Towards a Deep Learning-Powered Herbarium Image Analysis Platform - Université des Antilles
Article Dans Une Revue Biodiversity Information Science and Standards Année : 2024

Towards a Deep Learning-Powered Herbarium Image Analysis Platform

Résumé

Global digitization efforts have archived millions of specimen scans worldwide in herbarium collections, which are essential for studying plant evolution and biodiversity. ReColNat hosts, at present, over 10 million images. However, analyzing these datasets poses crucial challenges for botanical research. The application of deep learning in biodiversity analyses, particularly in analyzing herbarium scans, has shown promising results across numerous tasks
Fichier principal
Vignette du fichier
BISS_article_135629.pdf (162.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04686312 , version 1 (04-09-2024)

Licence

Identifiants

Citer

Youcef Sklab, Hanane Ariouat, Youssef Boujydah, Yassine Qacami, Edi Prifti, et al.. Towards a Deep Learning-Powered Herbarium Image Analysis Platform. Biodiversity Information Science and Standards, 2024, 8, ⟨10.3897/biss.8.135629⟩. ⟨hal-04686312⟩
94 Consultations
35 Téléchargements

Altmetric

Partager

More