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A copper-catalysed radiosynthesis of carbon-11 radiolabelled carboxylic acids

was developed by reacting terminal alkynes and cyclotron-produced carbon-11

carbon dioxide ([11C]CO2) in the presence of 1,8-diazabicyclo[5.4.0]undec-

7-ene (DBU). A small library of 11C-labelled propiolic acid derivatives were

obtained with a total synthesis time of 15 min from end of bombardment

(EOB) with a (non-isolated) radiochemical yield ranging from 7% to 28%.
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1 | INTRODUCTION

Carbon-11 is a short-lived radionuclide (t1/2 = 20.4 min)
commonly used to radiolabel molecular probes for use in
in vivo positron emission tomography (PET) imaging.1,2

Radiopharmaceuticals labelled with carbon-11 are chemi-
cally and biologically indistinguishable from their isoto-
pically stable carbon-12 counterparts.3–6 Carbon-11 is
generally produced using a cyclotron by the 14N(p, α)11C
nuclear reaction in the form of [11C]CO2 or [11C]CH4.
Carbon dioxide ([11C]CO2) can be directly incorporated
into a variety of biologically relevant molecules,
forming products such as [carbonyl-11C]carboxylic acids,
[carbonyl-11C]amides, and [carbonyl-11C]carbammate.7–10

Among [carbonyl-11C]carboxylic acids, 11C-labelled
propiolic acid derivatives have gained interest because
this synthon is present in bioactive molecules such as
flavones and coumarins and are amenable to further

reactions to produce: (a) propargyl alcohols via a selective
reduction of the carboxylic group,11 (b) alkene or alkane
carboxylic acids via a selective reduction of the alkyne
function,12,13 and (c) aliphatic alcohols via a reduction of
both alkyne and carboxylic groups.11,13 Given the impor-
tance of 11C-labelled propiolic acid derivatives, several
strategies have been applied to carboxylate terminal
alkynes with [11C]CO2 starting from Grignard reagents,14

boronic esters15 and trimethylsilyl derivatives.16,17

Grignard reagents are highly reactive species limiting
their application to simple substrates as they are incom-
patible with many functional groups. In addition, reactiv-
ity with atmospheric CO2 and moisture sensitivity
potentially leads to lower molar activities and yields of
11C-radiotracers unless used with great care.2,18 Boronic
esters have greater stability to atmospheric CO2 and
moisture but require the use of functionalised terminal
alkynes with an ester. The recently developed approach
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using trimethylsilyl terminal alkynes requires as well as
the C–H bond functionalisation of terminal alkynes for
the construction of C(sp)–Si bonds. Both methods need a
two-step process for the preparation of the starting mate-
rial as functionalised terminal alkynes are not widely
commercially available, which may reduce their applica-
bility.16,17 Thus, we were motivated to explore an alterna-
tive 11C-carboxylation strategy to produce 11C-labelled
propiolic acid derivatives starting from ready-to-use
unfunctionalised terminal alkynes.

Carboxylation of unfunctionalised terminal alkynes
using nonradioactive CO2 has been developed via an in
situ metal insertion into the C–H bond of terminal
alkynes.19–27 The alkynyl–metal intermediate is prepared
by reacting a terminal alkyne, in the presence of a
base (e.g. TBD, TMEDA, DBU), with a catalyst (e.g. AgI,
AgBF4, Ag- and Cu-N-heterocyclic carbenes, CuI,
ferrocene-based bis-phosphine ligand, Ni(cod)2, and
Mo2(OtBu)6). The carboxylation of alkynyl–metal species
is obtained using nonradioactive CO2 under mild reac-
tion conditions (25�C to 50�C) leading to propiolic acids
with good yields (64% to 99%).19–27

To develop a 11C-carboxylation of terminal alkynes
using cyclotron-produced [11C]CO2, we have investigated
an efficient and solvent-free method developed by Li
et al. that describes the carboxylation of phenylacetylene
(1, 2 mmol, 1 eq.) using 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU, 2 eq.), copper(I)-iodide (CuI, 0.02 eq.), and
CO2 (8 MPa) at 50�C for 12 h that lead to phenylpropiolic
acid (1A) with high yields (92%; Scheme 1 in Table 1).20

This strategy is not directly translatable to carbon-11
radiochemistry because of the short synthesis times
required for carbon-11 radiolabelling (<20 min) and
ultra-low [11C]CO2 concentrations used. Here, we report
a modification of this solvent-free strategy to obtain
11C-labelled propiolic acid derivatives (Scheme 1 in
Table 1) from unfunctionalized terminal alkynes in short
synthesis times (<20 min) using [11C]CO2 obtained
directly from a cyclotron. Subsequently, we have studied
the influence of solvent on the reaction by adding
acetonitrile (MeCN) to the reaction mixture with the aim
to extend the method to solid alkyne precursors and to
reduce the amount of terminal alkyne required.

2 | EXPERIMENTAL

Cyclotron-produced [11C]CO2 was bubbled directly from
the target into a reaction vial containing 1, DBU, CuI
without solvent (solvent-free method) or with MeCN
(solvent-added method) at 0�C. The outlet gas line of the
vial was connected to an Ascarite® cartridge (sodium
hydroxide coated silica to trap any gaseous [11C]CO2 not
retained by the reaction mixture). After the delivery of
[11C]CO2 (1.75 min from end of bombardment), the tem-
perature was increased to 30�C, 50�C, 80�C, and 100�C
for 2 and 10 min (Table S1) and the reaction was subse-
quently cooled at 20�C and quenched with a solution of
formic acid (HCOOH) 10% in MeCN. The amount of
radioactivity in the Ascarite® and vial was measured to

TABLE 1 Reaction conditions and optimisation to synthesise [11C]1A in solvent-free condition

Entrya DBU (eq.) CuI (eq.) Flushing (min) TE (%) RCP of [11C]1A (%) RCY of [11C]1A (%)

1b 0.1 0.02 7 13, 15 94, 96 12, 14

2 0.1 0.02 3 15 ± 3 94 ± 2 14 ± 4

3 0.1 0.01 3 14 ± 1 95 ± 5 13 ± 3

4 0.01 0.01 3 1 ± 0.5 100 ± 0 1 ± 0.5

5 0.5 0.01 3 28 ± 5 75 ± 8 21 ± 1

6b 1 0.04 3 36 ± 4 60 ± 1 20, 24

a[11C]CO2 bubbled into a vial containing phenylacetylene (1.0 eq., 2 mmol), DBU (0.01–1 eq.), and CuI (0.01–0.04 eq.) at 0�C. Then the temperature was
increased to 100�C for 2 min followed by a quench using a 10% HCOOH in MeCN solution (700 μl) at 0�C. The system was flushed by helium for 3 (entries
2–6) and 7 (entry 1) minutes at 20�C. n = 3.
bn = 2.
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determine the trapping efficiency (TE*, see endnotes),
and an aliquot of the crude mixture analysed by analyti-
cal radio-HPLC to determine the (nonisolated) radio-
chemical purity (RCP*, see endnotes ) of the product
carbon-11 radiolabelled phenylpropiolic acid ([11C]1A;
Scheme 1 in Table 1).

3 | RESULTS AND DISCUSSION

The solvent-free 11C-carboxylation of terminal alkynes
using [11C]CO2, applying the same conditions reported
by Li et al.20 (1 [1 eq., 2 mmol], DBU [2 eq.], and CuI
[0.02 eq.]), did not give the desired product ([11C]1A)
although the majority of the [11C]CO2 was trapped by
the reaction mixture solution (93%) (see the Supporting
Information). We hypothesised that the high concentra-
tion of DBU would facilitate the trapping of [11C]CO2

and hamper the formation of [11C]1A. Indeed, by
decreasing the equivalents of DBU from 2 to 0.1 eq.,
[11C]1A was obtained with a RCY of 34% and high TE
(84%) after a 2-minute reaction at 100�C. The radio-
HPLC chromatographic analysis revealed the presence
of [11C]1A (tR = 6:17 min) and unreacted [11C]CO2. To
eliminate the unreacted [11C]CO2 from the reaction
mixture we applied a helium flush (1.4 ml/min for
3 min) after an acidic quench. The helium flush
reduced the TE from 84% to 13% and the RCY from
34% to 13% but increased the RCP from 46% to 95%
(n = 2) (see the Supporting Information) confirming

the presence of unreacted [11C]CO2. Increasing the
time of helium flush from 3 to 7 min led to similar TE
(14% and 15%; Table 1, entries 1 and 2); therefore, a
flushing time of 3 min was used in all subsequent
experiments (Table 1, entries 1–3). With the aim to
increase both the RCY and TE, we studied the influ-
ence of DBU, 1, and CuI concentrations on RCYs
(entries 3–6, Table 1).

Decreasing the amount of CuI from 0.02 to 0.01 eq.
did not affect either the RCY (14% vs. 13%; Table 1, entry
2 vs. entry 3) or the TE. Instead, decreasing the amount
of DBU from 0.1 to 0.01 eq. dramatically decreased the
TE to 1% (Table 1, entry 3 vs. entry 4). Increasing the con-
centration of DBU from 0.1 to 0.5 eq., the TE improved
from 14% to 28% and the RCY increased from 13% to 21%
(Table 1, entry 3 vs. entry 5). A concomitant increase of
the amount of DBU to 1 eq. and CuI to 0.04 eq. slightly
enhanced the TE from 28% to 36% but did not really vary
the RCY (Table 1, entry 5 vs. entry 6).28

Our next aim was to reduce further the content of
1 from 2 to 0.2 mmol (22 μl); 200 μl of MeCN was added
to ensure sufficient [11C]CO2 trapping.

Performing the reaction in MeCN with 0.2 mmol of 1,
[11C]1A was obtained with high RCY of 28% (100�C,
2 min; Table 2, entry 1). To investigate the catalytic role
of copper(I), we performed the experiment in the absence
of CuI producing [11C]1A in poor yields (RCY = 4%;
Table 2, entry 2), and the TE decreased dramatically from
35% to 6%. This is in agreement with the results reported
by Li et al.,20 where the yield of carboxylation of terminal

TABLE 2 Reaction conditions and optimisation to synthesise [11C]1A using MeCN as solvent

Entrya CuI (eq.) Temperature (�C) Reaction time (min) TE (%) RCP of [11C]1A (%)b RCY of [11C]1A (%)b

1b 0.1 100 2 35 ± 3 81 ± 7 28 ± 4b

2 - 100 2 6 ± 1 67 ± 2 4 ± 0.5

3c 0.1 100 2 3 ± 2 0 0

4d 0.1 100 2 81 12 9d

5 0.1 80 2 13 ± 4 70 ± 20 8 ± 3

6 0.1 120 2 6 56 4d

7e 0.1 35 2 9 ± 1 0 0c

8 0.1 100 1 8 ± 3 80 ± 5 7 ± 2

9 0.1 100 3 8 ± 2 62 ± 6 5 ± 2

10f 0.1 100 5 2, 3 27, 53 0.5, 1.5

a[11C]CO2 was trapped in a solution of phenylacetylene (1 eq., 200 μmol), DBU (1 eq.), and CuI (0.1 eq.) in MeCN (200 μl) stirred at 0�C. This solution was then
heated (35�C to 100�C) for 2–5 min. The temperature was decreased to 0�C for quenching with a 10% HCOOH in MeCN solution (700 μl). Helium was flushed

through the quenched solution for 3 min at 20�C.
bn = 4.
c20 μmol of 1.
dDBU has been replaced by BEMP.
en = 1.
fn = 2.
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alkynes was reduced from 72% to 41% by eliminating the
CuI from the reaction mixture.

Diluting all the reagents by a factor of 10 did not
yield any [11C]1A (Table 2, entry 3), and we can
estimate that the lower limit will be between 200 and
20 μmol of precursor. The need for 200 μmol (22 μl) of
precursor dissolved in 200 μl of MeCN might be a
limitation for the use of a poorly soluble starting
material. For comparison, the amount of precursor
used here (200 μmol) and in other approaches to obtain
11C-labelled propiolic acid derivatives (60–250 μmol) are
in a similar range.14–17 Moreover, when the DBU
(pKa = 14.2; Table 2, entry 1) was replaced with a stron-
ger base (eq. BEMP pKa = 27.6; Table 2, entry 4), the
RCY of the reaction dramatically decreased to 9%. Vary-
ing the reaction temperature from 100�C to 80�C or
120�C, RCYs decreased to 8% and 4%, respectively
(Table 2, entries 5 and 6).

Decreasing further the temperature to 35�C, no prod-
uct was observed (Table 2, entry 7). Keeping the tempera-
ture at 100�C and varying the reaction time from 2 to
1 or 5 min gave an RCY of 7% and 1%, respectively
(Table 2, entry 1 vs. entries 8–10). The study on the reac-
tion time (1–5 min; Figure S10) shows that the highest
TE value is reached at 2 min. A reaction time of less than

2 min might not be enough to obtain [11C]1A with a neg-
ative impact on TE, whereas a 5-min reaction might have
a negative impact on TE possibly due to the low stability
of [11C]CO2-DBU adduct at higher temperature, facilitat-
ing the movement of radioactivity from the reaction mix-
ture to the Ascarite trap.

The direct 11C-carboxylation of 1 using the conditions
reported in entry 1, Table 2, gave a molar activity of
1.37 GBq/μmol at EOB starting from a maximum radio-
activity of 300 MBq (see endnotes).†

Despite the optimisation effort to increase the RCY
of [11C]1A, our current method leads to slightly better
RCYs than those obtained via Grignard reagents
([11C]-2-octynoic acid, RCY 10%)14 but lower than
using trimethylsilyl derivatives ([11C]3-phenylpropiolic
acid, RCY 97%)16 and boronic esters ([11C]19A, RCY
70%).15 However, following this 11C-carboxylation
strategy, 11C-labelled propiolic acid derivatives could be
obtained from ready-to-use unfunctionalised terminal
alkynes.

Next, the optimised 11C-carboxylation conditions
were applied to a ready-to-use unfunctionalised terminal
alkyne bearing an aliphatic chain and a para-substituted
phenyl ring with either an electron-donating (3) or an
electron withdrawing group (4) (Table 3). Compounds

TABLE 3 Radiolabelling aromatic and aliphatic [11C]propiolic acid with [11C]CO2

Entrya Precursor [11C]propiolic acid derivatives TE (%) RCP (%) RCY (%)

1 2
[11C]2A

11 ± 3 65 ± 5 7 ± 2

2
3 [11C]3A

11 ± 2 76 ± 4 8 ± 3

3
4 [11C]4A

13 ± 7 61 ± 10 7 ± 3

4
5

[11C]5A

20 ± 2 67 ± 3 14 ± 1

5
6

[11C]6A

12 ± 4 71 ± 11 9 ± 3

6b

7

[11C]7A

9 0 0

aReaction conditions: [11C]CO2, terminal alkynes 2a–7a (0.2 mmol, 1 eq.), DBU (1 eq.), and CuI (0.1 eq.) in MeCN (200 μl) at 0�C; then, solution heated at
100�C for 2 min. Quenched at 0�C with a 10% HCOOH in MeCN solution (700 μl). Helium flushed the vial for 3 min at 20�C. n = 9.
bn = 1.
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[11C]2A–4A were obtained with good RCYs of 7% to
8%. We observed lower TE in entries 1–3, probably due
to the lack of conjugation between the alkynyl and
phenyl groups (entry 1) or inductive effect of the ring
substituents (entries 2 and 3) affecting the formation of
C–11C bond formation with a negative impact on
TE. Compound [11C]3A is a common motif found in a
family of compounds targeting the free fatty acid receptor
1 (FFAR1), an attractive target for the treatment of type
2 diabetes mellitus.29 11C-labelled propiolic acid deriva-
tives binding FFAR1 might be obtained with this strategy
using the corresponding synthetically accessible terminal
alkynes as a precursor. The application of this method to
radiolabel such molecules might reveal new insights on
PET imaging in metabolic diseases. Using terminal
alkenes 5 and 6, the corresponding 11C-carboxylic acids
([11C]5A and [11C]6A) were obtained with a RCY of 14%
and 9%, respectively.

The substitution of the alkyne with an alkene (7) did
not lead to the formation of the corresponding
11C-carboxylic acid [11C]7A (Table 3).

4 | CONCLUSION

In summary, we have developed a carbon-11 carboxyla-
tion reaction that uses [11C]CO2 and monosubstituted
terminal alkynes to directly obtain 11C-labelled propiolic
acid derivatives. Using the solvent-added approach,
(i) [11C]1A was produced with slightly lower RCY (28%
[Table 2, entry 1] vs. 13% [Table 1, entry 3]) but with a
TE 2.5-fold higher than the solvent-free approach and
(ii) the amount of starting material 1 needed to perform
the radiosynthesis is 10 times lower. The solvent-free
strategy has been applied directly to carboxylate aromatic
or aliphatic terminal alkynes, which opens the prospect
for direct 11C-carboxylation avoiding the use of
functionalised terminal alkynes.
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ENDNOTES

* Radiochemical purity (RCP) of the product in the crude has been
determined by analytical radio-HPLC. Trapping efficiency
(TE) was calculated as the percentage of activity in the reaction
vial compared with total activity delivered (reaction vial +
Ascarite trap). Radiochemical yield (RCY) was calculated by mul-
tiplying TE and RCP.

† This work describes a method development study using short, low
current, cyclotron irradiations where obtaining high Am were not
the focus. However, the associated carrier content of compound
1A was in the range of 26 nmol in 1 ml. Assuming that the stable
12C carrier content would be in the same range for a standard
clinical [11C]CO2 production, it is estimated that molar activities
of 137 GBq/μmol would be obtained at EOB.
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