G. Apic, J. Gough, and S. A. Teichmann, Domain combinations in archaeal, eubacterial and eukaryotic proteomes, J Mol Biol, vol.310, issue.2, p.11428892, 2001.

D. Ekman, A. K. Bjorklund, J. Frey-skott, and A. Elofsson, Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions, J Mol Biol, vol.348, issue.1, p.15808866, 2005.

C. Vogel, S. A. Teichmann, and J. Pereira-leal, The relationship between domain duplication and recombination, J Mol Biol, vol.346, issue.1, p.15663950, 2005.

J. Projecto-garcia, D. Jollivet, J. Mary, F. H. Lallier, S. W. Schaeffer et al., Selective forces acting during multi-domain protein evolution: the case of multi-domain globins, Springerplus, vol.4, p.4503718, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01177910

E. Bornberg-bauer, A. K. Huylmans, and T. Sikosek, How do new proteins arise?, Curr Opin Struct Biol, vol.20, issue.3, p.20347587, 2010.

R. M. Bhaskara and N. Srinivasan, Stability of domain structures in multi-domain proteins, Sci Rep, p.3216527, 2011.

J. H. Han, S. Batey, A. A. Nickson, S. A. Teichmann, and J. Clarke, The folding and evolution of multidomain proteins, Nat Rev Mol Cell Biol, vol.8, issue.4, 2007.

I. Majumdar, L. N. Kinch, and N. V. Grishin, A database of domain definitions for proteins with complex interdomain geometry, PLoS One, vol.4, issue.4, p.2662426, 2009.

G. Postic, Y. Ghouzam, R. Chebrek, and J. C. Gelly, An ambiguity principle for assigning protein structural domains, Sci Adv, vol.3, issue.1, p.5235333, 2017.

T. L. Rodgers, P. D. Townsend, D. Burnell, M. L. Jones, S. A. Richards et al., Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors, PLoS Biol, vol.11, issue.9, p.3769225, 2013.

B. Ma, C. J. Tsai, T. Haliloglu, and R. Nussinov, Dynamic allostery: linkers are not merely flexible. Structure, vol.19, p.21742258, 2011.

J. W. Peng, Investigating Dynamic Interdomain Allostery in Pin1, Epub 2015/10/27, vol.7, p.4610412, 2015.

M. Bashton and C. Chothia, The geometry of domain combination in proteins, J Mol Biol, vol.315, issue.4, p.11812158, 2002.

S. J. Hubbard and P. Argos, A functional role for protein cavities in domain: domain motions, J Mol Biol, vol.261, issue.2, p.8757295, 1996.

S. Jones, A. Marin, and J. M. Thornton, Protein domain interfaces: characterization and comparison with oligomeric protein interfaces, Protein Eng, vol.13, issue.2, pp.77-82, 2000.

O. Arviv and Y. Levy, Folding of multidomain proteins: biophysical consequences of tethering even in apparently independent folding, Proteins, vol.80, issue.12, p.22890725, 2012.

S. Osvath, G. Kohler, P. Zavodszky, and J. Fidy, Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase, Epub 2005/05/11, vol.14, p.2253372, 2005.

Y. Levy, Protein Assembly and Building Blocks: Beyond the Limits of the LEGO Brick Metaphor. Biochemistry, vol.56, p.28809494, 2017.

M. Wenk, R. Jaenicke, and E. M. Mayr, Kinetic stabilisation of a modular protein by domain interactions, FEBS Lett, vol.438, issue.1-2, 1998.

K. A. Scott, A. Steward, S. B. Fowler, and J. Clarke, Titin; a multidomain protein that behaves as the sum of its parts, J Mol Biol, vol.315, issue.4, p.11812150, 2002.

A. Del-sol, H. Fujihashi, D. Amoros, and R. Nussinov, Residues crucial for maintaining short paths in network communication mediate signaling in proteins, Mol Syst Biol, vol.2, p.1681495, 2006.

M. Jenik, R. G. Parra, L. G. Radusky, A. Turjanski, P. G. Wolynes et al., Protein frustratometer: a tool to localize energetic frustration in protein molecules, Nucleic Acids Res, vol.40, p.3394345, 2012.

L. W. Yang and I. Bahar, Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes, Structure, vol.13, issue.6, p.1489920, 2005.

P. Taylor, J. Dornan, A. Carrello, R. F. Minchin, T. Ratajczak et al., Two structures of cyclophilin 40: folding and fidelity in the TPR domains, Structure, vol.9, issue.5, pp.431-439, 2001.

S. Miller, C. Ross-inta, and C. Giulivi, Kinetic and proteomic analyses of S-nitrosoglutathione-treated hexokinase A: consequences for cancer energy metabolism, Amino Acids, vol.32, issue.4, p.17051422, 2007.

F. Liu, Q. Dong, A. M. Myers, and H. J. Fromm, Expression of human brain hexokinase in Escherichia coli: purification and characterization of the expressed enzyme, Biochem Biophys Res Commun, vol.177, issue.1, pp.305-316, 1991.

L. S. Swapna, S. Mahajan, A. G. De-brevern, and N. Srinivasan, Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins, BMC Struct Biol, vol.12, p.3427047, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00725334

A. Zen, C. Micheletti, O. Keskin, and R. Nussinov, Comparing interfacial dynamics in protein-protein complexes: an elastic network approach, BMC Struct Biol, vol.10, p.2927602, 2010.

J. Guo, X. Pang, and H. X. Zhou, Two pathways mediate interdomain allosteric regulation in pin1, Structure, vol.23, issue.1, p.25543254, 2015.

P. Central and P. , , p.4286514

J. Wang, R. Kawasaki, J. I. Uewaki, A. Rashid, N. Tochio et al., Dynamic Allostery Modulates Catalytic Activity by Modifying the Hydrogen Bonding Network in the Catalytic Site of Human Pin1, Molecules, vol.22, issue.6, 2017.

K. H. Dubay, J. P. Bothma, and P. L. Geissler, Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone, PLoS Comput Biol, vol.7, issue.9, p.3182858, 2011.

G. R. Bowman and P. L. Geissler, Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites, Proc Natl Acad Sci U S A, vol.109, issue.29, p.3406870, 2012.

P. Kirubakaran, L. Pfeiferova, K. Bousova, L. Bednarova, V. Obsilova et al., Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins, Proteins, vol.84, issue.10, p.27273513, 2016.

K. Gunasekaran, B. Ma, and R. Nussinov, Is allostery an intrinsic property of all dynamic proteins?, Proteins, vol.57, issue.3, p.15382234, 2004.

R. Nussinov, C. J. Tsai, and B. Ma, The underappreciated role of allostery in the cellular network, Annu Rev Biophys, vol.42, p.23451894, 2013.

A. Del-sol, C. J. Tsai, B. Ma, and R. Nussinov, The origin of allosteric functional modulation: multiple pre-existing pathways, Structure, vol.17, issue.8, p.2749652, 2009.

A. Stutzer, S. Liokatis, A. Kiesel, D. Schwarzer, R. Sprangers et al., Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails, Mol Cell, vol.61, issue.2, p.26778125, 2016.

R. Nussinov, C. J. Tsai, F. Xin, and P. Radivojac, Allosteric post-translational modification codes, Trends Biochem Sci, vol.37, issue.10, p.22884395, 2012.

G. D. Sagar, B. Gereben, I. Callebaut, J. P. Mornon, A. Zeold et al., Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity, Mol Cell Biol, vol.27, issue.13, p.17452445, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00152172

P. Central and P. , , p.1951476

M. M. Edreira, S. Li, D. Hochbaum, S. Wong, A. A. Gorfe et al., Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop, J Biol Chem, vol.284, issue.40, pp.27480-27486, 2009.

P. Central and P. , , p.2785677

J. A. Adams, M. L. Mcglone, R. Gibson, and S. S. Taylor, Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase, Biochemistry, vol.34, issue.8, pp.2447-54, 1995.

R. A. Steinberg, R. D. Cauthron, M. M. Symcox, and H. Shuntoh, Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197, Mol Cell Biol, vol.13, issue.4, p.359554, 1993.

P. D. Jeffrey, A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz et al., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex, Nature, vol.376, issue.6538, 1995.

C. A. English, W. Sherman, W. Meng, and L. M. Gierasch, The Hsp70 interdomain linker is a dynamic switch that enables allosteric communication between two structured domains, J Biol Chem, vol.292, issue.36, p.5592658, 2017.

P. Fiorani, A. Bruselles, M. Falconi, G. Chillemi, A. Desideri et al., Single mutation in the linker domain confers protein flexibility and camptothecin resistance to human topoisomerase I, J Biol Chem, vol.278, issue.44, p.12904303, 2003.

A. C. Register, S. E. Leonard, and D. J. Maly, SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family, Biochemistry, vol.53, issue.44, p.4230323, 2014.

J. Okrut, S. Prakash, Q. Wu, M. J. Kelly, and J. Taunton, Allosteric N-WASP activation by an inter-SH3 domain linker in Nck, Proc Natl Acad Sci U S A, vol.112, issue.47, p.4664294, 2015.

N. K. Fox, S. E. Brenner, and J. M. Chandonia, SCOPe: Structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures, Nucleic Acids Res, vol.42, p.3965108, 2014.

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, issue.13, pp.1658-1667, 2006.

R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann et al., UniProt: the Universal Protein knowledgebase, Nucleic Acids Res, vol.32, p.308865, 2003.

Y. Zhang and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score, Nucleic Acids Res, vol.33, issue.7, pp.2302-2311, 2005.

P. Central and P. , , p.1084323

A. Zemla, LGA: A method for finding 3D similarities in protein structures, Nucleic Acids Res, vol.31, issue.13, p.168977, 2003.

N. Siew, A. Elofsson, L. Rychlewski, and D. Fischer, MaxSub: an automated measure for the assessment of protein structure prediction quality, Bioinformatics, vol.16, issue.9, pp.776-85, 2000.

D. S. Hagberg and P. Swart, Exploring Network Structure, Dynamics, and Function using NetworkX, Proceedings of the 7th Python in Science conference, 2008.

D. Van-der-spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark et al., GROMACS: fast, flexible, and free, J Comput Chem, vol.26, issue.16, p.16211538, 2005.

B. Qian, S. Raman, R. Das, P. Bradley, A. J. Mccoy et al., High-resolution structure prediction and the crystallographic phase problem, Nature, vol.450, issue.7167, p.2504711, 2007.

G. Vriend, WHAT IF: a molecular modeling and drug design program, J Mol Graph, vol.8, issue.1, pp.52-58, 1990.

A. Bakan, L. M. Meireles, and I. Bahar, ProDy: protein dynamics inferred from theory and experiments. Bioinformatics, vol.27, p.3102222, 2011.

P. Robert and Y. Escoufier, A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient, Journal of the Royal Statistical Society Series C (Applied Statistics), vol.25, issue.3, pp.257-65, 1976.

A. D. Mackerell, N. Banavali, and N. Foloppe, Development and current status of the CHARMM force field for nucleic acids, Biopolymers, vol.56, issue.4, pp.257-65, 2000.

H. Berendsen, J. Postma, W. F. Van-gunsteren, and J. Hermans, Interaction Models for Water in Relation to Protein Hydration1981, pp.331-373

G. A. Papoian, J. Ulander, M. P. Eastwood, Z. Luthey-schulten, and P. G. Wolynes, Water in protein structure prediction, Proc Natl Acad Sci U S A, vol.101, issue.10, p.373465, 2004.