Codage & cryptage - Université des Antilles Access content directly
Journal Articles Journal of Pure and Applied Algebra Year : 1998

Codage & cryptage

Abstract

Nous étudions dans l'anneau Fq[X0, X1] des polynômes à m + 1 variables et à coefficients dans le corps fini à q éléments, l'idéal homogène J engendré par les polynômes homogènes qui s'annulent sur tout l'espace. Cet idéal s'introduit naturellement lors de l'étude des codes de Reed-Muller projectifs ([7], [8]). Nous donnons une résolution libre du quotient Fq[X0, ..., Xm]/J en utilisant le complexe de Eagon et Northcott [4] qui généralise le complexe de Koszul [5]. Ceci permet en particulier de calculer directement les dimensions des composantes homogènes de l'idéal.
Fichier principal
Vignette du fichier
ccod0010.pdf (165.85 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00767441 , version 1 (19-12-2012)

Identifiers

  • HAL Id : hal-00767441 , version 1

Cite

Dany-Jack Mercier, Robert Rolland. Codage & cryptage. Journal of Pure and Applied Algebra, 1998, 124, pp.227-240. ⟨hal-00767441⟩
160 View
133 Download

Share

Gmail Mastodon Facebook X LinkedIn More