Generalized Integral Operators and Applications

Abstract : We extend the theory of distributional kernel operators to a framework of generalized functions, in which they are replaced by integral kernel operators. Moreover, in contrast to the distributional case, we show that these generalized integral operators can be composed unrestrictedly. This leads to the definition of the exponential, and more generally entire functions, of a subclass of such operators.
Type de document :
Article dans une revue
Mathematical Proceedings, Cambridge University Press (CUP), 2006, 141 (3), pp.521-546. 〈https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society〉
Liste complète des métadonnées

https://hal.univ-antilles.fr/hal-01530755
Contributeur : Antoine Delcroix <>
Soumis le : mercredi 31 mai 2017 - 19:21:25
Dernière modification le : mardi 7 novembre 2017 - 01:02:02

Identifiants

  • HAL Id : hal-01530755, version 1

Collections

Citation

Séverine Andouze-Bernard, Jean-François Colombeau, Antoine Delcroix. Generalized Integral Operators and Applications. Mathematical Proceedings, Cambridge University Press (CUP), 2006, 141 (3), pp.521-546. 〈https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society〉. 〈hal-01530755〉

Partager

Métriques

Consultations de la notice

62