A penalization-gradient algorithm for variational inequalities

Abstract : This paper is concerned with the study of a penalization-gradient algorithmfor solving variational inequalities, namely, find x ∈ C such that Ax, y − x ≥ 0 for all y ∈ C, where A : H → H is a single-valued operator, C is a closed convex set of a real Hilbert space H. Given Ψ : H → ∪ { ∞} which acts as a penalization function with respect to the constraint x ∈ C, and a penalization parameter βk, we consider an algorithm which alternates a proximal step with respect to ∂Ψ and a gradient step with respect to A and reads as xk I λkβk∂Ψ −1 xk−1 − λkAxk−1 . Under mild hypotheses, we obtain weak convergence for an inverse strongly monotone operator and strong convergence for a Lipschitz continuous and strongly monotone operator. Applications to hierarchical minimization and fixed-point problems are also given and the multivalued case is reached by replacing themultivalued operator by its Yosida approximatewhich is always Lipschitz continuous.
Type de document :
Article dans une revue
International Journal of Mathematics and Mathematical Sciences, Hindawi Publishing Corporation, 2011, pp.1-12. 〈10.1155/2011/305856〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.univ-antilles.fr/hal-00776654
Contributeur : Pamphile Isch <>
Soumis le : mardi 15 janvier 2013 - 21:34:22
Dernière modification le : mercredi 18 juillet 2018 - 20:11:27
Document(s) archivé(s) le : samedi 1 avril 2017 - 05:49:10

Fichier

305856.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Abdellatif Moudafi, Eman Al-Shemas. A penalization-gradient algorithm for variational inequalities. International Journal of Mathematics and Mathematical Sciences, Hindawi Publishing Corporation, 2011, pp.1-12. 〈10.1155/2011/305856〉. 〈hal-00776654〉

Partager

Métriques

Consultations de la notice

150

Téléchargements de fichiers

107