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Quasi-reversibility method for an optimal control of an ill-posed
fractional diffusion equation

Claire JOSEPH *
April 25, 2024

Abstract

In this paper, an optimal control problem associated to an ill-posed fractional diffusion equation
is considered. To study our initial problem, we use the quasi-reversibility method introduced by
Lions and Lattes in 1969. More precisely, we consider an approximated optimal control problem
of our initial problem. Then the new problem is associated to a well-posed state equation which
approximate the ill-posed state equation. Firstly, we prove that the approximated optimal control
problem admits a unique solution which we characterized using the Euler-Lagrange optimality
conditions. Next, we show that the solution of the approximated optimal control problem converges
to the solution of the initial optimal control problem. To finish, we characterize the optimal control
of our initial problem by an optimality system.

1 Introduction

Let d € N* and Q be a bounded open subset of R? with boundary 99 of class C2. For T > 0, we set
Q=0x(0,T), ¥=092x(0,T) and we consider the following fractional diffusion equation :

D% y(z,t) — Ay(x,t) = v(z,t) (z,t) € Q,
y(o,t) = 0 (0,t) € %, (1.1)
M=oy(@,T) = y'(2) ae,

where 3/4 < o < 1, v € L?(Q), y* € L?(2) and the integral I'=% and the derivative D%, of order «
are understood in the Riemann-Liouville sense.

Fractional diffusion equation is obtained by replacing the first order time derivative with a time
fractional derivative in the classical diffusion equation. Due to the fact that the Riemann-Liouville
fractional derivatives are characterized by a convolution integral (see Definition 2.5), researchers speak
about memory effect. This is why, many researchers have focused their attention on fractional calculus
and there are many applications in other fields such as Physics, Economics and Biology. For more
information about fractional calculus, we can refer to [22, 12, 23, 21, 16] and references therein.

Fractional diffusion equations are often used to model environmental phenomenon such as pollution
problems. However, in this latter type of phenomenon, it is common to not have all the information
of the problem. This is why, we decided to consider a problem where the initial condition is missing.
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(email :claire.joseph@univ-antilles.fr).



Regarding studies of ill-posed fractional diffusion equation, we can refer to [10, 14, 20, 9, 11] and the
references therein, for instance.

The main purpose of this paper is to solve an optimal control problem associated to equation (1.1).
More precisely, we are interesting in solving of the following optimal control problem:

inf  J(v,y), 1.2
oot (v,9) (1.2)

where
A={(v,y) : v€Uyq and y is solution of (1.1) in the sense of Definition 3.1}

Uquq being a given nonempty closed and convex subset of L?(Q) and .J is the functional cost given by

J(v,y) = % HIl“’y(-,O) - Zd’

2 N 9
e 7 130y (1.3

where z4 € L?(2) is a given target and N > 0.

Model computed in (1.1) is an ill-posed problem, in Hadamard sense. Hence, the solution of the
optimal control problem (1.1)-(1.2) is difficult to characterize. In this work, we decided to use the
quasi-reversibility method that was introduced by Lions and Lattes in [13]. Moutamal et al. [10] used
the quasi-boundary method, which is inspired by the quasi-reversibility method. More precisely, they
approached Equation (1.1) by the well-posed problem :

D%rys(x,t) — Ayg(x,t) = f(x,t) (2,1) €Q,
yglo,t) = 0 (o,t) € X,
I'=ys(x,T) + BV ys(z,07) = yl(z) z€,

where 1/2 < a < 1, 8 > 0 and I'"yg(z,07) = ltiigllfayﬂ(m,t). And they proved that when

y' € H}(Q), the solution of (1.4) converges in L2((0,7); H}(2)) to the solution of the following
equation :

D?%Ly(x7t) - Ay(x,t) - f(:L‘,t) (:L‘,t) € Q>
y(o,t) = 0 o,t) e,
I'“ey(z,T) = y'(z) =z€Q,

under a certain condition.
In order to study our optimal control problem (1.1)-(1.2), we used the same approach. For this,
we consider the associated approximated equation of (1.1) :

D%y (z,t) — Aye(x,t) = wv(x,t) (2,t) € Q,
ye(o,t) = 0 (0,t) € %, (1.4)
'y (@, T) +el' "y (2,0%) = y'(z) z€,
where ¢ > 0, v € L?(Q), y* € L*(Q) and I'~%y°(2,01) = ltiﬁ)l I'"%y%(x,t) and the associated approx-
imated optimal control problem, given by:
inf  J%(v,y%), (1.5)

(v,y)€A

where
A={(v,¥°) : v € Ugq and y° is the unique solution of (1.4)}.



Uqq being a given nonempty closed and convex subset of L?(Q) and J¢ is the functional cost given by

TH 2 N
Fwy) = || G0 —zd| L+ 5 0l - (1.6)

L2(Q)

Recently, Mophou and Warma, in [19], used this latter method to study an optimal control problem
associated to a non-well posed Cauchy problem for a general space-fractional diffusion equation. They
approximated their problem by a well-posed problem and proved that the solution of the well-posed
problem converges to the solution of the ill-posed problem. They also gave an optimality system which
characterize their optimal control.

Over the past 10 years, optimal control problems associated to a well-posed fractional diffusion-
wave equations have been studied extensively, see [1, 2, 3, 5, 6, 7, 18, 15] and references therein,
for example. However, we have less studies about optimal control problem associated to ill-posed
fractional diffusion-wave equations. For instance, in [4, 17], the authors used the concept of low-regret
and no-regret controls to study optimal control problems associated to an ill-posed fractional diffusion-
wave equations with incomplete data, where the derivative is understood in Riemann-Liouville sense.
The best of the authors’ knowledge, and, judging from the open literature available, this is the first
application of the quasi-reversibility method to solve an optimal control problem associated to an
ill-posed fractional diffusion equation.

This paper is structured as follows. In section 2, we firstly give some definitions and results
on fractional calculus. After, we give some important existence and uniqueness results which are
obtained using the spectral method. In section 3, we begin by the existence and the uniqueness of the
approximated optimal control problem (1.4)-(1.5). Using the Euler-Lagrange optimality conditions, we
characterized the solution of the approximated problem by a system. After, we proved that the solution
of the approximated problem converges to the solution of the optimal control problem (1.1)-(1.2). To
finish, we give the singular optimality system that characterizes the optimal control.

2 Preliminaries

In this section, we provide some basic definitions and results on fractional calculus. And we give some
existence and uniqueness results of fractional diffusion equations.

Definition 2.1 [22, 12] Let z a complex such as Re(z) > 0. Then the Gamma function, noted T', is
given by

F(z):/ t*~tetat.
0

Definition 2.2 [22, 12/ For a > 0 and 8 > 0 we denote by,

+o00 Zk
E, =N cecC 2.1
5= 2 g °€ (21)
the two-parameters Mittag-Leffler function and thus
E,o(z) = - . 2.2
() D(ak + a) z€ (2:2)
k=0
We set
400 Sk
Eo1(t) = Eu(t) = - 2.3
A0 = Balt) =3 iy (23)



Theorem 2.1 [22] Let 0 < o < 2, B € R be an arbitrary , and we suppose that p as

T _
5 <k< min{m, ro}.

Then there exists a constant C' = C(a, B, ) > 0 such that

|Ea.p(2) p < larg(z)] <.

| < ——,
1+ |z|

Definition 2.3 [12, 8] Let «,3,p € C such that Re(or) > 0 and Re(B) > 0 then the generalized
Mittag-Leffler function is defined by

+oo
tn
&P L) = g L pour tout t € C
o, 1’ ’
“— I'(an+ p)n!

where (p)p =plp+1)...(p+n—1).
Remark 2.1 Note that, when p =1 we get

€L (1) = Bas(0).
where E is the classical Mittag-Leffler function defined in (2.1).

Definition 2.4 [22, 12] The left and right Riemann—Liouville fractional integrals of order a € (0,1)
of f are defined, respectively, by:

1 F(t) = ﬁ /0 (t— )" 1 f(s)ds, (t>0) (2.4)
and -
J“f(t):ﬁ/t (s—)° L f(s)ds, (t<T), (2.5)

provided that the integrals exist.

Definition 2.5 [22, 12] The left and right Riemann—Liouville fractional derivatives of order o € (0,1)
of [ are defined, respectively, by:

Diuf) = G0N0 = sy | (=97 s, (>0 (26)
and
D) =~ G0N0 = fry g | (=0 s (<D, (27)

provided that the integrals exist.

Definition 2.6 [22, 12] The left and right Caputo fractional derivative of order a € (0,1) of f are
defined respectively, by:

DI =T F (1) = ey || (=97 (s, (>0 (2.8)

and
af)=3"f(t) =

provided that the integrals exist.

1 T oo
m/t (s—t)f(s)ds  (t<T) (2.9)



Now we give the following integration by parts formulas.

Lemma 2.1 [18/ Let 0 < a < 1, y € C®(Q) and p € C*(Q). Then we have,

/ /DRLW 1) — Ay(e, )o@, t)dzdt =
/ o(x, T)I' ™ y(x, T)dz:—/ o(x,0) I~ y(z,0) dz+/ /BQ a (o,t)dodt (2.10)

//mau d”d”// (@, t)(=Dewp(x,t) — Ap(z,t))dzdt,

where D is the right Caputo fractional defined by (2.9).

On other hand, since the embedding of H}(Q2) in L%*(Q) is compact and (—A) is a symmetric
uniform elliptic operator, then (—A) admits real eigenvalues, 0 < A\; < Ay < A3 < ... with Ay = o0
when k — 0o. Moreover, there exists an orthonormal basis {wy}$2, of L?(Q) , where wy € H}(Q) is
an eigenfunction corresponding to Ax: —Awyg = A\ywg. Further, we have,

/ Vo(x) - Vip(x)de = )\k/ o(x)Y(x)dx, Vp € Hy(Q). (2.11)
Q Q

In what follows, for all o, € L?(Q), we denote

(o) 20y = /Q o(@)()dz,

as the inner product in L*(2) and ||¢||12(q) as the associated norm.
We set

alp¥) = [ Vila) - Voahde. Vo € HY(@), (212)
Then, the bilinear functional a(.,.) defines an inner product on H{ (£2), and we have

ol @) = ale: 9), (2.13)
0 ()

which is a norm on H}(Q2). Since {\Q/UAIL} is an orthonormal basis of H}(f2) for the inner product
kJ k=1

a(.,.), we can write

“+oo
\|¢||§13(Q) =Y Ai(d,wi)izqy Vo€ Hy (). (2.14)
=1

3 Existence results

In this section, we give some existence and uniqueness results for the fractional diffusion equations
which are used in this paper.
We first have to give our notion of strong solution to the ill-posed problem (1.1):

Definition 3.1 Let v € L?(Q) and yT € L?(2). A function y € L*((0,T); H}(2)) is said to be a
strong solution of (1.1), if the following assertions hold:



o I'~y c C([0,T); L*(Q)),

o D¢ y(t) € HH(Q), y(-,t) € HJ () for a.e t € (0,T) and the first equation of (1.1) is satisfied
for a.e. t € (0,T).

o I'y(\T)=y".
We have the following results:

Lemma 3.1 Let3/4<a <1, T >0, v e L?(Q), y© € L*(Q) and y satisfies (1.1).
Then y € L*((0,T); Hy()) if

T 1/2
¥ / lvs(s)[2ds
li K —_ 07 3.1
N | ; EZ(—AT9) - Eg(—AiTa) = (3-1)
where
2T3a—2 2T3(y—2
Ki=0% —_ d Ko=0C%——— .
! (da—3)(1—a) M 727 (4o —3)1-a)
Proof. Set
VN = Span (wy,wa, -+ ,wN). (3.2)
Then we look for
N N
Y (a,t) =Y (), ws) p2@wi(x) =Y yi(t)wi(z), (3.3)
i=1 i=1
solution of the following approximate problem :
D¢, Yn(z,t) — AYN(z,t) = on(z,t) (x,t) €Q,
Yn(o,t) = 0 (0,t) € X, (3.4)
I'-°Yy(z,T) = yk(x) x€Q,
where
N N
un(z,t) = Z(U(t),wq;)L2(Q)wi(l') = Zvi(t)wi(x), (3.5)
i=1 i=1
and
N N
yh = Z(yT, w;) 2ywi(x) = ZyZTwl(x) (3.6)
i=1 i=1

Note that if Yy converge then A}im YN =y, where y satisfies (1.1).
— 00

If we replace Yn in (3.4) by Zyi(t)wi(x), we obtain that y;, 7 = 1,--- , N is a solution of the
i=1
ordinary differential equation

D%Ly,’(t) + )\iyi(t) ’Ui(t), te (O, T)7
I=ey(T) =y

(3.7)



Now, using the Laplace transform, we obtain from the first equation of (3.7) that,

D3 1yi(s) + Aidii(s) = Ti(s), (3.8)
where .

D3 yi(s) = LD ui(t))(s),

7i(s) = L(y(t))(s),

Gi(s) = L(vi(t))(s)

and £ denotes the Laplace transform operator. Then after some computations we obtain (see [10]):
¢
yi(t) = Iy (0)t* By o (= Ait®) + / (t — ) LBy 0 (=it — 8)*)vi(s)ds, (3.9)
0
which implies that
I (1) = I (0) B (= A\it®) / Eo(=Xi(t — 8)%)vi(s)ds. (3.10)
From the latter equality, we can deduce that
T
I'y(T) = I'"*y;(0) Ea (= AT*) + / Eo(=Xi(T — 5)*)vi(s)ds,
0

which combining with the second equation of (3.7) gives

T
yin/O Eo(—=X(T — 8)%)v;(s)ds

Iliayi(o) = Ea(_)\zTa) ) (311)

where E,(—\T%) > 0 (see [24], for instance).
Therefore, combining (3.9) and (3.11), we obtain

T
y?—/o Eo(—Xi(T = 5)*)v;(s)ds

i (T = tailEaa -\t
it — al=At®)

t — )t -\ (t —8)Mv;(s)ds
+ /0<t YO By o (—Ma(t — 8)%)0s(s)ds.

It then follows from (3.3) that

T
N yZT—/ Eo(=Xi(T — s))v;(s)ds
Yn(t) = Z 0 BT 1 By o (= Nit®) 3w

(3.12)

N t
* Z {/O (t o S)a_lEa,oz(_)\i(t - S)a)vi(s)ds} Wy .



y;f—/o Eo(—Xi(T — 5)*)v;(s)ds

Set a; = . Then, we have that,
E,(—\T%)

iy (1))

I
M=

a(Yn(t), Yn(t))

.
Il

IA
[\
(="

Nt* 2B o (= Nit®)|aq?
1

.
Il

L 2
/\i{/o (t — 5)° Ema(—)\i(t—s)"‘)vi(s)ds} .

JF
[\

=1

Hence,

T
YO omyms@) = /0 a(Yn (1), Y (1)) dt
S AN + BN7
with

N T
Ay = zzMai\?/ 2022 (= At™)dt,
i=1 0

N T t 2
By = 22/0 )\i{/o(t—s)"‘ Ea,a(—)\i(t—s)“)vi(s)ds} dt.

Note that from Theorem 2.1, we know that there exists a generic constant C' > 0 such that

N T
AN 22/\”&“2 / t2a72Eiya(—/\ito‘)dt
i=1 0

N T T
2> " Ailail? (/ t4"‘4E§,a(/\ita)dt> (/ Ei,a(/\ito‘)dt>
=1 0 0
N T T
Y ail? (/ t4“4dt> (/ to‘dt> (3.13)
0 0

i=1

IN

IN

IN
Q
g
[]=
B
&
T
| —— |
=
S
Tl
| @
[E—
—
Il SN
T
Q| R
| IS
=}

=1
CAT3a-2 N )
<
= (a-3)(1-a) ; jai
Therefore, we have
C4T3a—2 N
Ay < ——— A2, 3.14
N—(4a73)(17a);|“| (8.14)



Remark 3.1 From the latter estimation, we see that we have to take 3/4 < a < 1 to give a sense to
2

our computation.
Using Theorem 2.1 and Cauchy-Schwartz inequality, we obtain

N
Sleft <
=1

/E (T = $))ui(s)ds

2ZE2|yz)\Ta +2ZE2 )\Ta

N N T
|yz 2 1
2 AT (/0 ) d5>

Z 0‘ AT& i=1

=1

T
N / lvi (s)|2ds
(3.15)

2 2
)JrQCZ ISR

Therefore, we have
2 |yz
Z |al| < 2 Z E2 —\ T P

i=1
which combining with (3.14) gives
T
; ds
204T3a72 N 2 206T3a72 N / |’U1(S)‘
Ay < 3 il 0 . (3.16)
(4o =3)(1 — o) = EZ(=NT*) (4o =3)(1 —a) = EZ(-\T*)
Proceeding as in [10], we have
4C2T‘X
B < / (i (s) 2. (3.17)
a- 5 i=1
Combining (3.16) and (3.17), we obtain
204T3a—2 N |le 2
||YN(7§)H%2((0 TYHL(Q) = _ _ 2(_ ‘ o
L) Ho (da—3)(1 —a) P E2(—=\T)
T
206T3—2 N / |Ui(s)|2d8 402 N T
e e [ s
(4a—3)(1 —a) P E2(=\T*) el
Hence, we can deduce that
N 1/2
2T3a—2 |yT|2
2 4
HYN(t)”Lz((U,T),Hé(Q)) = C (40& — 3)(1 — Oé) ; Eg(—)\lTa)
T 1/2
o N lvi(s)]?ds
+ A /0
(4o —3)(1 — ) P E2(=\T*)
T T 2 .
+ 20, [ T ;/0 i (s)|?ds

(3.18)



Passing to the limit, when N — oo, in (3.18), we have that y € L2((0,7); H}(Q)) if (3.1) holds.
Therefore,

T
+o0 yZTf/ Eo(=Xi(T — s))vi(s)ds

y(t) - Z ; Ea(_)\iTa) tailEa,a(*)\ita) w;
) (3.19)
+oo t
+ Z{/O (t_3)0_1Ea,a(—)\i(t—S)O‘)vi(s)ds}wi.

Lemma 3.2 Let 3/4 < a <1,y € L?(Q) and v € L*(Q). Then the problem (1.1) admits a strong
solution if and only if the following two series converge:

o T 1/2
TP / +oo/0 v (s)|?ds
Ymia) ™ | X Eoa (3.20)
i=1 ar i=1 et 7t

where \; is the eigenvalue of the operator —A corresponding to the eigenfunction w;. yI = (y7, w;)2(Q)
and vl( ) = (v(t), wi)r2(q) are respectively the i-th component of y* and v(t) in the orthonormal basis

{wz =1 OfLQ( )

Proof. Let y € L((0,T); H}(R)) be a strong solution of (1.1). Then, (3.1) holds. Therefore taking
successively in (3.1) v = 0 and y? = 0, we obtain that the two series in (3.20) converge.

Conversely, assume that the two series in (3.20) converge, then y € L?((0,T); Hg(£2)).

Combining (3.10) and (3.11), we can write that

v |uf / Ba(-M(T — 5)*)ui(s)ds
I'-eyn(t) = Eo(=\t)w;
DY Ea(-NT?)
N t
+ Z{/ Ea()\i(ts)“)vi(s)ds}wi,
i=1 (/0
which implies that,
T
||IliaYN(t)“iz((07T)7Hé(Q)) = /O a(IliaYN(t%IliaYN(t))dt
< Cn+ 2y,
where
N T
Cn 22)\1|ai|2/ E2(=\t®)dt,
i=1 0
N T t 2
In = 22/ )\,»{ Bo(—Ai(t — 5)° )vz(s)ds} dt.
i=1"0 0



Using Theorem 2.1, (3.15) and proceeding as in [10], we obtain

N T
Oy = QZAi\aiF/ E2(=X\t®)dt
i 0

N

T
< ©? |ai|2/ tdt
T
i ds
o2« N y 7|2 N/ vi(s)]
< |2y A eyl
o |22 BT 2 Em o
We can also write that N
21—« T
Z i d
A i Z(/ i) s
Consequently, we have
T
a2
HII—aY (t)”2 - 202T1—a N |y1 |2 204T1—a N /O |UZ(S)| ds
N2 (o, 1);HG (@) = l—a E2(—\T?) l—a = E2(=\T*)
2T« N T
+ ﬁz /0 vi(s)[Pds |,
i=1
which implies that
N 1/2
27" vl I?
1— 7
YN 20,1y ) < - ;Ez AT
T 1/2
a2
N | toas
l—a | = E2(=\T)
Tlfa N T ) 1/2
+ C‘/1_a ;/O lvi(s)|?ds
As v € L*(Q) and Series in (3.20) converge, we have
7 1/2
v\ x| \m( s
N1—1>r-ri-loo ; a( )\ZTO‘) < N1—1>r-ri-loo z:: )\TO‘ < 00

11

(3.21)

(3.22)



and

1/2
N T
. . 2 —_
i |32 | s <ol
This implies that I'=%y € L2((0,7T); HZ (£2)).
Therefore
s ur / Bl =N (T o) Julohls
- (): 2 Fa(—nTo) —\it%) / Eo(—Xi(t — 8)%)vi(s)ds p w;.

(3.23)
Since y € L2((0,T); H}(R)) is solution to (1.1) and v € L?*(Q), we have that

D% y(t) = Ay(t) +o(t) € H1(Q) for almost every ¢ € (0,T).

Let ¢ € H(2). If we multiply the first equation in (1.1) by ¢ and integrate by parts, we have that:

/D%Ly(t)wdx = /Vy(t)~V<pdm+/v(t)<pdx

Q Q Q 3.24)
V()2 IVellL2) + @) || L2 llell 2 (3.
Iy 2@y + CEOQ v L20) ) el @)

IN N

This implies that D%, y(t) € H=1(Q).

Let ¢ € L2((0,T); H}(Q)). If we multiply the first equation in (1.1) by ¢ and integrate by parts,
then in view of (3.24), we have that:
Hence, using again Cauchy-Schwartz inequality, we deduce that

T
/ /Q | Dpy(, t)p(x,t)| dadt
0
(191l 20113000 + C@Il2@) ) el 2o mysmycon:

This implies that D%,y € L?((0, ) Q).

Finally, we showed that I'=*y € L%((0,T); H}(Q)) and D%,y € L*((0,T); H='(12)), then we have
I'=oy € O([0, T]; L*()).

Hence, using (3.23), we have that

IN

T
/0 (||Z/(t)||H3(Q) +C(Q)Hv(t)”L2(Q)) ()1l 112 0y dt

IA

S o / Bu(=Xi(T - 5)*)ui(s)ds

T
I'—oy(T) = Eo(—=AT9) Ba(=AT%) /0 Fal=MlT = o) usle)ds

—+o0

T T

= E Yy wi =Y .
i=1

Consequently, we can conclude that y is a strong solution of (1.1) in the sense of Definition 3.1. =

12



Now, using again eigenfunctions expansions of the Laplace operator and proceeding as the proof of
the latter Lemma, we prove the existence and uniqueness of solution to the approximated problem (1.4).
Let Vi the space given in (3.2). Proceeding as in the proof of Lemma 3.1, we look for

N

Yy (z,t) = Z(y (t), wi) L2 wi(x Zyz Jw;(z (3.25)

=1

the solution of the following approximate problem of (1.4):

D% Y5 (z,t) — AYR(z,t) = wun(z,t) (2,t) € Q,
Yi(o,t) = 0 (0,t) € %, (3.26)
I'=oYg(z,T) + el' Y5 (2,0) = yh(z) 2x€Q,

where vy and y% are given respectively in (3.5) and (3.6).
We recall that if Y5 converge then J\;im Y5 = y°, where y° satisfies (1.4).
—00

We have the following result :

Theorem 3.1 Let3/4<a <1, T >0, v e L%Q), and yT € L?(Y). Then, the approzimate problem
(1.4) has a unique solution y* € L*((0,T); H}(Q)) given by

T
+o0 yZT—/ Eo(=Xi(T — s))vi(s)ds
e . 0 a—1 R e
S ¥ Bal-NT?) B

(3.27)

+ /0 (t=8)"" " Eaa(=Ai(t - S)a)vi(s)ds} w.

where \; is the eigenvalue of the operator —A corresponding to the eigenfunction w;. E, , as given
n (2.2), yI = (y", wi) 2y and vl( ) = (v(t),w;)r2(q) are respectively, the i-th component of y* and
v(t) in the orthonormal basis {w;}52, of L?(Q). Moreover, I*=*y* € C([0,T]; L*(Q)) and there exists
a constant C > 0 such that,

Iy Nz mysmmycen < T (167 ez + Ivlzx@ ) (3.28)
and
'y ( T 3.29
1797 o oy < © (W 00 + ez (329)
where
N o 02 2T30<72 206T3a72 N 402Ta
= max | —
e | 4a=3)(1-a)\2M4a-3)1-a) a-1
and

Tl [eY 204T1 [eY CZT27204
= su
P 1—a'\ e2(1—a) )\1(1—a)2
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N

Proof. If we replace Y5 in (3.26) by ny(t)wl(xL we obtain that y5,i=1,---

, N is a solution

i=1
of the ordinary differential equation '
D%Lyf(t) + Aiyf(t) = Ui(t)> te (07 T)7 (3 30)
I'=eys(T) +el'y: (0) = . '
Now, using the Laplace transform, and proceeding as in [10], we obtain
t
yi(t) = IOy (0Nt T By o (= Nit®) + / (t — ) By 0 (=it — 8)*)vi(s)ds, (3.31)
0
and
102 (1) = =092 (0) B (—Ast®) + / Ea(— it — $))vi(s)ds. (3.32)
Therefore, we have
/ Fa(=N(T — 8)%)vi(s)ds
I'y£(0) = 3.33
e+ Ba(-NT9) ’ (3.33)
which implies that
T
_/ Ea(~N(T — 8)%)vi(s)ds
c(t = 0 ta_lEaa —\it®
0 RO al=it)
t
+ /(t—s)a’lEa@(—)\i(t—s)a)vi(s)ds.
0
It then follows from (3.25) that
N / Ea(= (T — )%)vi(s)ds
Y (t t* By o (= Nit®) p w;
N() ; €+E( )\Ta) CM,(X( ) w
(3.34)
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Yl = | Ba(=X(T — 5)*)vi(s)ds

Set b; = 0 ST BT . Then, we have that,

ilys (6))?

I
M=

a(Yy(t), Yy (1))

.
Il

IA
[\
="

Nt* 2B o (=Nt ®) b
1

.
Il

L 2
/\i{/o (t — 5) Ema(—)\i(t—s)"‘)vi(s)ds} .

JF
[\

=1

Hence,
T
VRO oy iy = / a(YR(0.YR(0)d: < A5 + B,

with

A 2ZA |bs |2/ 2O72E2 (—Nt)dt,

B = zz/ {/ t—s)a-lEa,a(—Ai(t—s)a)vi(s)ds} dt.

Proceeding as in (3.13), we know that there exists a generic constant C' > 0 such that

C4T3a 2
Ay < @—Zw i

Using again Theorem 2.1, we obtain

- Eo(=Xi(T — 8))vi(s)ds

N N
N - 0
iZ:; |bz| - Z E"‘Ea(_)\lTO‘)

202 N T
+€—22/0 lvi(s)|?ds
=1

IN
mw‘w
i-
=3
s,

[\v]

Consequently,
N N
2 20?2
Sl < S / 03(s) .
i=1 i=1

and we have that

C4T3a 2 CGTSa 2
M < Z|y e Z/ (o)

15
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On the other hand, using the Cauchy-Schwartz inequality and proceeding as in [10], we have

.4 XL T
By < 29 Z/ i (s) s (3.38)
a—3 =/

Combining (3.37) and (3.38), we obtain

) O4T30¢ 2
||Y]fl(t)HL2((O7T);Hé(Q)) S c (4@ . Z ‘ZJ

206T30¢—2 402Ta N T )
i d
R Ty Gy ;/0 Jui(s)I"ds
Therefore,
1/2
5 C2 2T3a 2
1YXOllz2(o,m)m1 ) < V@30 =a Z|y

12 (3.39)

20067302 40T "
i d
* \/62(4a—3)(1—a)+ a—3 Z/ fui(s)ds
In view of Equation (3.32) and (3.33), we have

I'YE(t) Z |bi| Ea (—Ait™)w; + Z {/ Eo(—X\i(t —s)” )vi(s)ds} wi,

from which we deduce that,
T
YR O e 0pm ) < /0 a(I'™ YR (8), I'=YR (1)) dt

N T
22)\i|bi|2/ E2(=A\t®)dt
=1

+ 22’;/0 {/ Eo(=Xi(t—s)” )vi(s)ds}gdt.

IN

If we set
N T
cs = 22/\1-|bi\2/ E2 (= \t™)dt
i=1 0
N T ¢ 2
A 22/ )\{/ Ea(—)\i(t—s)a)vi(s)ds} dt.
=170 0

Proceeding as in (3.21), we obtain

C«QTl—a N 9
s < — ; 3.40
Cv < G bl (3.40)
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which combining with (3.36), gives

N

2 2T1 [eY 2 Tl «
Cx < 5o C Z T2 + C Z/ |vi(s)|ds. (3.41)

=1

On the other hand, we can write, using Theorem 2.1 and Cauchy-Schwartz inequality, that

Z < i/ {C/t@—s)—%i(s)ds}th

02 N . . ’
< (t—s)"2(t—s) 2v(s)ds p dt
i 1
02 N t
< t—s ~%ds /(t—s)_a|vi(s)\2d8 dt
i 1 0 (3.42)
C’2 al tfs o t o 9
< (t—s)"Yvi(s)|°ds | dt
i 1 Cl-a 0
CZTI a N
< i t—s) %dt|d
N
CQT27204 5
< i ds.
< A1<1—a>2§/ jvs(s)2ds
Combining (3.41) and the latter estimation of Z%;, we finally obtain
1—a 20271~ ST+ 2C T1 o )2
11 YR (t )” ((0,7); HE () < 21— )Z| I” + Z |U1 ds
o222 N T ,
_ i ds.
+ )\1(1—04)2;/0 lvi(s)|"ds
Thus,
N 1/2
_ C |2T'«
I YR O 2 o0rymi) < 1 a Z|yiT\2
i=1
1/2 (3.43)
QC4T170¢ C2T2 2a
i d
T\ Ea—e Taa- /'” Pas
As yT' € L*(Q) and v € L*(Q), we have
N 1/2 N 1/2
li TP < d i / i(s)[%d < 0.
yhm ;Iy | co and  lim ; ; |vi(s)["ds 00

17



Consequently, we have y° € L2((0,T); H}(Q)) and I'~*y* € L%((0,T); H}(2)). And we have

T
+o0 yiT—/O Eo(=Xi(T — s))vi(s)ds

HONERDY €+ Ea(=AT) t7 B (= Nit®) g w;
i=1 o (3.44)
+o0 )
+ (t—5)"" "Equa(—=Ai(t — 5)")vi(s)ds p w;,
i=1 {/ }
and
s yr / Ba(=X(T — )")ui(s)ds
I = . < ey A

z=1 (345)

+ / Euo(=Xi(t—9)° )vi(s)ds}wi.

Now, proceeding as in the proof of Lemma 3.2, we can say that D%, y* € L*((0,T); H~'(f2)), which
implies that I'=%y* € C([0,T]; L*(£2)). Then we know that I'~%y(T) and I'~%y*(0) exist and belong
to L2(9).

From (3.45), we have

T
400 yin/O Eo(=Xi(T — s))vi(s)ds

l—a, e l—a, e _ _\.T«
M=oy (T) +el' =0y (0) = Y TTEL(T Bo(-\T%)

+ ; Eo(=Xi(T — s)%)v;(s)ds p w;

T
400 le—/ Eo(=Xi(T — s)%)v;i(s)ds

0 0% .
+ ey B W Eo(—Xi0%) b w;

18



Passing to the limit, when N — oo in (3.39) and (3.43), we obtain (3.28) and (3.29).
]
We have the following remark.

Remark 3.2 Let 3/4 < a < 1 and y° € L*((0,T); H} () be the solution of (1.4).Then, there exists
a constant C > 0 independent of € such that,

vl 20,7y H2 (0)) < 1L (||I17ay6(0)||L2(Q) + ||U||L2(Q)) , (3.46)
and
112 oy < © (1 O)lln2) + Ivlli2@)) (3.47)
where
TSa 2
= c? C, /
ax (da—3)(1 —«)
and
Tlfoz CTlfa
6= C ,
max 1—a’ VA —a)

From Theorem 3.1, we have I'=%y* € C([0,T); L*(2)) then we know that I'=%y*(0) exists and belongs
to L*(Q). Hence from (3.31) and (3.32), we can write that: Vt € (0,T),

+oo t
ye(t) = Z {Ilayf(O)to‘lEa,a()\ita) +/0 (t— s)aflEa,a(f)\i(t — s)o‘)vi(s)ds} W;, (3.48)
and
+oo
I'meys(t) = Z {Il_"yf(O) —\it%) / Eo(=Xi(t—9)Y) Z(s)ds} W (3.49)
i=1

Therefore, using Theorem 2.1 and the Cauchy-Schwartz inequality, we obtain from (3.48) and proceed-
ing as in (3.13)

“+o0
5 l—a E 2a0—2 2 feY
|y ||%2((0’T);H6(Q)) < 22)\1 1 ‘ / t E7 o (=it )dt
i=1
+oo LT 2
+ 22/ Ai{/ (t—s)a1Ea7a(—)\i(t—s)a)vi(s)ds} dt.
i—=1 70 0

C4T3a—2 +oo e 2 402Ta
m ;)Il yz(o)’ Z/ |vi(s ‘dS .

T3a72 70
2 11—«
9%l 20,718 (2)) < €74 Ga—3)(1=a) Iy (0) | L2 (o) +2C | P I lvllz2(q)-
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Moreover, from (3.49) and proceeding as in (3.21) and (3.42), we obtain
Iy O o) < 2ZA|11 e |2/) CA)d

+ QZ/O {/ Eur (<At — 5)° )vi(s)ds}2dt

o2l +oo - CQT2 200 +oo
S OO B v b3 / () s

(&7 :
i=1

Hence, we have

Tl « - Tl—a
L 5(0)||L2(Q)+m||v||m(cz)

I =y ()| L2 0,2 2 < C

We also have the following results, which are useful for characterizing our approximate optimal control:

Theorem 3.2 Let e >0, 0 < a <1 and p € L?(2). Then the problem

Dgp®(x,t) — Ap*(z,t) = 0 (z,t) € Q,
p(o,t) = 0 (o,t) € %, (3.50)
p*(z,T) +ep(2,0) = p'(z) =€,
has a unique solution p* € C([0,T); L*(2)) given by
+oo p-T
() = P B (—atM)w; 51
(1) g ST (g | Pe A e (3.51)

where Eq, is given by (2.3), \; is the eigenvalue of the operator —A corresponding to the eigenfunction
w;. pl = (pT,wl')LZ(Q) is the i-th component of pT in the orthonormal basis {w;}32, of L*(Q).
Moreover, there exists a constant C' > 0 such that,

- C
2%l o,y L2 (02)) < ;HPTHL%Q)- (3.52)

Proof. To prove this theorem, we decide to use again the spectral method.
Let Vi the space given in (3.2), we look for

N

Pg(x,t) = Y (p°(t), wi) 2y wi( Z ps (t)wi (). (3.53)

i=1

the solution of the following approximate of (3.50)

DgPg(x,t) — APy (z,t) = 0 (z,t) € Q,
P5(o,t) = 0 (o0,t) € %, (3.54)
P5(z,T) +ePg(x,0) = ph(z) z€Q,

20



where

N
%:Zp wz L2(Q) wz sz wz

(3.55)
We know that if P§ converge then lim P{ = p®, where p° satisfies (3.50).
—00
N
If we replace P% in (3.54) by pr(t)wi(x), we obtain that y;, ¢ = 1
i=1
ordinary differential equation

, N is a solution of the

{ DS (£) + Aips (1)

0, te(0,7),
p§(T) +epf (01)

3.56
- (3.56)
Using the Laplace transform and proceeding as in the proof of Lemma (3.1) , we obtain
P (t) = p; (07) Ea(=Nit®).
Therefore, we have
pi(T) = p; (0F) Ea(=NT?),
which gives from (3.56)5
T
p,
7(0) = ————— 3.57
PO = R AT (3.57)
and, we obtain
pr
cy=4 ——Li __Lp ().
Therefore, from (3.53) we can write that
pr
Py (t) = —t 3 B (—A\itY)w; 3.58
Using Theorem 2.1, we obtain

N T
2 _ b; e
IPR O @) = 2| g (e PN

C* 5~ g
S?ZUI%‘ .
i=1

then, we can deduce that

1/2
| Px (O)llcqomicz@)y = sup [[Py(t)|lr2o

teo

S

s

o Q

N
> bl
=1

(3.59)
As pT € L?(Q2), we know that

1/2

N /

lim E IpT|? < 0.
N —+oco —y
1=
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Therefore, we have p° € C([0,T]; L?(Q2)) and we can write that

+oo T
pE(t) = Z {E—I—E;zz—)\lTo‘)} Eo(=Xit")w;. (3.60)

i=1
Moreover, from (3.60), we have

+oo pT iy pT
ps(T)+5p5(O) Z{W}Ea(_AiTa)wi+€Z{5+Ea(Z_)VM}wi

i=1 —1

400 pT
- Z{W}<E+Ea(‘AiTa))wi

=1
+oo

T T
=1

To finish, passing to the limit, when N — +o00 in (3.59), we can deduce (3.52). m
From the latter theorem, we can deduce the following result:

Corollary 3.1 Let 0 < a < 1 and p? € L?(2). Then problem

—D&p(x,t) — Ap(z,t) =

0 (z,t) € Q,
plo,t) = 0 (0,t) € X, (3.61)
ep(z,T) +p(z,07) = pl(z) ze€Q,

where DY, is the right Caputo fractional of order 0 < a < 1, admits a unique solutionp € C([0,T]; L*(12)).
Moreover, there exists a constant C' > 0 such that,

C
I2llco,m;n2 @) < ;HPTHL?(Qy (3.62)

Proof. Making the change of variable t — T —t in (3.50), we obtain the following equivalent problem

_D(éw(% t) - A’(/J(J},t) =0 (xvt) € Qa
Yo, t) = 0 (o,t) €%,
(@, T)+¢(2,0%) = p(z) z€Q,

where 9(x,t) = p(x,T —t). Therefore, using theorem 3.2, we can say that the latter equation has a
unique solution ¢ € C([0,T]; L?(Q)). Moreover there exists a constant C' > 0 such that

C
1Yl cqo,m;z2 ) < ;HPTHN(Q)-

4 Optimal control problems

In this section, we assume that y© € L?(2) and v € L?(Q) such that Series in (3.20) converge. Our goal
is to solve the non-well posed problem (1.1)-(1.2). Let U,q be a suitable nonempty closed and convex
subset of L?(Q) and A be defined as in (1). For instance, we can consider the following nonempty
closed and convex subset of L?(Q):

Uug = {v € L*(Q) such that Series (3.20) converge} . (4.1)
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Remark 4.1 We have the following observations:

1. From Lemma (3.2), we know that Equation (1.1) admits a strong solution in the sense of Defi-

nition 3.1. Therefore, A # ).

2. Let y be a strong solution of Equation (1.1), then we know that I'~%y € C([0,T]; L3(%)), which
implies that I'=%y(-,0) exists and belongs to L*(Q)). Therefore, the cost function J which we
defined in (1.3) has a sense.

3. We can prove that optimal control problem (1.1)-(1.2) admits a unique solution (u,y) € A, using
minimizing sequences, the structure of the functional J and estimations given in the proof of
Lemma 3.2. Moreover, using the Euler-Lagrange optimality condition, we can give the following
result:

T
/ (I (u,0) — 24) I y(v — u, 0)dz + N/ / u(v = u)dtdz >0 V(v,y) € A,
Q QJ0

However, as mentioned in the introduction, Equation (1.1) is not well-posed in the Hadamard
sense, then the increase of the state and the control in the latter estimation are linked. This is
why, we decided to use the quasi-reversibility method.

Let’s start with the following existence and uniqueness result for the approximated problem:
Theorem 4.1 For every € > 0, there exists a unique control u® € Uyq such that (1.4)-(1.5) holds.

Proof. Let (v,) € Uyq be a minimizing sequence such that

lim J%(v,) = inf J%(v). (4.2)

n—r—+0oo vEUga
Then, there exists a constant C' > 0 such that J¢(v,) < C. Hence, we obtain

[vnllzz @) < C, (4.3a)
11 y5 (5 0) | 20 < C. (4.3b)

Moreover, let y5 = y°(v,; 2, t) be solution of the following equation

Dpyn(x,t) — Ayy (2,1) = vn (2, 1), (4.4a)
ys (o,t) =0, (4.4b)
Iy (@, T) + el yp (2,07) =y (2). (4.4c)
From (4.4c), we have
Il—ayi(.’T) = yT _Ell_ayri(WO)v (4'5)
and combining (4.3b) and (4.5), we obtain
I1=yn (L Dlleee) = My — eIy (- 0)ll 2o
< Ay llezo) + e y5 (5 0)ll L2 (o)
< y"llze() +€C.
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Then we have
11y (Dl 20y < ly" [ p2e) + C- (4.6)

From Theorem 3.1, we know there exists a constant C' > 0 such that
195l 20,52 ) < Clly™ L2 (@) (4.7a)
I ysll 2o,y i) < Clly" L2 o) (4.7b)
Combining (4.4a) and (4.3a), we obtain
I DRLYy — Aysll20) < C. (4.8)

It follows from (4.3a), (4.3b), (4.6), (4.7a), (4.7b) and (4.8) that there exist u® € L*(Q), y° €
L2((0,T); HX(R)),v € L*((0,T); HX(Q)), 6 € L*(Q), m € L*(Q), m € L*(Q) and we can extract
subsequences of (v,,) and (y5) (still called (v,) and (yZ)), such that

vp —u®  weakly in  L*(Q), (4.9a)
ya =" weakly in - L*((0,T); Hg (%)), (4.9b)
I'"0ys =~ weakly in  L*((0,7); Hy (%)), (4.9¢)
D% ys — Ays — 6 weakly in - L?(Q), (4.9d)
I' %y (-,0) = m weakly in  L*(Q), (4.9¢)
I'%E (. T) = m weakly in  L*(Q). (4.9f)
Uqq being a closed subset of L?(Q), we can write
u€ € Ugg. (4.10)

Set D(Q), the set of C*° function on @ with compact support and denote by D'(Q) its dual. Then
multiplying (4.4a) by ¢ € D(Q) and integrating by part over @), we obtain

T T
/ /(D%Lyfl(m,t) — Ays (x,t)p(z, t)dxdt =/ / vp(x, t)p(x, t)dadt. (4.11)
0 Ja o Ja

Using Lemma 2.1, we can write

/ o DRLyn(Jf t) Ayn(x t)) (l‘ t)dl‘dt

/0 /y" z,t)(=Dge(z,t) — Ap(z,t))drdt.

Then passing to the limit in the latter equality when n — +oo and using (4.9b), we obtain

n—>+oo

/ /ya( z,t)(=Dgp(z,t) — Ap(x, t))dzdt.
0o Ja

lim / /DRLyn(x t) — Ays (x,t))p(z, t)dzdt =
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Hence, using again Lemma 2.1, we have

n—-+oo

T
i | [ (Dfesient) = A ) (o. ot =
| (Ohayt @) = Ayt @)oo,

This implies that
D% ys — Ays, — D% py® — Ay®  weakly in D'(Q),

which combining with (4.9d) gives
DEry—Ay =6 in Q.

Therefore, we have
Xys — Ays — D%y — Ay®  weakly in L*(Q)

Passing to the limit in (4.11), using (4.9a) and (4.14), we obtain
Dgry* —Ay*=u® in Q.

Now, we know that
T
/ / I'e (z, ) (x, t)dtdr =
aJo

T _ 1 T .
/Q/O ys (z, ) (F(l—a)/s (t—s) go(a:,t)dt) dsdz, Yo € D(Q),

and passing to the limit in the latter equality and using (4.9¢) and (4.9b), we obtain

/Q/Ova(m,t)dtdx _ /Q/OTyE(a:,s) (I‘(l_la)/sT(t—S)agp(x’t)dt> dsdx
T
= /Q/O 'y (z, t)p(z, t)dtdz, Ve € D(Q).

Thus,
'y =9 in Q,

which combining with (4.9¢) gives
I'~ys —~ '7%°  weakly in L*((0,T); Hy(Q)).
We have y© € L?((0,T); H} () and I'~2y® € L%((0,T); H}(2)), then

y¥* =0 on X.

On the other hand, y* € L((0,T); H}(Q)) then Ay® € L2((0,T); H~1(Q2)), which implies that

a -, & fe] £ € £ _
511 = D%,y =u® + Ay® € L*((0,T); H ().
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Finally, we have
I'~y® € O([0,T); L* ().

This means that I'~*y*(0) and I'~*y*(T) exist and belong to L*(1).
Now, multiplying (4.4a) by a function ¢ € C*°(Q) with ¢5o = 0 and integrating by part over Q, we
obtain using Lemma 2.1

T
/ /Q(D%Lyfb(fl?,t) — AyS (z,1))o(x, t)dadt =

f(p(ac7T)Il_any(:C,T)dac—/Lp(x,O)Il_“yfl(x,O)dx—&—
Q Q

T
// ys (2, t)(=Deo(z,t) — Ap(x, t))dxdt.
aJo

Passing to the limit when n — +o00 in the latter result and using (4.14), (4.9¢), (4.9f) and (4.9b), we
have

T
| [ (D5e .0 - A (e t)ola ot =

f@(x,T)mdﬂU—/g@(m,O)mdm—l— (4.18)

Q
T
|| v Deptat - Apta)dod,
aJo
which using again Lemma 2.1 gives
[ et m = 1oy @ o~ [l 0)fm — 1 (0,0)de =0
Q Q
Now, choose ¢ such that ¢(-,0) = 0 in 2, we obtain
Iliaye(',T) = TTo,
and finally, we have
I'y*(-,0) = my.
Therefore, we have
I8 (-,0) = I'™*9°(-,0)  weakly in  L*(Q), (4.19a)
I (L T) — I'%°(, T)  weakly in  L*(Q). (4.19b)
Hence, passing to the limit when n — +o00 in (4.4c¢) and using (4.19) we can write that
IV (2, T) 4+ el %y (2,0) =yT in Q. (4.20)

From (4.15), (4.17) and (4.20), we can deduce that y°(u®) is solution of Equation (1.4).
It follows from the lower semi-continuity of the functional J¢, (4.9a) and (4.19a) that

JE(w®) < lim inf J*(v,),

—+0o0

which combining with (4.2) gives
JE(u®) = inf J(vp).

vEUqa

And from the strict convexity of J¢, we have the uniqueness of the optimal control u®. m
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Theorem 4.2 Let u® be solution of (1.4)-(1.5). Then there exists p° € C(|0,T]; L*(Q)) such that
(u®,y¢, p®) verifies the following optimality systems:

D%Lys(x’t) —Ay(z,t) = u(z,t) (z,t) €Q,

ye(o,t) = 0 (o,t) € %, (4.21)
'y (@, T) + el "y (2,07) = y"(z) zeq,
7@%])6(1‘,& - Apa(x,t) =0 (‘Tﬂt) € Q»

(o t) = 0 (0,1) € %, (4.22)

(2, T) +p(x,0) = I'"%%(u¥;2,0) —2zq4 x€Q,

and r
/ / (N (2, ) — p= (2, 1)) (0, £) — 0 (2, )t > 0, Vo € Ung. (4.23)
0 Q

Proof. From (4.15), (4.17) and (4.20), we have (4.21). To prove (4.22) and (4.23), we use the Euler-
Lagrange optimality conditions

JE(uf 4+ k(v —uf)) — J¢(u®)

Ilii% : >0, Yve Uy, (4.24)
which characterize the control u°.
We set w = v — u®, then from (1.6) we have
2 2
Tt ko) =3 Hlliays(us’o) ; Zd’ Lo 2 HII i E(w’o)‘ L2(9)
bR, 0) — 2 10 w,0)) g+ 07 g

kzN
”wHL2(Q) + NE(u®,w)r2(q)

which implies that
Je(uf + k(v —u®)) — Jo(u®)

li =
kl—rﬁ) k

(I 72y* (w5, 0) — 24, 'Y (0, 0)) 15 ) + N (U, ) 12(q)-

Combining the latter result with (4.24), we obtain

/(Il_“ya(uE,O) — 2) I (v — uf, 0)dx + N/ / (v—uf)dtdz >0 Vv € Uyg. (4.25)
Q

=
=
%
2

From Corollary 3.1, we know that Equation (4.22) admits a unique solution p* € C(]| ; . Let
2°(v — u®) the assomated state of v — u® € L?(Q). Then from Theorem 3.1, 2° € L?((0,T); H}(2))
verifies the following equation

DRy 2% (x,t) — Az (z,t) = v(z,t) — u®(x,t), (4.26a)
2%(o,t) =0, (4.26b)
225 (2, T) + eI “2(z,07) = 0. (4.26¢)
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Moreover, we know that I'=%2¢ € C([0,T]; L?(2)). Note that, from (4.26c), we have
I'22%(2,T) = —eI'~“2%(z,0). (4.27)

Multiplying (4.26a) by the solution p® of (4.22), and integrating over @, we obtain from Lemma 2.1
and (4.27):

| ] (D ent) - 8 (o, ) o
0 Q

:/pe(x,T)Ilfaze(m,T)dmf/pa(:c,O)Il*aze(x,O)dsc
Q Q

_ f[)Il’azE(x,O)[apg(z,T)erE(Q:,O)]d:z:

= —/ T2 (2, 0) [Ty (uf, 0) — z4)dx
Q

_ /0 ' /Q (v — )z, O)p* (, t)dadt.

Hence we have
T
‘/ Ilfaze<x,o><zlfay€<u€,0>—zd>dw:/ / (v — ), t)p" () dadt,
Q o Ja

which combining with (4.25), gives

/OT /Q(U —u®) (@, t)p*(z, t)dxdt < N/sz /OT uE (2, 1) (v — ) (e, £)dbda.

And after some computations, we obtain (4.23). m

We proved that our approximated optimal control problem has a unique solution and we gave an
optimality system which characterize it. Now, we want to prove that the solution of the approximated
optimal control problem (1.4) - (1.5) converges to the solution of our initial optimal control problem
(1.1)-(1.2).

We have the following result:

Theorem 4.3 Let (u®,y®) be the solution of Problem (1.4) - (1.5). Then u® € Ugg.

Proof. Let (u®,y°) be the solution of Problem (1.4) - (1.5). Then from Theorem 3.1, y*(u®) €
L2((0,T); Hi(2)) and we have

T
oo [T / Ea(—M(T — 5)2 ) (s)ds
£ — 0 a—1 R e’
OB 5} S S PR

i=1

(4.28)
+ /0 (t—8)* By a(=Ni(t — s)a)uf(s)ds} w.
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On the one hand, if we take u® = 0 in (4.28), we have

+o0 T
£ Yi a—1 a
t == T N 7N AN Ea(l/ - 'L K3
H0) Z{HEQ(_MTQ)t (=Nt )}w

=1

Proceeding as in (3.13), we have
T
08 oy = | olwi(o.si(0)de
2

0
+o0 T
Yi 200—2 12 a
< 22 Ai t EZ (=X\t™)dt
= T et Ba(—NT) /0 e =A%)

CAT3a—2 +oo |yZT|2
(4o = 3)(1 — a) & B2(-\T*)’

which implies that

1/2
TSa 2 T2

2
lvillezqo, i)y < C da—3)(1-a) ZEQ )\Ta

We know that y§ € L2((0,T); H}(Q)), then we have

1/2

OO
Z 2 < 0.
=1

a Z

On the other hand, if we take y* = 0 in (4.28), we have

T
+00 —/ Eo(=Xi(T — s)*)ui(s)ds

ZIONEED DS B e+ Eq(—AT) 77 Baa(=Nit%)
=1

+ /O(t—s)"‘_ Ema(—)\i(t—s)o‘)uf(s)ds}w
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Thus, proceeding as in (3.13) and in [10], we can write that

T
8oy = | olus(0.u5(0)de
0 T 9
oo | — Eo(=Xi(T — s)%)ui(s)ds T
< 23\ 0 2272 E2 (= \t®)dt
< 2} o / 2 (A1)

2

400 T t
+ QZAi/O {/0 (t—s)a—lEa,a(—Ai(t—s)a)ug(s)ds} dt.

T
C’6T3(x—2 +oo/0 |Uf(8)|2ds 402To( +oo T ,
€
; ds.
(4a =3)(1 —a) & E2(-\T°) Tt 1 / |us (s)|"ds

2 =1

=1

Therefore, we have

T 1/2
302 +oo/ |us (s)|ds
95l 2o, ryma )y < C* 0o
(da=3)(1—a) | & B2(-\T)
Ta +oo T 1/2
+ 20 [ |2 [ )P
=3 \i=170
As y5 € L*((0,T); Hg (), we have
T 1/2
cx [ lui(o)Pas
I < o0 (4.30)

E2(=\;T*)

i=1

Finally, from (4.29) and (4.30), we have u® € Uyq. ®
We assume that 47 and v are such that Series in (3.20) converge. Therefore, we give the following
result:

Theorem 4.4 Let (u,y) be a solution of the problem (1.1)-(1.2). Let (u®,y°) be the solution of Problem

(1.4) - (1.5) and let p* be the solution of Equation (4.22). Then, there exists p € L?(Q) such that, as
€ — 0, we have the following convergences:

u® —u  strongly in L*(Q) and u € Uy, )

y* =y weakly in  L*((0,T); Hy(2)), )

Iy (-, T) = y*  strongly in  L*(%), (4.31c)

I'™yf(-,0) = I'"%y(-,0)  weakly in  L*() )

p°—p wedkly in L*(Q) )

)

. (4.31e
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Proof. For this proof, we proceed in three steps.
Step 1: Let (u®,y°) be the solution of Problem (1.4) - (1.5). Combining (4.3a) and (4.9a), we know
that there exists a constant C' > 0 independent of € such that

vl z2(q) < C, (4.32)
which implies that, there exists & € L?(Q) such that
u® — @ weakly in  L*(Q), whene — 0. (4.33)

From Theorem 4.3, we have u € U,y and U, being a closed subset of L?(Q), we have 4 € U,gq.
From (4.3b) and (4.19a), we can deduce that there exists a constant C' > 0 independent of € such that

1=y, 0) |20 < €, (4.34)
which combining with (4.21), gives
Iy = Iy (-, T) | 120y < eC. (4.35)
Thus, we obtain
I'"f (., T) = yT  strongly in L*(Q), whene — 0, (4.36)

and we proved (4.31c).
Moreover, from Remark 3.2, we know that there exists constants K7 > 0 and K5 > 0, independent of
€, such that

Y= 1Lz 0,7y () < K (||117°‘y5(0)||L2(Q) + ||UEHL2(Q)> . (4.37)
Iy || 20,51 0) < Ko (”Il_aZ‘JE(O)HLz(Q) + HUEHLQ(Q)> : (4.38)

Thus, using (4.32) and (4.34), we can say that there exists a constant C' > 0 independent of € such
that

9l 22 0.1y m2 (2)) < C (4.39)
and
I~y || 20,512 (0) < C- (4.40)
Therefore, there exists § € L2((0,7); H}(Q)) and v € L2((0,T); H:(R)) such that
y* =79 weaklyin L*((0,7); H}(R)), whene — 0. (4.41)
I'"yf —~ 5 weakly in L*((0,T); Hj(Q)), when e — 0. (4.42)

From (4.34), we also know that there exists 7 € L?(Q2) such that
I'"“y*(-,0) = 7 weakly in L*(Q), when ¢ — 0.
And proceeding as in the proof of Theorem 4.1, we obtain
I'7%F(-,0) = I'""%5(-,0)  weakly in L*(2), when ¢ — 0. (4.43)

Now, let us prove that (@,7) is solution of (1.1), in the sense of Definition 3.1.
Combining the first equation of (4.21) and (4.32), we obtain

ID%Ly" — Ayl r2(q) < C.
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Then, there exists § € L?(Q) such that
D% y" — Ay —§  weakly in L*(Q), when & — 0.
Proceeding as the proof of (4.15), we prove that
D% y° — Ay® — D%, 5 — Ay weakly in L?(Q), when £ — 0.

Finally,
D%, j—Aj=1a inQ.

// Iy (2, t)p(z, t)dtde =
// (2, (1;)/ (t—s)aga(x,t)dt> dsdz, Vo € D(Q),

and passing to the limit in the latter equality and using (4.41) and (4.42), we obtain

/Q/OT yo(x, t)dtde = /Q/OZ gz, s) (11(1_1@ /ST(t — S)‘%p(x,t)dt) dsdx

_ /Q /0 =g(e, ) p(, t)dtdz, Vo € D(Q).

We know that

Thus,
I'*g=v in Q,

which combining with (4.42) gives

'~y —~ "= weakly in L2((0,T); H} (Q)).

(4.44)

(4.45)

(4.46)

Combining (4.45) and the fact that I'=%y € L2((0,T); Hi(Q)), we can say, proceeding as in (3.24),

that D%, 5(t) € H~1(Q). This implies that I'~*y € C([0,T]; L*()).

Now, multiplying the first equation of (4.21) by a function ¢ € C*°(Q) with g9 = 0 and (.,

in  and integrating by part over ), we obtain using Lemma 2.1

/ / D%,y (2, 1) — Ay (w, 6) ), ) dwdt —
/Q (z, T)I' =%y (2, T) dz+// (x,t)(—Dep(z,t) — Ap(x, t))dxdt.

Passing to the limit when € — 0 in (4.47) and using (4.44), (4.36) and (4.41), we have

/ / wry(z,t) — Ag(x,t))e(x, t)dzdt =
/ (z,T) de+/ / (x,t)(—Dgp(x,t) — Ap(x,t))dzdt.
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From Lemma 2.1, we can write

/ /T y(z, t) (=D p(x,t) — Ap(z,t))dzdt =

/ / Gry(z,t) Agj(ac,t))gp(:v,t)alavdt—/Q (z, T)I*~y(z, T)dx (119)

< (o, t) — (o, t)>
v H=1((0,7);H~1/2(09)), H} ((0,T); H1/2 (50))
Vo € C(Q) with ¢jpo =0 and ¢(-,0) =0 in Q.

Combining (4.48) and (4.49), we obtain

—/ng(x,T)de:c = / o(z, T)I1 “g(x, T)dx

- (ﬂ(a, t)a %(07 t)> (450)

H=1((0,T);H=1/2(09)),H ((0,T); H'/2(09))
Ve € C*(Q) with ¢jpq = 0 and ¢(-,0) =0 in Q.

Now, choose ¢ such that ¢(-,7) =0 in Q, then we have

0
- <g(o', t)a ﬁ(av t)> =0
ov H=1((0,T):H1/2(99)), HY (0.T); HV/2(092))
which implies that
g=0 on X. (4.51)
Finally, we have
/g@(z,T)dea?:/ o(z, T)I' =%y (x, T)dx
Q Q
Thus
I'~g(z,T) = in Q. (4.52)

From (4.45), (4.51), (4.52) and the fact that D%, g(t ) € H~Y(Q) and I'~*y € C([0,T); L*(9)), we can
deduce that (@, ) is a strong solution of (1.1), in the sense of Definition 3.1.
Step 2: We prove that (@, ) is solution of problem (1.1)-(1.2), and the functional J¢ converges to the
functional J, when e tends to 0.
Let (u,y) be the solution of problem (1.1) - (1.2). From (@) be the solution of (1.1) and 4 € U,q, we
have

J(u,y) < J(@.9) (453)

As u® is the solution of (1.5), and u € Ugyq, we can write that
JE(uf) < J*(u).

Hence

l-«a 5 _ 2
I ,0) Zd

N o2
L2(Q) 9 Hu||L2(Q) ) (4.54)

2
€ 1— a
3 Il < 5 [P0~z +

1
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and passing to the limit in the latter estimation, using (4.43) and (4.33), we obtain

2 N
1— a —2
(@) st -, + 5 e <

N
b} ||U||iz(Q) = J(u,y),

2
Il a ,0)—Zd’
L2()

5
Therefore, combining (4.53) and (4.55), we have
J(u,y) < J(1,9) < J(u,y),
which implies that
(@,9) = (u,y).

Moreover, as J(@, ) = lir% J®(u®), we have
E—

J*—J whene— 0.

Thus, combining (4.41), (4.43) and (4.56), we obtain (4.31b) and (4.31d).
Combining again (4.33) and (4.56), we have as € — 0

u® —u  weakly in  L*(Q).

From (4.57), we can write that

tim (2|00 2L g ) =
5_>0 2 vy d L2(Q) 2 L*(Q)
'~y (-,0 . S
‘ y(,0) — Zd‘ L2@) T3 lullz2(q) -

Using (4.31d) and (4.58), we obtain

2 2

H[l—ay(.ﬁ) B Zd’ L2(Q) = ;1—% Hll_ays("o) B Zd‘ L2(Q)
and
||UHL2(Q) < Eh_% [[u® ||L2
which combining with (4.59) gives
1—a 2 . 1-a 2
HI y(-0) - Zd’ L2(Q) - glg% HI S Zd‘ L2(Q)

2 . 2
[ullz2(q) = lm [[u”[l2(q) -
(Q)

e—0
We have
€ = w0y = 152y + llagey — /Q wudzdt.

Passing to the limit in the latter equality and using (4.58) and (4.60b), we obtain when ¢ — 0

. 2
;l_rg% [[u® = u||L2(Q) =0.
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Therefore, we have
€

u® —u  strongly in  L*(Q),

and we proved (4.31a).
Step 8: From Theorem 4.3, we have u® € U,q then Int(U,y) # 0 and we know that there are
w € Int(Uyq) and r > 0, such that

lv — w2y <r implies that v € Ugq.

Since U,y is a closed and convex subset of L?(Q) with nonempty interior , we have Uyg = Int(Uuq).
Thus, there exists a minimizing sequence {v }nen of J¢ in Int(Uyq) associated with a state ®¢ which
verifies the following equation

D%L(Di(z7t) 7A(I)f,(l’,t) = v
o (o,t) = 0 (4.61)
I'=2®8 (2, T) + el =% (z,07) = y

since v;, € Ugq.
Proceeding as in the proof of Theorem 4.1, we know that there exists a constant C' > 0 independent
of n and ¢ such that

v llz2 @) < C, (4.62)
11172 ®5 (- 0)]| 22 () < C, (4.63)
19511 22 0,7y 2 (2)) < CHZ‘JTHL?(Q)- (4.64)
From (4.32) and (4.62), we obtain
v, — u®[lL2(q) < C, (4.65)

where C' > 0 is a constant independent of n and €. Let y° be the state associated to the optimal
control u®. Set zZ := y° — ®%, then using (4.61) and (4.21), we can say that zZ is solution of

Dz (x,t) — Azp(z,t) = u(x,t) —vp(z,t)
zE(o,t) = 0 (4.66)
I8 (2, T) + el' =25 (z,07) = 0,

From (4.63) and (4.3b), we obtain
17225, 0) ey = 17 (4 0) = 15 (-0) ey < € (467

where C' > 0 is a constant independent of n and e.
Multiplying the first equation of (4.66) by p° be the solution of (4.22), and integrating by parts over
() we have, using Lemma 2.1

T
|| (Phnzite.t) - Az w000 o )
0 Q
:/pg(x,T)Ilfasz(x,T)dazf/pg(:zz,O)IlfaZZ(:z:,O)dx (4.68)
Q

Q

T
// (uf (z,t) — v (x,t))p° (w,t))dxdt.
QJ0
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However, from (4.66) and (4.22) we have
' 225 (2, T) = —eI' ™25 (2,0) and p°(z,T) = %(Il_ayg(ue; x,0) — zqg — p°(2,0))
which combining with (4.68) gives
/Qll_az;i(x, 0)(zq — Iy (u¥; z,0))dx = /Q/OT(uE(x,t) — 5 (z,t))p°(x, t))dxdt

Using the Cauchy-Schwartz inequality, (4.67) and (4.34),we can write that

<C, (4.69)

T
/ / (uf (2, t) — v (2, 1))p° (z, t))dxdt
QJo

where C' > 0 is a constant independent of n and e.
Let v € Ugq be such that v — v5 | r2(q) < 7. Therefore, we have

/Q (Nue (1) — p° () (u(, £) — uF (x, £))dadt

_ /Q (N (2, 8) — p* (2, ) (u(a, £) — v(a, 1)) dadt

+ [ (Nu®(z,t) — p°(x,t)) (v(x, t) — u®(z,t))dzdt
= ];Nus(x,t)(u(z, t) —v(x, t))dzdt — /st(x,t)(u(a:,t) —v(x,t))dxdt
+/ (Nuf(z,t) — p°(x,t))(v(z, t) — u'(x,t))dzdt.

Q

Setting
X, = / Nuf(z,t)(u(z,t) — v(z,t))dzdt + / (Nu(z,t) — p°(x,t) (v(z, t) — u®(x,t))dzdt,
Q Q
we can write
/ (Nu®(z,t) — p°(z, ) (u(z, t) — u(z,t))dadt = X, — / p(z,t)(u(z, t) — v(z,t))dxdt. (4.70)
Q Q
Taking v = v¢ in (4.70), we obtain
/(Nus(a:,t) () (s ) — (o, ) ddt = X — / PF (@ D) (s t) — oF (2, ) dadt, (471
Q Q
where
X! o= /QNue(x,t)(u(:c,t) — 5 (z,t))dxdt
b [ ) = ) ) — o )
= / Nuf(z,t)(u(z,t) — v; (x,t))dxdt +/ Nuf(z,t) (v, (z,t) — u®(x,t))dzdt
Q Q

- / p° (2, t) (Vs (z,t) — u®(x,t))dxdt.
Q
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However, from (4.65), (4.69) and (4.32), we have
|X2| <2NCr+r  with |lu—15|r2) <7, Vu € Ugg. (4.72)

Hence, combining (4.71), (4.23) and (4.72), we obtain

/pr(x,t)(v;(x,t)—uf(x,t))dxdt < |X1 < C(N, 1),

where C(N,r) =2NCr + 7 and |lu — v} | z2(g) <7, Yu € Uga.
Thus, from the latter estimation, we know that there exists a constant C' > 0 independent of ¢
such that
Ip°|l2(q) < C. (4.73)

Then there exists p € L?(Q) such that
p° —p weaklyin L*(Q), ase—0,
and we proved (4.3le). m

Theorem 4.5 Let (u,y) be the solution of the problem (1.1)-(1.2). Then there exists p € L*(Q) such
that (u,y,p) verifies the following optimality systems:

D%ry(z,t) — Ay(z,t) = u(z,t) (z,t) €Q,
y(o,t) = 0 (o,t) €3, (4.74)
I'“oy(x, T) = yT(x) z€Q,
—D&p(z,t) — Ap(z,t) = 0 (z,t) € Q,
{ “ pot) — 0 (o) e, (4.75)
and .
/0 /Q (Nu(z, £) — p(o, ) (0(@, £) — u(z, 8))dzdt > 0, Vo € Ung. (4.76)

Proof. Combining (4.45), (4.51), (4.52) and (4.56), we obtain (4.74).
Now, multiplying the first equation of (4.22), by a function ¢ € D(Q) and integrating by part over Q
we obtain using Lemma 2.1

T
| Der 1) - 807w )l it =
0
T
/ / D&rp(x,t) — Ap(x,t)p® (z, t)dzdt = 0.
0o Jo
Passing to the limit in the latter result, using (4.31e), we have

/OT/ — Ap®(z, t))p(x, t)dedt =

T
/ (Dgro(z,t) — Ap(x, t)p(z, t)dzdt = 0.
0

{0

D
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Using again Lemma 2.1, we can write

T
/ / (=D&p®(x,t) — Ap®(x,t))p(x, t)dadt =
0,./0
T
/ (=Dép(z,t) — Ap(z,t))p(z, t)dxdt = 0,
0
which implies that
—Dép(x,t) — Ap(x,t) =0 in Q. (4.77)

0
We have p € L?((0,T); L?(2)) then p;, = a—i € H7((0,T); L*(Q)). Therefore, from (4.77), we have

Ap = —-D¢p = I}__O‘pt e Hil((O,T); L2(Q)).

Thus p(t) € L*(2) and Ap(t) € L*(Q) then pja exists and belong to H~1/2(12).
Combining the latter result with the second equation of (4.22) and (4.31e), we obtain

p=0 onX. (4.78)

Then from (4.77) and (4.78), we have (4.75).
Finally, passing to the limit when ¢ — 0 in (4.23) and using (4.31a) and (4.31e), we deduce (4.76). m

5 Conclusion

In this paper, we have studied an optimal control problem associated to an ill-posed fractional diffusion
equation, where the derivative is understood in Riemann-Liouville sense. To solve our problem, we
used the quasi-reversibility method. This work is our first application of the results which we obtained
in our recent work [10]. Using Euler-Lagrange optimality conditions, we characterized our optimal
control by an optimality system. Then, it would be interesting to verify this latter optimality system
by numerical experiments.
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