first equation in (1.1) by φ and integrate by parts,

then in view of (3.24), we have that:
Hence, using again Cauchy-Schwartz inequality, we deduce that∫ T

0

∫
Ω

∣∣Dα
RLy(x, t)φ(x, t)

∣∣ dxdt ≤
∫ T

0

(
∥y(t)∥H1

0 (Ω) + C(Ω)∥v(t)∥L2(Ω)

)
∥φ(t)∥H1

0 (Ω)dt

≤
(
∥y∥L2((0,T );H1

0 (Ω)) + C(Ω)∥v∥L2(Q)

)
∥φ∥L2((0,T );H1

0 (Ω)),

This implies that Dα
RLy ∈ L2((0, T );H−1(Ω)).

Finally, we showed that I1−αy ∈ L2((0, T );H1
0 (Ω)) and D

α
RLy ∈ L2((0, T );H−1(Ω)), then we have

I1−αy ∈ C([0, T ];L2(Ω)).
Hence, using (3.23), we have that

I1−αy(T ) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

Eα(−λiTα)
Eα(−λiTα) +

∫ T

0

Eα(−λi(T − s)α)vi(s)ds


=

+∞∑
i=1

yTi wi = yT .

Consequently, we can conclude that y is a strong solution of (1.1) in the sense of Definition 3.1.
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Now, using again eigenfunctions expansions of the Laplace operator and proceeding as the proof of
the latter Lemma, we prove the existence and uniqueness of solution to the approximated problem (1.4).

Let VN the space given in (3.2). Proceeding as in the proof of Lemma 3.1, we look for

Y ε
N (x, t) =

N∑
i=1

(yε(t), wi)L2(Ω)wi(x) =

N∑
i=1

yεi (t)wi(x). (3.25)

the solution of the following approximate problem of (1.4):
Dα

RLY
ε
N (x, t)−∆Y ε

N (x, t) = vN (x, t) (x, t) ∈ Q,
Y ε
N (σ, t) = 0 (σ, t) ∈ Σ,

I1−αY ε
N (x, T ) + εI1−αY ε

N (x, 0) = yTN (x) x ∈ Ω,
(3.26)

where vN and yTN are given respectively in (3.5) and (3.6).
We recall that if Y ε

N converge then lim
N→∞

Y ε
N = yε, where yε satisfies (1.4).

We have the following result :

Theorem 3.1 Let 3/4 < α < 1, T > 0, v ∈ L2(Q), and yT ∈ L2(Ω). Then, the approximate problem
(1.4) has a unique solution yε ∈ L2((0, T );H1

0 (Ω)) given by

yε(t) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
tα−1Eα,α(−λitα)

+

∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}
wi.

(3.27)

where λi is the eigenvalue of the operator −∆ corresponding to the eigenfunction wi. Eα,α as given
in (2.2), yTi = (yT , wi)L2(Ω) and vi(t) = (v(t), wi)L2(Ω) are respectively, the i-th component of yT and
v(t) in the orthonormal basis {wi}∞i=1 of L2(Ω). Moreover, I1−αyε ∈ C([0, T ];L2(Ω)) and there exists
a constant C > 0 such that,

∥yε∥L2((0,T );H1
0 (Ω)) ≤ Π

(
∥yT ∥L2(Ω) + ∥v∥L2(Q)

)
, (3.28)

and ∥∥∥I1−αyε
∥∥∥
L2((0,T );H1

0 (Ω))
≤ Θ

(
∥yT ∥L2(Ω) + ∥v∥L2(Q)

)
, (3.29)

where

Π = max

C2

ε

√
2T 3α−2

(4α− 3)(1− α)
,

√
2C6T 3α−2

ε2(4α− 3)(1− α)
+

4C2Tα

α− 1
2


and

Θ = sup

C
ε

√
T 1−α

1− α
,

√
2C4T 1−α

ε2(1− α)
+

C2T 2−2α

λ1(1− α)2

 .
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Proof. If we replace Y ε
N in (3.26) by

N∑
i=1

yεi (t)wi(x), we obtain that yεi , i = 1, · · · , N is a solution

of the ordinary differential equation{
Dα

RLy
ε
i (t) + λiy

ε
i (t) = vi(t), t ∈ (0, T ),

I1−αyεi (T ) + εI1−αyεi (0) = yTi .
(3.30)

Now, using the Laplace transform, and proceeding as in [10], we obtain

yεi (t) = I1−αyεi (0
+)tα−1Eα,α(−λitα) +

∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds, (3.31)

and

I1−αyεi (t) = I1−αyεi (0)Eα(−λitα) +
∫ t

0

Eα(−λi(t− s)α)vi(s)ds. (3.32)

Therefore, we have

I1−αyεi (0) =

yTi −
∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
, (3.33)

which implies that

yεi (t) =


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)

 tα−1Eα,α(−λitα)

+

∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds.

It then follows from (3.25) that

Y ε
N (t) =

N∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
tα−1Eα,α(−λitα)

wi

+

N∑
i=1

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}
wi.

(3.34)
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Set bi =

yTi −
∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
. Then, we have that,

a(Y ε
N (t), Y ε

N (t)) =

N∑
i=1

λi[y
ε
i (t)]

2

≤ 2

N∑
i=1

λit
2α−2E2

α,α(−λitα)|bi|2

+ 2

N∑
i=1

λi

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}2

.

Hence,

∥Y ε
N (t)∥2

L2((0,T );H1
0 (Ω))

=

∫ T

0

a(Y ε
N (t), Y ε

N (t))dt ≤ Aε
N +Bε

N ,

with

Aε
N = 2

N∑
i=1

λi|bi|2
∫ T

0

t2α−2E2
α,α(−λitα)dt,

Bε
N = 2

N∑
i=1

∫ T

0

λi

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}2

dt.

Proceeding as in (3.13), we know that there exists a generic constant C > 0 such that

Aε
N ≤ C4T 3α−2

(4α− 3)(1− α)

N∑
i=1

|bi|2 (3.35)

Using again Theorem 2.1, we obtain

N∑
i=1

|bi|2 =

N∑
i=1

∣∣∣∣∣∣∣∣∣
yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)

∣∣∣∣∣∣∣∣∣
2

≤ 2

ε2

N∑
i=1

|yTi |2 +
2C2

ε2

N∑
i=1

∫ T

0

|vi(s)|2ds

Consequently,
N∑
i=1

|bi|2 ≤ 2

ε2

N∑
i=1

|yTi |2 +
2C2

ε2

N∑
i=1

∫ T

0

|vi(s)|2ds. (3.36)

and we have that

Aε
N ≤ 2C4T 3α−2

ε2(4α− 3)(1− α)

N∑
i=1

|yTi |2 +
2C6T 3α−2

ε2(4α− 3)(1− α)

 N∑
i=1

∫ T

0

|vi(s)|2ds

 . (3.37)
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On the other hand, using the Cauchy-Schwartz inequality and proceeding as in [10], we have

Bε
N ≤ 4C2Tα

α− 1
2

N∑
i=1

∫ T

0

|vi(s)|2ds (3.38)

Combining (3.37) and (3.38), we obtain

∥Y ε
N (t)∥2

L2((0,T );H1
0 (Ω))

≤ 2C4T 3α−2

ε2(4α− 3)(1− α)

N∑
i=1

|yTi |2

+

[
2C6T 3α−2

ε2(4α− 3)(1− α)
+

4C2Tα

α− 1
2

] N∑
i=1

∫ T

0

|vi(s)|2ds

 .
Therefore,

∥Y ε
N (t)∥L2((0,T );H1

0 (Ω)) ≤ C2

ε

√
2T 3α−2

(4α− 3)(1− α)

 N∑
i=1

|yTi |2
1/2

+

√
2C6T 3α−2

ε2(4α− 3)(1− α)
+

4C2Tα

α− 1
2

 N∑
i=1

∫ T

0

|vi(s)|2ds

1/2

.

(3.39)

In view of Equation (3.32) and (3.33), we have

I1−αY ε
N (t) =

N∑
i=1

|bi|Eα(−λitα)wi +

N∑
i=1

{∫ t

0

Eα(−λi(t− s)α)vi(s)ds

}
wi,

from which we deduce that,

∥I1−αY ε
N (t)∥2

L2((0,T );H1
0 (Ω))

≤
∫ T

0

a(I1−αY ε
N (t), I1−αY ε

N (t))dt

≤ 2

N∑
i=1

λi|bi|2
∫ T

0

E2
α(−λitα)dt

+ 2

N∑
i=1

∫ T

0

λi

{∫ t

0

Eα(−λi(t− s)α)vi(s)ds

}2

dt.

If we set

Cε
N = 2

N∑
i=1

λi|bi|2
∫ T

0

E2
α(−λitα)dt,

Zε
N = 2

N∑
i=1

∫ T

0

λi

{∫ t

0

Eα(−λi(t− s)α)vi(s)ds

}2

dt.

Proceeding as in (3.21), we obtain

Cε
N ≤ C2T 1−α

1− α

N∑
i=1

|bi|2, (3.40)
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which combining with (3.36), gives

Cε
N ≤ 2C2T 1−α

ε2(1− α)

N∑
i=1

|yTi |2 +
2C4T 1−α

ε2(1− α)

N∑
i=1

∫ T

0

|vi(s)|2ds. (3.41)

On the other hand, we can write, using Theorem 2.1 and Cauchy-Schwartz inequality, that

Zε
N ≤ 2

N∑
i=1

∫ T

0

λi

{
C

λi

∫ t

0

(t− s)−αvi(s)ds

}2

dt

≤ C2

λ1

N∑
i=1

∫ T

0

{∫ t

0

(t− s)−
α
2 (t− s)−

α
2 vi(s)ds

}2

dt

≤ C2

λ1

N∑
i=1

∫ T

0

(∫ t

0

(t− s)−αds

)(∫ t

0

(t− s)−α|vi(s)|2ds

)
dt

≤ C2

λ1

N∑
i=1

∫ T

0

[
− (t− s)1−α

1− α

]t
0

(∫ t

0

(t− s)−α|vi(s)|2ds

)
dt

≤ C2T 1−α

λ1(1− α)

N∑
i=1

∫ T

0

|vi(s)|2
(∫ T

s

(t− s)−αdt

)
ds

≤ C2T 2−2α

λ1(1− α)2

N∑
i=1

∫ T

0

|vi(s)|2ds.

(3.42)

Combining (3.41) and the latter estimation of Zε
N , we finally obtain

∥I1−αY ε
N (t)∥2

L2((0,T );H1
0 (Ω))

≤ 2C2T 1−α

ε2(1− α)

N∑
i=1

|yTi |2 +
2C4T 1−α

ε2(1− α)

N∑
i=1

∫ T

0

|vi(s)|2ds

+
C2T 2−2α

λ1(1− α)2

N∑
i=1

∫ T

0

|vi(s)|2ds.

Thus,

∥I1−αY ε
N (t)∥L2((0,T );H1

0 (Ω)) ≤ C

ε

√
2T 1−α

1− α

 N∑
i=1

|yTi |2
1/2

+

√
2C4T 1−α

ε2(1− α)
+

C2T 2−2α

λ1(1− α)2

 N∑
i=1

∫ t

0

|vi(s)|2ds

1/2

.

(3.43)

As yT ∈ L2(Ω) and v ∈ L2(Q), we have

lim
N→+∞

 N∑
i=1

|yTi |2
1/2

<∞ and lim
N→+∞

 N∑
i=1

∫ t

0

|vi(s)|2ds

1/2

<∞.
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Consequently, we have yε ∈ L2((0, T );H1
0 (Ω)) and I

1−αyε ∈ L2((0, T );H1
0 (Ω)). And we have

yε(t) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
tα−1Eα,α(−λitα)

wi

+

+∞∑
i=1

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}
wi,

(3.44)

and

I1−αyε(t) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
Eα(−λitα)

+

∫ t

0

Eα(−λi(t− s)α)vi(s)ds

}
wi.

(3.45)

Now, proceeding as in the proof of Lemma 3.2, we can say that Dα
RLy

ε ∈ L2((0, T );H−1(Ω)), which
implies that I1−αyε ∈ C([0, T ];L2(Ω)). Then we know that I1−αyε(T ) and I1−αyε(0) exist and belong
to L2(Ω).
From (3.45), we have

I1−αyε(T ) + εI1−αyε(0) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
Eα(−λiTα)

+

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

}
wi

+ ε

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
Eα(−λi0α)

wi

+ ε

yTi −
∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
+

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

wi

=

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

ε+ Eα(−λiTα)
(ε+ Eα(−λiTα))

+

∫ T

0

Eα(−λi(T − s)α)vi(s)ds

}
wi

=

+∞∑
i=1

yTi wi = yT .
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Passing to the limit, when N → ∞ in (3.39) and (3.43), we obtain (3.28) and (3.29).

We have the following remark.

Remark 3.2 Let 3/4 < α < 1 and yε ∈ L2((0, T );H1
0 (Ω)) be the solution of (1.4).Then, there exists

a constant C > 0 independent of ε such that,

∥yε∥L2((0,T );H1
0 (Ω)) ≤ Π

(
∥I1−αyε(0)∥L2(Ω) + ∥v∥L2(Q)

)
, (3.46)

and
∥I1−αyε∥L2((0,T );H1

0 (Ω)) ≤ Θ
(
∥I1−αyε(0)∥L2(Ω) + ∥v∥L2(Q)

)
, (3.47)

where

Π = max

C2

√
T 3α−2

(4α− 3)(1− α)
, 2C

√
Tα

α− 1
2

 ,

and

Θ = max

C
√
T 1−α

1− α
,

CT 1−α

√
λ1(1− α)

 .

From Theorem 3.1, we have I1−αyε ∈ C([0, T ];L2(Ω)) then we know that I1−αyε(0) exists and belongs
to L2(Ω). Hence from (3.31) and (3.32), we can write that: ∀t ∈ (0, T ),

yε(t) =

+∞∑
i=1

{
I1−αyεi (0)t

α−1Eα,α(−λitα) +
∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}
wi, (3.48)

and

I1−αyε(t) =

+∞∑
i=1

{
I1−αyεi (0)Eα(−λitα) +

∫ t

0

Eα(−λi(t− s)α)vi(s)ds

}
wi. (3.49)

Therefore, using Theorem 2.1 and the Cauchy-Schwartz inequality, we obtain from (3.48) and proceed-
ing as in (3.13)

∥yε∥2
L2((0,T );H1

0 (Ω))
≤ 2

+∞∑
i=1

λi

∣∣∣I1−αyεi (0)
∣∣∣2 ∫ T

0

t2α−2E2
α,α(−λitα)dt

+ 2

+∞∑
i=1

∫ T

0

λi

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)vi(s)ds

}2

dt.

≤ C4T 3α−2

(4α− 3)(1− α)

+∞∑
i=1

∣∣∣I1−αyεi (0)
∣∣∣2
+

4C2Tα

α− 1
2

+∞∑
i=1

∫ T

0

|vi(s)|2ds

 .

Thus

∥yε∥L2((0,T );H1
0 (Ω)) ≤ C2

√
T 3α−2

(4α− 3)(1− α)
∥I1−αyε(0)∥L2(Ω) + 2C

√
Tα

α− 1
2

∥v∥L2(Q).
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Moreover, from (3.49) and proceeding as in (3.21) and (3.42), we obtain

∥I1−αyε(t)∥2
L2((0,T );H1

0 (Ω))
≤ 2

+∞∑
i=1

λi|I1−αyε(0)|2
∫ T

0

E2
α,1(−λitα)dt

+ 2

+∞∑
i=1

∫ T

0

λi

{∫ t

0

Eα,1(−λi(t− s)α)vi(s)ds

}2

dt

≤ C2T 1−α

1− α

+∞∑
i=1

|I1−αyε(0)|2
+

C2T 2−2α

λ1(1− α)2

+∞∑
i=1

∫ T

0

|vi(s)|2ds


Hence, we have

∥I1−αyε(t)∥L2((0,T );H1
0 (Ω)) ≤ C

√
T 1−α

1− α
∥I1−αyε(0)∥L2(Ω) +

CT 1−α

√
λ1(1− α)

∥v∥L2(Q).

We also have the following results, which are useful for characterizing our approximate optimal control:

Theorem 3.2 Let ε > 0, 0 < α < 1 and pT ∈ L2(Ω). Then the problem
Dα

Cp
ε(x, t)−∆pε(x, t) = 0 (x, t) ∈ Q,

pε(σ, t) = 0 (σ, t) ∈ Σ,
pε(x, T ) + εpε(x, 0+) = pT (x) x ∈ Ω,

(3.50)

has a unique solution pε ∈ C([0, T ];L2(Ω)) given by

pε(t) =

+∞∑
i=1

[
pTi

ε+ Eα(−λiTα)

]
Eα(−λitα)wi. (3.51)

where Eα is given by (2.3), λi is the eigenvalue of the operator −∆ corresponding to the eigenfunction
wi. pTi = (pT , wi)L2(Ω) is the i-th component of pT in the orthonormal basis {wi}∞i=1 of L2(Ω).
Moreover, there exists a constant C > 0 such that,

∥pε∥C([0,T ];L2(Ω)) ≤
C

ε
∥pT ∥L2(Ω). (3.52)

Proof. To prove this theorem, we decide to use again the spectral method.
Let VN the space given in (3.2), we look for

P ε
N (x, t) =

N∑
i=1

(pε(t), wi)L2(Ω)wi(x) =

N∑
i=1

pεi (t)wi(x). (3.53)

the solution of the following approximate of (3.50)
Dα

CP
ε
N (x, t)−∆P ε

N (x, t) = 0 (x, t) ∈ Q,
P ε
N (σ, t) = 0 (σ, t) ∈ Σ,

P ε
N (x, T ) + εP ε

N (x, 0) = pTN (x) x ∈ Ω,
(3.54)
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where

pTN =

N∑
i=1

(pT , wi)L2(Ω)wi(x) =

N∑
i=1

pTi wi(x). (3.55)

We know that if P ε
N converge then lim

N→∞
P ε
N = pε, where pε satisfies (3.50).

If we replace P ε
N in (3.54) by

N∑
i=1

pεi (t)wi(x), we obtain that yi, i = 1, · · · , N is a solution of the

ordinary differential equation{
Dα

Cp
ε
i (t) + λip

ε
i (t) = 0, t ∈ (0, T ),

pεi (T ) + εpεi (0
+) = pTi .

(3.56)

Using the Laplace transform and proceeding as in the proof of Lemma (3.1) , we obtain

pεi (t) = pεi (0
+)Eα(−λitα).

Therefore, we have
pεi (T ) = pεi (0

+)Eα(−λiTα),

which gives from (3.56)2

pεi (0) =
pTi

ε+ Eα(−λiTα)
, (3.57)

and, we obtain

pεi (t) =

{
pTi

ε+ Eα(−λiTα)

}
Eα(−λitα).

Therefore, from (3.53) we can write that

P ε
N (t) =

N∑
i=1

{
pTi

ε+ Eα(−λiTα)

}
Eα(−λitα)wi. (3.58)

Using Theorem 2.1, we obtain

∥P ε
N (t)∥2L2(Ω) =

N∑
i=1

∣∣∣∣∣ pTi
ε+ Eα(−λiTα)

Eα(−λitα)

∣∣∣∣∣
2

≤ C2

ε2

N∑
i=1

|pTi |2,

then, we can deduce that

∥P ε
N (t)∥C([0,T ];L2(Ω)) = sup

t∈[0,T ]

∥P ε
N (t)∥L2(Ω) ≤

C

ε

 N∑
i=1

|pTi |2
1/2

. (3.59)

As pT ∈ L2(Ω), we know that

lim
N→+∞

 N∑
i=1

|pTi |2
1/2

<∞.
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Therefore, we have pε ∈ C([0, T ];L2(Ω)) and we can write that

pε(t) =

+∞∑
i=1

{
pTi

ε+ Eα(−λiTα)

}
Eα(−λitα)wi. (3.60)

Moreover, from (3.60), we have

pε(T ) + εpε(0) =

+∞∑
i=1

{
pTi

ε+ Eα(−λiTα)

}
Eα(−λiTα)wi + ε

+∞∑
i=1

{
pTi

ε+ Eα(−λiTα)

}
wi

=

+∞∑
i=1

{
pTi

ε+ Eα(−λiTα)

}
(ε+ Eα(−λiTα))wi

=

+∞∑
i=1

pTi = pT .

To finish, passing to the limit, when N → +∞ in (3.59), we can deduce (3.52).
From the latter theorem, we can deduce the following result:

Corollary 3.1 Let 0 < α < 1 and pT ∈ L2(Ω). Then problem
−Dα

Cp(x, t)−∆p(x, t) = 0 (x, t) ∈ Q,
p(σ, t) = 0 (σ, t) ∈ Σ,

εp(x, T ) + p(x, 0+) = pT (x) x ∈ Ω,
(3.61)

where Dα
C is the right Caputo fractional of order 0 < α < 1, admits a unique solution p ∈ C([0, T ];L2(Ω)).

Moreover, there exists a constant C > 0 such that,

∥p∥C([0,T ];L2(Ω)) ≤
C

ε
∥pT ∥L2(Ω). (3.62)

Proof. Making the change of variable t→ T − t in (3.50), we obtain the following equivalent problem
−Dα

Cψ(x, t)−∆ψ(x, t) = 0 (x, t) ∈ Q,
ψ(σ, t) = 0 (σ, t) ∈ Σ,

εψ(x, T ) + ψ(x, 0+) = pT (x) x ∈ Ω,

where ψ(x, t) = p(x, T − t). Therefore, using theorem 3.2, we can say that the latter equation has a
unique solution ψ ∈ C([0, T ];L2(Ω)). Moreover there exists a constant C > 0 such that

∥ψ∥C([0,T ];L2(Ω)) ≤
C

ε
∥pT ∥L2(Ω).

4 Optimal control problems

In this section, we assume that yT ∈ L2(Ω) and v ∈ L2(Q) such that Series in (3.20) converge. Our goal
is to solve the non-well posed problem (1.1)-(1.2). Let Uad be a suitable nonempty closed and convex
subset of L2(Q) and A be defined as in (1). For instance, we can consider the following nonempty
closed and convex subset of L2(Q):

Uad :=
{
v ∈ L2(Q) such that Series (3.20) converge

}
. (4.1)
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Remark 4.1 We have the following observations:

1. From Lemma (3.2), we know that Equation (1.1) admits a strong solution in the sense of Defi-
nition 3.1. Therefore, A ̸= ∅.

2. Let y be a strong solution of Equation (1.1), then we know that I1−αy ∈ C([0, T ];L2(Ω)), which
implies that I1−αy(·, 0) exists and belongs to L2(Ω). Therefore, the cost function J which we
defined in (1.3) has a sense.

3. We can prove that optimal control problem (1.1)-(1.2) admits a unique solution (u, y) ∈ A, using
minimizing sequences, the structure of the functional J and estimations given in the proof of
Lemma 3.2. Moreover, using the Euler-Lagrange optimality condition, we can give the following
result: ∫

Ω

(I1−αy(u, 0)− zd)I
1−αy(v − u, 0)dx+N

∫
Ω

∫ T

0

u(v − u)dtdx ≥ 0 ∀(v, y) ∈ A.

However, as mentioned in the introduction, Equation (1.1) is not well-posed in the Hadamard
sense, then the increase of the state and the control in the latter estimation are linked. This is
why, we decided to use the quasi-reversibility method.

Let’s start with the following existence and uniqueness result for the approximated problem:

Theorem 4.1 For every ε > 0, there exists a unique control uε ∈ Uad such that (1.4)-(1.5) holds.

Proof. Let (vn) ∈ Uad be a minimizing sequence such that

lim
n→+∞

Jε(vn) = inf
v∈Uad

Jε(v). (4.2)

Then, there exists a constant C > 0 such that Jε(vn) ≤ C. Hence, we obtain

∥vn∥L2(Q) ≤ C, (4.3a)

∥I1−αyεn(·, 0)∥L2(Ω) ≤ C. (4.3b)

Moreover, let yεn = yε(vn;x, t) be solution of the following equation

Dα
RLy

ε
n(x, t)−∆yεn(x, t) = vn(x, t), (4.4a)

yεn(σ, t) = 0, (4.4b)

I1−αyεn(x, T ) + εI1−αyεn(x, 0
+) = yT (x). (4.4c)

From (4.4c), we have
I1−αyεn(·, T ) = yT − εI1−αyεn(·, 0), (4.5)

and combining (4.3b) and (4.5), we obtain

∥I1−αyεn(·, T )∥L2(Ω) = ∥yT − εI1−αyεn(·, 0)∥L2(Ω)

≤ ∥yT ∥L2(Ω) + ∥εI1−αyεn(·, 0)∥L2(Ω)

≤ ∥yT ∥L2(Ω) + εC.
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Then we have
∥I1−αyεn(·, T )∥L2(Ω) ≤ ∥yT ∥L2(Ω) + εC. (4.6)

From Theorem 3.1, we know there exists a constant C > 0 such that

∥yεn∥L2((0,T );H1
0 (Ω)) ≤ C∥yT ∥L2(Ω), (4.7a)

∥I1−αyεn∥L2((0,T );H1
0 (Ω)) ≤ C∥yT ∥L2(Ω). (4.7b)

Combining (4.4a) and (4.3a), we obtain

∥Dα
RLy

ε
n −∆yεn∥L2(Q) ≤ C. (4.8)

It follows from (4.3a), (4.3b), (4.6), (4.7a), (4.7b) and (4.8) that there exist uε ∈ L2(Q), yε ∈
L2((0, T );H1

0 (Ω)), γ ∈ L2((0, T );H1
0 (Ω)), δ ∈ L2(Q), π1 ∈ L2(Ω), π2 ∈ L2(Ω) and we can extract

subsequences of (vn) and (yεn) (still called (vn) and (yεn)), such that

vn ⇀ uε weakly in L2(Q), (4.9a)

yεn ⇀ yε weakly in L2((0, T );H1
0 (Ω)), (4.9b)

I1−αyεn ⇀ γ weakly in L2((0, T );H1
0 (Ω)), (4.9c)

Dα
RLy

ε
n −∆yεn ⇀ δ weakly in L2(Q), (4.9d)

I1−αyεn(·, 0)⇀ π1 weakly in L2(Ω), (4.9e)

I1−αyεn(·, T )⇀ π2 weakly in L2(Ω). (4.9f)

Uad being a closed subset of L2(Q), we can write

uε ∈ Uad. (4.10)

Set D(Q), the set of C∞ function on Q with compact support and denote by D′(Q) its dual. Then
multiplying (4.4a) by φ ∈ D(Q) and integrating by part over Q, we obtain∫ T

0

∫
Ω

(Dα
RLy

ε
n(x, t)−∆yεn(x, t))φ(x, t)dxdt =

∫ T

0

∫
Ω

vn(x, t)φ(x, t)dxdt. (4.11)

Using Lemma 2.1, we can write∫ T

0

∫
Ω

(Dα
RLy

ε
n(x, t)−∆yεn(x, t))φ(x, t)dxdt =∫ T

0

∫
Ω

yεn(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt.

Then passing to the limit in the latter equality when n→ +∞ and using (4.9b), we obtain

lim
n→+∞

∫ T

0

∫
Ω

(Dα
RLy

ε
n(x, t)−∆yεn(x, t))φ(x, t)dxdt =∫ T

0

∫
Ω

yε(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt.
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Hence, using again Lemma 2.1, we have

lim
n→+∞

∫ T

0

∫
Ω

(Dα
RLy

ε
n(x, t)−∆yεn(x, t))φ(x, t)dxdt =∫ T

0

∫
Ω

(Dα
RLy

ε(x, t)−∆yε(x, t))φ(x, t)dxdt.

This implies that
Dα

RLy
ε
n −∆yεn ⇀ Dα

RLy
ε −∆yε weakly in D′(Q), (4.12)

which combining with (4.9d) gives

Dα
RLy

ε −∆yε = δ in Q. (4.13)

Therefore, we have
Dα

RLy
ε
n −∆yεn ⇀ Dα

RLy
ε −∆yε weakly in L2(Q) (4.14)

Passing to the limit in (4.11), using (4.9a) and (4.14), we obtain

Dα
RLy

ε −∆yε = uε in Q. (4.15)

Now, we know that∫
Ω

∫ T

0

I1−αyεn(x, t)φ(x, t)dtdx =∫
Ω

∫ T

0

yεn(x, s)

(
−1

Γ(1− a)

∫ T

s

(t− s)−αφ(x, t)dt

)
dsdx, ∀φ ∈ D(Q),

and passing to the limit in the latter equality and using (4.9c) and (4.9b), we obtain∫
Ω

∫ T

0

γφ(x, t)dtdx =

∫
Ω

∫ T

0

yε(x, s)

(
−1

Γ(1− a)

∫ T

s

(t− s)−αφ(x, t)dt

)
dsdx

=

∫
Ω

∫ T

0

I1−αyε(x, t)φ(x, t)dtdx, ∀φ ∈ D(Q).

Thus,
I1−αyε = γ in Q,

which combining with (4.9c) gives

I1−αyεn ⇀ I1−αyε weakly in L2((0, T );H1
0 (Ω)). (4.16)

We have yε ∈ L2((0, T );H1
0 (Ω)) and I

1−αyε ∈ L2((0, T );H1
0 (Ω)), then

yε = 0 on Σ. (4.17)

On the other hand, yε ∈ L2((0, T );H1
0 (Ω)) then ∆yε ∈ L2((0, T );H−1(Ω)), which implies that

∂

∂t
I1−αyε = Dα

RLy
ε = uε +∆yε ∈ L2((0, T );H−1(Ω)).
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Finally, we have
I1−αyε ∈ C([0, T ];L2(Ω)).

This means that I1−αyε(0) and I1−αyε(T ) exist and belong to L2(Ω).
Now, multiplying (4.4a) by a function φ ∈ C∞(Q̄) with φ|∂Ω = 0 and integrating by part over Q, we
obtain using Lemma 2.1 ∫ T

0

∫
Ω

(Dα
RLy

ε
n(x, t)−∆yεn(x, t))φ(x, t)dxdt =∫

Ω

φ(x, T )I1−αyεn(x, T )dx−
∫
Ω

φ(x, 0)I1−αyεn(x, 0)dx+∫
Ω

∫ T

0

yεn(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt.

Passing to the limit when n → +∞ in the latter result and using (4.14), (4.9e), (4.9f) and (4.9b), we
have ∫ T

0

∫
Ω

(Dα
RLy

ε(x, t)−∆yε(x, t))φ(x, t)dxdt =∫
Ω

φ(x, T )π2dx−
∫
Ω

φ(x, 0)π1dx+∫
Ω

∫ T

0

yε(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt,

(4.18)

which using again Lemma 2.1 gives∫
Ω

φ(x, T )[π2 − I1−αyε(x, T )]dx−
∫
Ω

φ(x, 0)[π1 − I1−αyε(x, 0)]dx = 0.

Now, choose φ such that φ(·, 0) = 0 in Ω, we obtain

I1−αyε(·, T ) = π2,

and finally, we have
I1−αyε(·, 0) = π1.

Therefore, we have

I1−αyεn(·, 0)⇀ I1−αyε(·, 0) weakly in L2(Ω), (4.19a)

I1−αyεn(·, T )⇀ I1−αyε(·, T ) weakly in L2(Ω). (4.19b)

Hence, passing to the limit when n→ +∞ in (4.4c) and using (4.19) we can write that

I1−αyε(x, T ) + εI1−αyε(x, 0) = yT in Ω. (4.20)

From (4.15), (4.17) and (4.20), we can deduce that yε(uε) is solution of Equation (1.4).
It follows from the lower semi-continuity of the functional Jε, (4.9a) and (4.19a) that

Jε(uε) ≤ lim
n→+∞

inf Jε(vn),

which combining with (4.2) gives
Jε(uε) = inf

v∈Uad

Jε(vn).

And from the strict convexity of Jε, we have the uniqueness of the optimal control uε.

26



Theorem 4.2 Let uε be solution of (1.4)-(1.5). Then there exists pε ∈ C([0, T ];L2(Ω)) such that
(uε, yε, pε) verifies the following optimality systems:

Dα
RLy

ε(x, t)−∆yε(x, t) = uε(x, t) (x, t) ∈ Q,
yε(σ, t) = 0 (σ, t) ∈ Σ,

I1−αyε(x, T ) + εI1−αyε(x, 0+) = yT (x) x ∈ Ω,
(4.21)

 −Dα
Cp

ε(x, t)−∆pε(x, t) = 0 (x, t) ∈ Q,
pε(σ, t) = 0 (σ, t) ∈ Σ,

εpε(x, T ) + pε(x, 0) = I1−αyε(uε;x, 0)− zd x ∈ Ω,
(4.22)

and ∫ T

0

∫
Ω

(Nuε(x, t)− pε(x, t))(v(x, t)− uε(x, t))dxdt ≥ 0, ∀v ∈ Uad. (4.23)

Proof. From (4.15), (4.17) and (4.20), we have (4.21). To prove (4.22) and (4.23), we use the Euler-
Lagrange optimality conditions

lim
k→0

Jε(uε + k(v − uε))− Jε(uε)

k
≥ 0, ∀v ∈ Uad, (4.24)

which characterize the control uε.
We set w = v − uε, then from (1.6) we have

Jε(uε + kw) =
1

2

∥∥∥I1−αyε(uε, 0)− zd

∥∥∥2
L2(Ω)

+
k2

2

∥∥∥I1−αyε(w, 0)
∥∥∥2
L2(Ω)

+ k
(
I1−αyε(uε, 0)− zd, I

1−αyε(w, 0)
)
L2(Ω)

+
N

2
∥uε∥2L2(Q)

+
k2N

2
∥w∥2L2(Q) +Nk(uε, w)L2(Q),

which implies that

lim
k→0

Jε(uε + k(v − uε))− Jε(uε)

k
=

(
I1−αyε(uε, 0)− zd, I

1−αyε(w, 0)
)
L2(Ω)

+N(uε, w)L2(Q).

Combining the latter result with (4.24), we obtain∫
Ω

(I1−αyε(uε, 0)− zd)I
1−αyε(v − uε, 0)dx+N

∫
Ω

∫ T

0

uε(v − uε)dtdx ≥ 0 ∀v ∈ Uad. (4.25)

From Corollary 3.1, we know that Equation (4.22) admits a unique solution pε ∈ C([0, T ];L2(Ω)). Let
zε(v − uε) the associated state of v − uε ∈ L2(Q). Then from Theorem 3.1, zε ∈ L2((0, T );H1

0 (Ω))
verifies the following equation

Dα
RLz

ε(x, t)−∆zε(x, t) = v(x, t)− uε(x, t), (4.26a)

zε(σ, t) = 0, (4.26b)

I1−αzε(x, T ) + εI1−αzε(x, 0+) = 0. (4.26c)
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Moreover, we know that I1−αzε ∈ C([0, T ];L2(Ω)). Note that, from (4.26c), we have

I1−αzε(x, T ) = −εI1−αzε(x, 0). (4.27)

Multiplying (4.26a) by the solution pε of (4.22), and integrating over Q, we obtain from Lemma 2.1
and (4.27): ∫ T

0

∫
Ω

(Dα
RLz

ε(x, t)−∆zε(x, t))pε(x, t)dxdt

=

∫
Ω

pε(x, T )I1−αzε(x, T )dx−
∫
Ω

pε(x, 0)I1−αzε(x, 0)dx

= −
∫
Ω

I1−αzε(x, 0)[εpε(x, T ) + pε(x, 0)]dx

= −
∫
Ω

I1−αzε(x, 0)[I1−αyε(uε, 0)− zd]dx

=

∫ T

0

∫
Ω

(v − uε)(x, t)pε(x, t)dxdt.

Hence we have

−
∫
Ω

I1−αzε(x, 0)(I1−αyε(uε, 0)− zd)dx =

∫ T

0

∫
Ω

(v − uε)(x, t)pε(x, t)dxdt,

which combining with (4.25), gives∫ T

0

∫
Ω

(v − uε)(x, t)pε(x, t)dxdt ≤ N

∫
Ω

∫ T

0

uε(x, t)(v − uε)(x, t)dtdx.

And after some computations, we obtain (4.23).
We proved that our approximated optimal control problem has a unique solution and we gave an

optimality system which characterize it. Now, we want to prove that the solution of the approximated
optimal control problem (1.4) - (1.5) converges to the solution of our initial optimal control problem
(1.1)-(1.2).

We have the following result:

Theorem 4.3 Let (uε, yε) be the solution of Problem (1.4) - (1.5). Then uε ∈ Uad.

Proof. Let (uε, yε) be the solution of Problem (1.4) - (1.5). Then from Theorem 3.1, yε(uε) ∈
L2((0, T );H1

0 (Ω)) and we have

yε(t) =

+∞∑
i=1


yTi −

∫ T

0

Eα(−λi(T − s)α)uεi (s)ds

ε+ Eα(−λiTα)
tα−1Eα,α(−λitα)

+

∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)uεi (s)ds

}
wi.

(4.28)
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On the one hand, if we take uε = 0 in (4.28), we have

yε1(t) =

+∞∑
i=1

{
yTi

ε+ Eα(−λiTα)
tα−1Eα,α(−λitα)

}
wi.

Proceeding as in (3.13), we have

∥yε1∥2L2((0,T );H1
0 (Ω))

=

∫ T

0

a(yε1(t), y
ε
1(t))dt

≤ 2

+∞∑
i=1

λi

∣∣∣∣∣ yTi
ε+ Eα(−λiTα)

∣∣∣∣∣
2 ∫ T

0

t2α−2E2
α,α(−λitα)dt

≤ C4T 3α−2

(4α− 3)(1− α)

+∞∑
i=1

|yTi |2

E2
α(−λiTα)

,

which implies that

∥yε1∥L2((0,T );H1
0 (Ω)) ≤ C2

√
T 3α−2

(4α− 3)(1− α)

+∞∑
i=1

|yTi |2

E2
α(−λiTα)

1/2

.

We know that yε1 ∈ L2((0, T );H1
0 (Ω)), then we have+∞∑

i=1

|yTi |2

E2
α(−λiTα)

1/2

<∞. (4.29)

On the other hand, if we take yT = 0 in (4.28), we have

yε2(t) =

+∞∑
i=1


−
∫ T

0

Eα(−λi(T − s)α)uεi (s)ds

ε+ Eα(−λiTα)
tα−1Eα,α(−λitα)

+

∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)uεi (s)ds

}
wi.
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Thus, proceeding as in (3.13) and in [10], we can write that

∥yε2∥2L2((0,T );H1
0 (Ω))

=

∫ T

0

a(yε2(t), y
ε
2(t))dt

≤ 2

+∞∑
i=1

λi

∣∣∣∣∣∣∣∣∣
−
∫ T

0

Eα(−λi(T − s)α)uεi (s)ds

ε+ Eα(−λiTα)

∣∣∣∣∣∣∣∣∣
2 ∫ T

0

t2α−2E2
α,α(−λitα)dt

+ 2

+∞∑
i=1

λi

∫ T

0

{∫ t

0

(t− s)α−1Eα,α(−λi(t− s)α)uεi (s)ds

}2

dt.

≤ C6T 3α−2

(4α− 3)(1− α)

+∞∑
i=1

∫ T

0

|uεi (s)|2ds

E2
α(−λiTα)

+
4C2Tα

α− 1
2

+∞∑
i=1

∫ T

0

|uεi (s)|2ds.

Therefore, we have

∥yε2∥L2((0,T );H1
0 (Ω)) ≤ C4

√
T 3α−2

(4α− 3)(1− α)


+∞∑
i=1

∫ T

0

|uεi (s)|2ds

E2
α(−λiTα)


1/2

+ 2C

√
Tα

α− 1
2

+∞∑
i=1

∫ T

0

|uεi (s)|2ds

1/2

.

As yε2 ∈ L2((0, T );H1
0 (Ω)), we have

+∞∑
i=1

∫ T

0

|uεi (s)|2ds

E2
α(−λiTα)


1/2

<∞. (4.30)

Finally, from (4.29) and (4.30), we have uε ∈ Uad.
We assume that yT and v are such that Series in (3.20) converge. Therefore, we give the following

result:

Theorem 4.4 Let (u, y) be a solution of the problem (1.1)-(1.2). Let (uε, yε) be the solution of Problem
(1.4) - (1.5) and let pε be the solution of Equation (4.22). Then, there exists p ∈ L2(Q) such that, as
ε→ 0, we have the following convergences:

uε → u strongly in L2(Q) and u ∈ Uad, (4.31a)

yε ⇀ y weakly in L2((0, T );H1
0 (Ω)), (4.31b)

I1−αyε(·, T ) → yT strongly in L2(Ω), (4.31c)

I1−αyε(·, 0)⇀ I1−αy(·, 0) weakly in L2(Ω), (4.31d)

pε ⇀ p weakly in L2(Q). (4.31e)
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Proof. For this proof, we proceed in three steps.
Step 1: Let (uε, yε) be the solution of Problem (1.4) - (1.5). Combining (4.3a) and (4.9a), we know
that there exists a constant C > 0 independent of ε such that

∥uε∥L2(Q) ≤ C, (4.32)

which implies that, there exists ū ∈ L2(Q) such that

uε ⇀ ū weakly in L2(Q), when ε→ 0. (4.33)

From Theorem 4.3, we have uε ∈ Uad and Uad being a closed subset of L2(Q), we have ū ∈ Uad.
From (4.3b) and (4.19a), we can deduce that there exists a constant C > 0 independent of ε such that

∥I1−αyε(·, 0)∥L2(Ω) ≤ C, (4.34)

which combining with (4.21), gives

∥yT − I1−αyε(·, T )∥L2(Ω) ≤ εC. (4.35)

Thus, we obtain
I1−αyε(·, T ) → yT strongly in L2(Ω), when ε→ 0, (4.36)

and we proved (4.31c).
Moreover, from Remark 3.2, we know that there exists constants K1 > 0 and K2 > 0, independent of
ε, such that

∥yε∥L2((0,T );H1
0 (Ω)) ≤ K1

(
∥I1−αyε(0)∥L2(Ω) + ∥uε∥L2(Q)

)
. (4.37)

∥I1−αyε∥L2((0,T );H1
0 (Ω)) ≤ K2

(
∥I1−αyε(0)∥L2(Ω) + ∥uε∥L2(Q)

)
. (4.38)

Thus, using (4.32) and (4.34), we can say that there exists a constant C > 0 independent of ε such
that

∥yε∥L2((0,T );H1
0 (Ω)) ≤ C, (4.39)

and
∥I1−αyε∥L2((0,T );H1

0 (Ω)) ≤ C. (4.40)

Therefore, there exists ȳ ∈ L2((0, T );H1
0 (Ω)) and γ ∈ L2((0, T );H1

0 (Ω)) such that

yε ⇀ ȳ weakly in L2((0, T );H1
0 (Ω)), when ε→ 0. (4.41)

I1−αyε ⇀ γ weakly in L2((0, T );H1
0 (Ω)), when ε→ 0. (4.42)

From (4.34), we also know that there exists π ∈ L2(Ω) such that

I1−αyε(·, 0)⇀ π weakly in L2(Ω), when ε→ 0.

And proceeding as in the proof of Theorem 4.1, we obtain

I1−αyε(·, 0)⇀ I1−αȳ(·, 0) weakly in L2(Ω), when ε→ 0. (4.43)

Now, let us prove that (ū, ȳ) is solution of (1.1), in the sense of Definition 3.1.
Combining the first equation of (4.21) and (4.32), we obtain

∥Dα
RLy

ε −∆yε∥L2(Q) ≤ C.
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Then, there exists δ ∈ L2(Q) such that

Dα
RLy

ε −∆yε ⇀ δ weakly in L2(Q), when ε→ 0.

Proceeding as the proof of (4.15), we prove that

Dα
RLy

ε −∆yε ⇀ Dα
RLȳ −∆ȳ weakly in L2(Q), when ε→ 0. (4.44)

Finally,
Dα

RLȳ −∆ȳ = ū in Q. (4.45)

We know that ∫
Ω

∫ T

0

I1−αyε(x, t)φ(x, t)dtdx =∫
Ω

∫ T

0

yε(x, s)

(
−1

Γ(1− a)

∫ T

s

(t− s)−αφ(x, t)dt

)
dsdx, ∀φ ∈ D(Q),

and passing to the limit in the latter equality and using (4.41) and (4.42), we obtain∫
Ω

∫ T

0

γφ(x, t)dtdx =

∫
Ω

∫ T

0

ȳ(x, s)

(
−1

Γ(1− a)

∫ T

s

(t− s)−αφ(x, t)dt

)
dsdx

=

∫
Ω

∫ T

0

I1−αȳ(x, t)φ(x, t)dtdx, ∀φ ∈ D(Q).

Thus,
I1−αȳ = γ in Q,

which combining with (4.42) gives

I1−αyε ⇀ I1−αȳ weakly in L2((0, T );H1
0 (Ω)). (4.46)

Combining (4.45) and the fact that I1−αȳ ∈ L2((0, T );H1
0 (Ω)), we can say, proceeding as in (3.24),

that Dα
RLȳ(t) ∈ H−1(Ω). This implies that I1−αȳ ∈ C([0, T ];L2(Ω)).

Now, multiplying the first equation of (4.21) by a function φ ∈ C∞(Q̄) with φ|∂Ω = 0 and φ(·, 0) = 0
in Ω and integrating by part over Q, we obtain using Lemma 2.1∫ T

0

∫
Ω

(Dα
RLy

ε(x, t)−∆yε(x, t))φ(x, t)dxdt =∫
Ω

φ(x, T )I1−αyε(x, T )dx+

∫
Ω

∫ T

0

yε(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt.

(4.47)

Passing to the limit when ε→ 0 in (4.47) and using (4.44), (4.36) and (4.41), we have∫ T

0

∫
Ω

(Dα
RLȳ(x, t)−∆ȳ(x, t))φ(x, t)dxdt =∫

Ω

φ(x, T )yT dx+

∫
Ω

∫ T

0

ȳ(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt.

(4.48)
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From Lemma 2.1, we can write∫
Ω

∫ T

0

ȳ(x, t)(−Dα
Cφ(x, t)−∆φ(x, t))dxdt =∫ T

0

∫
Ω

(Dα
RLȳ(x, t)−∆ȳ(x, t))φ(x, t)dxdt−

∫
Ω

φ(x, T )I1−αȳ(x, T )dx

−
〈
ȳ(σ, t),

∂φ

∂ν
(σ, t)

〉
H−1((0,T );H−1/2(∂Ω)),H1

0 ((0,T );H1/2(∂Ω))

∀φ ∈ C∞(Q̄) with φ|∂Ω = 0 and φ(·, 0) = 0 in Ω.

(4.49)

Combining (4.48) and (4.49), we obtain

−
∫
Ω

φ(x, T )yT dx =

∫
Ω

φ(x, T )I1−αȳ(x, T )dx

−
〈
ȳ(σ, t),

∂φ

∂ν
(σ, t)

〉
H−1((0,T );H−1/2(∂Ω)),H1

0 ((0,T );H1/2(∂Ω))

∀φ ∈ C∞(Q̄) with φ|∂Ω = 0 and φ(·, 0) = 0 in Ω.

(4.50)

Now, choose φ such that φ(·, T ) = 0 in Ω, then we have

−
〈
ȳ(σ, t),

∂φ

∂ν
(σ, t)

〉
H−1((0,T );H−1/2(∂Ω)),H1

0 ((0,T );H1/2(∂Ω))

= 0

which implies that
ȳ = 0 on Σ. (4.51)

Finally, we have ∫
Ω

φ(x, T )yT dx =

∫
Ω

φ(x, T )I1−αȳ(x, T )dx

Thus
I1−αȳ(x, T ) = yT in Ω. (4.52)

From (4.45), (4.51), (4.52) and the fact that Dα
RLȳ(t) ∈ H−1(Ω) and I1−αȳ ∈ C([0, T ];L2(Ω)), we can

deduce that (ū, ȳ) is a strong solution of (1.1), in the sense of Definition 3.1.
Step 2: We prove that (ū, ȳ) is solution of problem (1.1)-(1.2), and the functional Jε converges to the
functional J , when ε tends to 0.
Let (u, y) be the solution of problem (1.1) - (1.2). From ȳ(ū) be the solution of (1.1) and ū ∈ Uad, we
have

J(u, y) ≤ J(ū, ȳ) (4.53)

As uε is the solution of (1.5), and u ∈ Uad, we can write that

Jε(uε) ≤ Jε(u).

Hence

1

2

∥∥∥I1−αyε(·, 0)− zd

∥∥∥2
L2(Ω)

+
N

2
∥uε∥2L2(Q) ≤

1

2

∥∥∥I1−αy(·, 0)− zd

∥∥∥2
L2(Ω)

+
N

2
∥u∥2L2(Q) , (4.54)
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and passing to the limit in the latter estimation, using (4.43) and (4.33), we obtain

J(ū, ȳ) =
1

2

∥∥∥I1−αȳ(·, 0)− zd

∥∥∥2
L2(Ω)

+
N

2
∥ū∥2L2(Q) ≤

1

2

∥∥∥I1−αy(·, 0)− zd

∥∥∥2
L2(Ω)

+
N

2
∥u∥2L2(Q) = J(u, y),

(4.55)

Therefore, combining (4.53) and (4.55), we have

J(u, y) ≤ J(ū, ȳ) ≤ J(u, y),

which implies that
(ū, ȳ) = (u, y). (4.56)

Moreover, as J(ū, ȳ) = lim
ε→0

Jε(uε), we have

Jε → J when ε→ 0. (4.57)

Thus, combining (4.41), (4.43) and (4.56), we obtain (4.31b) and (4.31d).
Combining again (4.33) and (4.56), we have as ε→ 0

uε ⇀ u weakly in L2(Q). (4.58)

From (4.57), we can write that

lim
ε→0

(
1

2

∥∥∥I1−αyε(·, 0)− zd

∥∥∥2
L2(Ω)

+
1

2
∥uε∥2L2(Q)

)
=

1

2

∥∥∥I1−αy(·, 0)− zd

∥∥∥2
L2(Ω)

+
1

2
∥u∥2L2(Q) .

(4.59)

Using (4.31d) and (4.58), we obtain∥∥∥I1−αy(·, 0)− zd

∥∥∥2
L2(Ω)

≤ lim
ε→0

∥∥∥I1−αyε(·, 0)− zd

∥∥∥2
L2(Ω)

and
∥u∥2L2(Q) ≤ lim

ε→0
∥uε∥2L2(Q) ,

which combining with (4.59) gives∥∥∥I1−αy(·, 0)− zd

∥∥∥2
L2(Ω)

= lim
ε→0

∥∥∥I1−αyε(·, 0)− zd

∥∥∥2
L2(Ω)

(4.60a)

∥u∥2L2(Q) = lim
ε→0

∥uε∥2L2(Q) . (4.60b)

We have

∥uε − u∥2L2(Q) = ∥uε∥2L2(Q) + ∥u∥2L2(Q) − 2

∫
Q

uεudxdt.

Passing to the limit in the latter equality and using (4.58) and (4.60b), we obtain when ε→ 0

lim
ε→0

∥uε − u∥2L2(Q) = 0.
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Therefore, we have
uε → u strongly in L2(Q),

and we proved (4.31a).
Step 3: From Theorem 4.3, we have uε ∈ Uad then Int(Uad) ̸= ∅ and we know that there are
w ∈ Int(Uad) and r > 0, such that

∥v − w∥L2(Q) < r implies that v ∈ Uad.

Since Uad is a closed and convex subset of L2(Q) with nonempty interior , we have Uad = Int(Uad).
Thus, there exists a minimizing sequence {vεn}n∈N of Jε in Int(Uad) associated with a state Φε

n which
verifies the following equation

Dα
RLΦ

ε
n(x, t)−∆Φε

n(x, t) = vεn(x, t)
Φε

n(σ, t) = 0
I1−αΦε

n(x, T ) + εI1−αΦε
n(x, 0

+) = yT ,
(4.61)

since vεn ∈ Uad.
Proceeding as in the proof of Theorem 4.1, we know that there exists a constant C > 0 independent

of n and ε such that
∥vεn∥L2(Q) ≤ C, (4.62)

∥I1−αΦε
n(·, 0)∥L2(Ω) ≤ C, (4.63)

∥Φε
n∥L2((0,T );H1

0 (Ω)) ≤ C∥yT ∥L2(Ω). (4.64)

From (4.32) and (4.62), we obtain
∥vεn − uε∥L2(Q) ≤ C, (4.65)

where C > 0 is a constant independent of n and ε. Let yε be the state associated to the optimal
control uε. Set zεn := yε − Φε

n, then using (4.61) and (4.21), we can say that zεn is solution of Dα
RLz

ε
n(x, t)−∆zεn(x, t) = uε(x, t)− vεn(x, t)

zεn(σ, t) = 0
I1−αzεn(x, T ) + εI1−αzεn(x, 0

+) = 0,
(4.66)

From (4.63) and (4.3b), we obtain

∥I1−αzεn(·, 0)∥L2(Ω) = ∥I1−αyε(·, 0)− I1−αΦε
n(·, 0)∥L2(Ω) ≤ C (4.67)

where C > 0 is a constant independent of n and ε.
Multiplying the first equation of (4.66) by pε be the solution of (4.22), and integrating by parts over
Q we have, using Lemma 2.1∫ T

0

∫
Ω

(Dα
RLz

ε
n(x, t)−∆zεn(x, t))p

ε(x, t)dxdt

=

∫
Ω

pε(x, T )I1−αzεn(x, T )dx−
∫
Ω

pε(x, 0)I1−αzεn(x, 0)dx

=

∫
Ω

∫ T

0

(uε(x, t)− vεn(x, t))p
ε(x, t))dxdt.

(4.68)
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However, from (4.66) and (4.22) we have

I1−αzεn(x, T ) = −εI1−αzεn(x, 0) and pε(x, T ) =
1

ε
(I1−αyε(uε;x, 0)− zd − pε(x, 0))

which combining with (4.68) gives∫
Ω

I1−αzεn(x, 0)(zd − I1−αyε(uε;x, 0))dx =

∫
Ω

∫ T

0

(uε(x, t)− vεn(x, t))p
ε(x, t))dxdt

Using the Cauchy-Schwartz inequality, (4.67) and (4.34),we can write that∣∣∣∣∣
∫
Ω

∫ T

0

(uε(x, t)− vεn(x, t))p
ε(x, t))dxdt

∣∣∣∣∣ ≤ C, (4.69)

where C > 0 is a constant independent of n and ε.
Let v ∈ Uad be such that ∥v − vεn∥L2(Q) ≤ r. Therefore, we have∫

Q

(Nuε(x, t)− pε(x, t))(u(x, t)− uε(x, t))dxdt

=

∫
Q

(Nuε(x, t)− pε(x, t))(u(x, t)− v(x, t))dxdt

+

∫
Q

(Nuε(x, t)− pε(x, t))(v(x, t)− uε(x, t))dxdt

=

∫
Q

Nuε(x, t)(u(x, t)− v(x, t))dxdt−
∫
Q

pε(x, t)(u(x, t)− v(x, t))dxdt

+

∫
Q

(Nuε(x, t)− pε(x, t))(v(x, t)− uε(x, t))dxdt.

Setting

Xε :=

∫
Q

Nuε(x, t)(u(x, t)− v(x, t))dxdt+

∫
Q

(Nuε(x, t)− pε(x, t))(v(x, t)− uε(x, t))dxdt,

we can write∫
Q

(Nuε(x, t)− pε(x, t))(u(x, t)− uε(x, t))dxdt = Xε −
∫
Q

pε(x, t)(u(x, t)− v(x, t))dxdt. (4.70)

Taking v = vεn in (4.70), we obtain∫
Q

(Nuε(x, t)− pε(x, t))(u(x, t)− uε(x, t))dxdt = X1
ε −

∫
Q

pε(x, t)(u(x, t)− vεn(x, t))dxdt, (4.71)

where

X1
ε :=

∫
Q

Nuε(x, t)(u(x, t)− vεn(x, t))dxdt

+

∫
Q

(Nuε(x, t)− pε(x, t))(vεn(x, t)− uε(x, t))dxdt

:=

∫
Q

Nuε(x, t)(u(x, t)− vεn(x, t))dxdt+

∫
Q

Nuε(x, t)(vεn(x, t)− uε(x, t))dxdt

−
∫
Q

pε(x, t)(vεn(x, t)− uε(x, t))dxdt.
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However, from (4.65), (4.69) and (4.32), we have

|X1
ε | ≤ 2NCr + r with ∥u− vεn∥L2(Q) ≤ r, ∀u ∈ Uad. (4.72)

Hence, combining (4.71), (4.23) and (4.72), we obtain∣∣∣∣∣
∫
Q

pε(x, t)(vεn(x, t)− uε(x, t))dxdt

∣∣∣∣∣ ≤ |X1
ε | ≤ C(N, r),

where C(N, r) = 2NCr + r and ∥u− vεn∥L2(Q) ≤ r, ∀u ∈ Uad.
Thus, from the latter estimation, we know that there exists a constant C > 0 independent of ε

such that
∥pε∥L2(Q) ≤ C. (4.73)

Then there exists p ∈ L2(Q) such that

pε ⇀ p weakly in L2(Q), as ε→ 0,

and we proved (4.31e).

Theorem 4.5 Let (u, y) be the solution of the problem (1.1)-(1.2). Then there exists p ∈ L2(Q) such
that (u, y, p) verifies the following optimality systems:

Dα
RLy(x, t)−∆y(x, t) = u(x, t) (x, t) ∈ Q,

y(σ, t) = 0 (σ, t) ∈ Σ,
I1−αy(x, T ) = yT (x) x ∈ Ω,

(4.74)

{
−Dα

Cp(x, t)−∆p(x, t) = 0 (x, t) ∈ Q,
p(σ, t) = 0 (σ, t) ∈ Σ,

(4.75)

and ∫ T

0

∫
Ω

(Nu(x, t)− p(x, t))(v(x, t)− u(x, t))dxdt ≥ 0, ∀v ∈ Uad. (4.76)

Proof. Combining (4.45), (4.51), (4.52) and (4.56), we obtain (4.74).
Now, multiplying the first equation of (4.22), by a function φ ∈ D(Q) and integrating by part over Q
we obtain using Lemma 2.1 ∫ T

0

(−Dα
Cp

ε(x, t)−∆pε(x, t))φ(x, t)dxdt =∫ T

0

∫
Ω

(Dα
RLφ(x, t)−∆φ(x, t))pε(x, t)dxdt = 0.

Passing to the limit in the latter result, using (4.31e), we have∫ T

0

∫
Ω

(−Dα
Cp

ε(x, t)−∆pε(x, t))φ(x, t)dxdt =∫ T

0

∫
Ω

(Dα
RLφ(x, t)−∆φ(x, t))p(x, t)dxdt = 0.
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Using again Lemma 2.1, we can write∫ T

0

∫
Ω

(−Dα
Cp

ε(x, t)−∆pε(x, t))φ(x, t)dxdt =∫ T

0

(−Dα
Cp(x, t)−∆p(x, t))φ(x, t)dxdt = 0,

which implies that
−Dα

Cp(x, t)−∆p(x, t) = 0 in Q. (4.77)

We have p ∈ L2((0, T );L2(Ω)) then pt =
∂p

∂t
∈ H−1((0, T );L2(Ω)). Therefore, from (4.77), we have

∆p = −Dα
Cp = I1−α

+ pt ∈ H−1((0, T );L2(Ω)).

Thus p(t) ∈ L2(Ω) and ∆p(t) ∈ L2(Ω) then p|∂Ω exists and belong to H−1/2(Ω).
Combining the latter result with the second equation of (4.22) and (4.31e), we obtain

p = 0 on Σ. (4.78)

Then from (4.77) and (4.78), we have (4.75).
Finally, passing to the limit when ε→ 0 in (4.23) and using (4.31a) and (4.31e), we deduce (4.76).

5 Conclusion

In this paper, we have studied an optimal control problem associated to an ill-posed fractional diffusion
equation, where the derivative is understood in Riemann-Liouville sense. To solve our problem, we
used the quasi-reversibility method. This work is our first application of the results which we obtained
in our recent work [10]. Using Euler-Lagrange optimality conditions, we characterized our optimal
control by an optimality system. Then, it would be interesting to verify this latter optimality system
by numerical experiments.
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