Universum Learning for Semi-Supervised Signature Recognition from Spatio-Temporal Data

Abstract : We present a novel approach towards signature recognition from spatio-temporal data. The data is obtained by recording gyroscope and accelerometer measurements from an embedded pen device. The idea of Universum learning was previously presented by Vapnik and recently popularized in machine learning community. It assumes that the decision boundary of a classifier lies close to data with high uncertainty. The quality of the final classifier strongly depends on a way how to choose the Universum data and also on the representation of original data. In our paper we use a novel approach of Universum learning to classify signature data, also we present our novel idea how to sample the Universum data. At last, we also find more effective representation of the signature data itself compared to the baseline method. These three novelties allow us to outperform previously published results by 4.89% / 5.58%.
Type de document :
Communication dans un congrès
Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.univ-antilles.fr/hal-01165925
Contributeur : Philippe Simon <>
Soumis le : samedi 20 juin 2015 - 20:24:58
Dernière modification le : lundi 22 juin 2015 - 14:02:42
Document(s) archivé(s) le : mardi 15 septembre 2015 - 20:03:15

Fichier

IGS_2015_submission_38.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01165925, version 1

Collections

Citation

Lukas Tencer, Marta Režnáková, Mohamed Cheriet. Universum Learning for Semi-Supervised Signature Recognition from Spatio-Temporal Data. Céline Rémi; Lionel Prévost; Eric Anquetil. 17th Biennial Conference of the International Graphonomics Society, Jun 2015, Pointe-à-Pitre, Guadeloupe. 2015, Drawing, Handwriting Processing Analysis: New Advances and Challenges. 〈hal-01165925〉

Partager

Métriques

Consultations de la notice

73

Téléchargements de fichiers

150