Optimal Control of fractional Sturm-Liouville wave equations on a star graph - Université des Antilles Access content directly
Journal Articles Optimization Year : 2022

Optimal Control of fractional Sturm-Liouville wave equations on a star graph

Abstract

In the present paper, we are concerned with a fractional wave equation of Sturm-Liouville type in a general star graph. We first give several existence, uniqueness and regularity results of weak solutions for the one-dimensional case using the spectral theory; we prove the existence and uniqueness of solutions to a quadratic boundary optimal control problem and provide a characterization of the optimal control via the Euler-Lagrange first order optimality conditions. We then investigate the analogous problems for a fractional Sturm-Liouville problem in a general star graph with mixed Dirichlet and Neumann boundary conditions and controls of the velocity. We show the existence and uniqueness of minimizers, and by using the first order optimality conditions with the Lagrange multipliers, we are able to characterize the optimal controls.
Fichier principal
Vignette du fichier
Non_degenarate_wave_equation_07_06.pdf (410.9 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03727844 , version 1 (19-07-2022)

Identifiers

Cite

Maryse M Moutamal, Claire Joseph. Optimal Control of fractional Sturm-Liouville wave equations on a star graph. Optimization, 2022, ⟨10.1080/02331934.2022.2088370⟩. ⟨hal-03727844⟩
42 View
48 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More