Fenton-Like Degradation of Acid Orange 7 Using Graphene Oxide-Iron Oxide Nanocomposite - Université des Antilles Accéder directement au contenu
Article Dans Une Revue SCIENCE OF ADVANCED MATERIALS Année : 2014

Fenton-Like Degradation of Acid Orange 7 Using Graphene Oxide-Iron Oxide Nanocomposite

Résumé

Abstract View references (38) This work presents a facile, scalable method for the fabrication of graphene oxide-iron oxide (GO-Fe3O4) nanocomposites produced by co-precipitation of iron ions onto the GO surfaces in basic aqueous media. FTIR and XRD characterisation suggests that Fe3O4 was chemically anchored to the GO sheets, possibly via the carboxyl and hydroxyl groups. Small GO loadings of 0.5 and 1 wt% were not sufficient to alter the Fe3O4 structures. However, increasing the GO loading to 5 and 10 wt% resulted in significant loss in pore volume, thus suggesting the lamellar GO sheets decorated with Fe3O4 were assembling into GO-Fe3O4 nanocomposite stacks. It was found that the GO-Fe3O4 nanocomposites had an enhanced catalytic activity in the heterogeneous Fenton-like oxidation of Acid Orange 7 (AO7) compared to pure GO flat sheets and Fe3O4 nanoparticles. Interestingly, the GO-Fe3O4 nanocomposite with 5 wt% loading ratio exhibited the best catalytic activity with 76% degradation of AO7 dye observed within 90 min of reaction. This was attributed to the synergistic effect of GO by enriching the adsorbed AO7 molecules onto the nanocomposite to be further oxidised in the vicinities of active sites. This finding suggests the promising employment of GO-Fe3O4 nanocomposites in removing organic dyes from polluted water by heterogeneous Fenton-like reaction. © 2014 by American Scientific Publishers.

Dates et versions

hal-01683207 , version 1 (12-01-2018)

Identifiants

Citer

Nor Aida Zubir, Xiwang Zhang, Christelle Yacou, João C. Diniz da Costa. Fenton-Like Degradation of Acid Orange 7 Using Graphene Oxide-Iron Oxide Nanocomposite. SCIENCE OF ADVANCED MATERIALS, 2014, 6 (7), pp.1382 - 1388. ⟨10.1166/sam.2014.1812⟩. ⟨hal-01683207⟩
143 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More