Ergodic Convergence to a Zero of the Extended Sum - Université des Antilles
Reports Year : 2000

Ergodic Convergence to a Zero of the Extended Sum

Abstract

In this note we show that the splitting scheme of Passty [7] as well as the barycentric-proximal method of Lehdili & Lemaire [4] can be used to approximate a zero of the extended sum of maximal monotone operators. When the extended sum is maximal monotone, we extend the convergence result obtained by Lehdili & Lemaire for convex functions to the case of maximal monotone operators. Moreover, we recover the main convergence results by Passty and Lehdili & Lemaire when the pointwise sum of the involved operators is maximal monotone.
Fichier principal
Vignette du fichier
10.1.1.165.7044.pdf (149.07 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00783905 , version 1 (01-02-2013)

Identifiers

  • HAL Id : hal-00783905 , version 1

Cite

Abdellatif Moudafi, Michel Théra. Ergodic Convergence to a Zero of the Extended Sum. 2000. ⟨hal-00783905⟩
245 View
131 Download

Share

More