Ergodic convergence to a zero of the extended sum of two maximal monotone operators

Abstract : In this note we show that the splitting scheme of Passty [13] as well as the barycentric-proximal method of Lehdili & Lemaire [8] can be used to approximate a zero of the extended sum of maximal monotone operators. When the extended sum is maximal monotone, we generalize a convergence result obtained by Lehdili & Lemaire for convex functions to the case of maximal monotone operators. Moreover, we recover the main convergence results of Passty and Lehdili & Lemaire when the pointwise sum of the involved operators in maximal monotone.
Type de document :
Article dans une revue
Studies in Computational Mathematics, 2001, 8, pp.369-379. 〈10.1016/S1570-579X(01)80022-7〉
Liste complète des métadonnées

https://hal.univ-antilles.fr/hal-00778164
Contributeur : Gerty Roux <>
Soumis le : vendredi 18 janvier 2013 - 19:16:37
Dernière modification le : mercredi 18 juillet 2018 - 20:11:28

Identifiants

Collections

Citation

Abdellatif Moudafi, Michel Théra. Ergodic convergence to a zero of the extended sum of two maximal monotone operators. Studies in Computational Mathematics, 2001, 8, pp.369-379. 〈10.1016/S1570-579X(01)80022-7〉. 〈hal-00778164〉

Partager

Métriques

Consultations de la notice

193