Ergodic Convergence to a Zero of the Extended Sum - Université des Antilles Access content directly
Reports Year :

Ergodic Convergence to a Zero of the Extended Sum

Abstract

In this note we show that the splitting scheme of Passty [7] as well as the barycentric-proximal method of Lehdili & Lemaire [4] can be used to approximate a zero of the extended sum of maximal monotone operators. When the extended sum is maximal monotone, we extend the convergence result obtained by Lehdili & Lemaire for convex functions to the case of maximal monotone operators. Moreover, we recover the main convergence results by Passty and Lehdili & Lemaire when the pointwise sum of the involved operators is maximal monotone.
Fichier principal
Vignette du fichier
10.1.1.165.7044.pdf (149.07 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00783905 , version 1 (01-02-2013)

Identifiers

  • HAL Id : hal-00783905 , version 1

Cite

Abdellatif Moudafi, Michel Théra. Ergodic Convergence to a Zero of the Extended Sum. 2000. ⟨hal-00783905⟩
239 View
96 Download

Share

Gmail Facebook Twitter LinkedIn More