Staggered incremental unknowns for solving Stokes and generalized Stokes problems

Abstract : This article is devoted to the presentation of a multilevel method using finite differences that is well adapted for solving Stokes and Navier-Stokes problems in primitive variables. We use Uzawa type algorithms to solve the saddle point problems arising from spatial discretization by staggered grids and a semi-explicit temporal scheme. By means of a new change of basis operator, the two-dimensional velocity and pressure fields of an M.A.C mesh are gathered in a hierarchical order, into several grids preserving the M.A.C property on each of them. These new hierarchical unknowns, called Staggered Incremental Unknowns (SIU), allow us to develop techniques which reduce the cost of the resolution of either Stokes or generalized Stokes problems. An experimental estimation of the condition number of the inner matrix is given, and justifies the preconditioning effect of the staggered incremental unknowns.
Type de document :
Article dans une revue
Applied Numerical Mathematics, Elsevier, 2000, 35 (1), pp.23-41. 〈10.1016/S0168-9274(99)00044-6〉
Liste complète des métadonnées

https://hal.univ-antilles.fr/hal-00770268
Contributeur : Pamphile Isch <>
Soumis le : vendredi 4 janvier 2013 - 20:52:06
Dernière modification le : mercredi 18 juillet 2018 - 20:11:27

Lien texte intégral

Identifiants

Collections

Citation

Pascal Poullet. Staggered incremental unknowns for solving Stokes and generalized Stokes problems. Applied Numerical Mathematics, Elsevier, 2000, 35 (1), pp.23-41. 〈10.1016/S0168-9274(99)00044-6〉. 〈hal-00770268〉

Partager

Métriques

Consultations de la notice

95