The generation of synthetic handwritten data for improving on-line learning - Université des Antilles
Communication Dans Un Congrès Année : 2015

The generation of synthetic handwritten data for improving on-line learning

Lukas Tencer
  • Fonction : Auteur
  • PersonId : 967231
Réjean Plamondon
  • Fonction : Auteur
  • PersonId : 967232

Résumé

In this paper, we introduce a framework for on-line learning of handwritten symbols from scratch. As such, learning suffers from missing data at the beginning of the learning process, in this paper we propose the use of Sigma-lognormal model to generate synthetic data. Our framework deals with a real-time use of the system, where the recognition of a single symbol cannot be postponed by the generation of synthetic data. We evaluate the use of our framework and Sigma-lognormal model by comparison of the recognition rate to a block-learning and learning without any synthetic data. Experimental results show that both of these contributions represent an enhancement to the on-line handwriting recognition, especially when starting from scratch.
Fichier principal
Vignette du fichier
IGS_2015_submission_34.pdf (133.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01165923 , version 1 (20-06-2015)

Identifiants

  • HAL Id : hal-01165923 , version 1

Citer

Marta Režnáková, Lukas Tencer, Réjean Plamondon, Mohamed Cheriet. The generation of synthetic handwritten data for improving on-line learning. 17th Biennial Conference of the International Graphonomics Society, International Graphonomics Society (IGS); Université des Antilles (UA), Jun 2015, Pointe-à-Pitre, Guadeloupe. ⟨hal-01165923⟩

Collections

UNIV-AG IGS2015
197 Consultations
277 Téléchargements

Partager

More